CN105955264A - Control platform having road real-time detection function and applied to sweeping robots - Google Patents

Control platform having road real-time detection function and applied to sweeping robots Download PDF

Info

Publication number
CN105955264A
CN105955264A CN201610305690.0A CN201610305690A CN105955264A CN 105955264 A CN105955264 A CN 105955264A CN 201610305690 A CN201610305690 A CN 201610305690A CN 105955264 A CN105955264 A CN 105955264A
Authority
CN
China
Prior art keywords
robot
sweeping
floor
controller
transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610305690.0A
Other languages
Chinese (zh)
Inventor
全知音
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Shenghe Environmental Protection Technology Co Ltd
Original Assignee
Guangxi Shenghe Environmental Protection Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangxi Shenghe Environmental Protection Technology Co Ltd filed Critical Guangxi Shenghe Environmental Protection Technology Co Ltd
Priority to CN201610305690.0A priority Critical patent/CN105955264A/en
Publication of CN105955264A publication Critical patent/CN105955264A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0238Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using obstacle or wall sensors

Abstract

The invention discloses a control platform having a road real-time detection function and applied to sweeping robots, comprising an ultrasonic sensor used for detecting whether there is an obstacle in the moving path of a sweeping robot, multiple ultrasonic ranging sensors used for preventing the sweeping robot from falling off, an infrared sensor arranged on the top of a garbage storage bin of the sweeping robot and used for detecting the garbage storage bin, a moving path planning module arranged in a controller inside the sweeping robot and used for planning a moving path, the controller used for correcting the moving path of the sweeping rotor in real time according to the positioning information of a positioning module and a running route planned by the moving path planning module, and a real-time road condition acquiring module used for acquiring road information in real time. A temperature sensor is arranged inside the sweeping robot, and a 360-degree panoramic camera is arranged on the sweeping robot. The sweeping efficiency is improved.

Description

There is the control platform for robot of sweeping the floor of road real-time detection function
Technical field
The present invention relates to field of intelligent control, in particular it relates to a kind of control platform for robot of sweeping the floor with road real-time detection function.
Background technology
At present, robot of sweeping the floor is applied the most in the family, and in avenue, main or employing sweeper or the mode of hand sweeping, and use sweeper to be also required to pilot steering, therefore there is the problem that sweeping efficiency is low.
Summary of the invention
It is an object of the invention to, for the problems referred to above, propose a kind of control platform for robot of sweeping the floor with road real-time detection function, to realize the advantage improving sweeping efficiency.
For achieving the above object, the technical solution used in the present invention is:
A kind of control platform for robot of sweeping the floor with road real-time detection function, including:
It is arranged on the ultrasonic sensor swept the floor within robot: be used for detecting whether have barrier in sweeping robot course;
It is arranged on multiple ultrasonic distance-measuring sensors of surrounding bottom robot of sweeping the floor: when sweeping robot marches to step edge, ultrasonic distance-measuring sensor utilizes ultrasound wave to record the distance between sweeping robot and ground, when distance between the sweeping robot recorded and ground exceedes limit value, ultrasonic distance-measuring sensor sends signal to controller, controller controls sweeping robot and turns to, change sweeping robot direction of advance, thus the robot that prevents from sweeping the floor falls;
It is arranged on the infrared sensor at the garbage storing storage top of robot of sweeping the floor, this infrared sensor includes infrared transmitter and infrared remote receiver, what infrared transmitter was relative with infrared remote receiver is arranged on the inwall of garbage storing storage, when infrared remote receiver does not receives the infrared signal that infrared transmitter is launched, illustrate garbage storing storage already filled with, infrared remote receiver sends signal to controller, and controller sends instruction and reminds cleaning garbage storing storage;
It is arranged in the controller swept the floor within robot and running orbit planning module is set, running orbit planning module is according to storing map, planning travel route, and the built-in locating module of robot of sweeping the floor, the running orbit of robot of sweeping the floor is corrected in real time by controller according to the location information of locating module and the travel route of running orbit planning module planning;
Controller built-in Real-time Road state acquisition module, Real-time Road state acquisition module obtains road information by connecting network from urban traffic control platform in real time, when the travel route planned according to running orbit planning module cleans, Real-time Road state acquisition module get the road vehicle that will clean many time, running orbit planning module in controller is from new planning travel route, sections many for vehicle is skipped, thus clean next section, and by more than section be labeled as not cleaning, clean again when this section vehicle is few when;
Sweep the floor robot built-in temperature sensor, the temperature signal swept the floor on robot circuit board of detection is transmitted to controller by temperature sensor, when temperature signal reaches the temperature upper limit set, controller controls to sweep the floor robot break-off, by the time temperature signal reach to set at a temperature of in limited time, the controller robot that controls to sweep the floor works on;
Sweep the floor and 360 degree of full-view cameras are set on robot, the image information of 360 degree of full-view camera collections preserves and is uploaded to remote control center by wireless network while the bin that robot of sweeping the floor is built-in, robot of sweeping the floor remotely can be controlled by remote control center by the remote control module being arranged in controller, and the priority level that remote control center remotely controls is the highest;
The output signal of described ultrasonic sensor, ultrasonic distance-measuring sensor and infrared sensor is transmitted to controller after all sequentially passing through filter circuit, amplifying circuit and analog to digital conversion circuit.
nullPreferably,Described filter circuit,Including transport and placing device A1 and transport and placing device A2,Input signal is input to the in-phase input end of transport and placing device A1 by resistance R4,And series resistance R3 between the in-phase input end of transport and placing device A1 and ground,Series resistance R2 between the inverting input of transport and placing device A1 and ground,Series resistance R5 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A1,Series resistance R1 between inverting input and the inverting input of transport and placing device A2 of transport and placing device A1,The outfan of transport and placing device A2 is connected with the inverting input of transport and placing device A2,Series inductance L1 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A2,Inductance L2 is in parallel with inductance L1,The series circuit of electric capacity C1 and electric capacity C4 composition is in parallel with inductance L1,The series circuit of electric capacity C2 and electric capacity C3 composition is in parallel with inductance L1,And the node ground connection between electric capacity C1 and electric capacity C4,Node ground connection between electric capacity C2 and electric capacity C3.
Preferably, the resistance of described resistance R1 is 10K Ω, and the resistance of described resistance R2 and resistance R3 is 200 Ω, and the resistance of described resistance R4 is 10K Ω, and the resistance of described resistance R5 is 54.1 K Ω, the capacitance of described electric capacity C1 is 10 pF, and the capacitance of described electric capacity C2 is 10 μ F, and the capacitance of described electric capacity C3 is 4700 μ F, and the capacitance of described electric capacity C4 is 10 pF, and the size of described inductance L1 and inductance L2 is 33 μ H.
Technical scheme has the advantages that
Technical scheme, realizes the Based Intelligent Control to cleaning machine people by various sensors, because using mechanized operation, intelligentized control method, thus reaches to improve the purpose of sweeping efficiency.
Below by drawings and Examples, technical scheme is described in further detail.
Accompanying drawing explanation
Fig. 1 is the theory diagram controlling platform for robot of sweeping the floor with road real-time detection function described in the embodiment of the present invention;
Fig. 2 is the electronic circuitry of the filter circuit described in the embodiment of the present invention;
Fig. 3 is the electronic circuitry of the amplifying circuit described in the embodiment of the present invention.
Detailed description of the invention
Below in conjunction with accompanying drawing, the preferred embodiments of the present invention are illustrated, it will be appreciated that preferred embodiment described herein is merely to illustrate and explains the present invention, is not intended to limit the present invention.
As it is shown in figure 1, a kind of control platform for robot of sweeping the floor with road real-time detection function, including:
It is arranged on the ultrasonic sensor swept the floor within robot: be used for detecting whether have barrier in sweeping robot course;
It is arranged on multiple ultrasonic distance-measuring sensors of surrounding bottom robot of sweeping the floor: when sweeping robot marches to step edge, ultrasonic distance-measuring sensor utilizes ultrasound wave to record the distance between sweeping robot and ground, when distance between the sweeping robot recorded and ground exceedes limit value, ultrasonic distance-measuring sensor sends signal to controller, controller controls sweeping robot and turns to, change sweeping robot direction of advance, thus the robot that prevents from sweeping the floor falls;
It is arranged on the infrared sensor at the garbage storing storage top of robot of sweeping the floor, this infrared sensor includes infrared transmitter and infrared remote receiver, what infrared transmitter was relative with infrared remote receiver is arranged on the inwall of garbage storing storage, when infrared remote receiver does not receives the infrared signal that infrared transmitter is launched, illustrate garbage storing storage already filled with, infrared remote receiver sends signal to controller, controller sends instruction and reminds cleaning garbage storing storage, when controller sends instruction prompting cleaning garbage storing storage, controller need to look for nearest rubbish set-point according to built-in map, thus the rubbish in garbage storing storage is placed into rubbish set-point, then the location information preserved according to controller, return the original cleaning point cleaned on path to continue to clean.
It is arranged in the controller swept the floor within robot and running orbit planning module is set, running orbit planning module is according to storing map, planning travel route, and the built-in locating module of robot of sweeping the floor, the running orbit of robot of sweeping the floor is corrected in real time by controller according to the location information of locating module and the travel route of running orbit planning module planning;
Controller built-in Real-time Road state acquisition module, Real-time Road state acquisition module obtains road information by connecting network from urban traffic control platform in real time, when the travel route planned according to running orbit planning module cleans, Real-time Road state acquisition module get the road vehicle that will clean many time, running orbit planning module in controller is from new planning travel route, sections many for vehicle is skipped, thus clean next section, and by more than section be labeled as not cleaning, clean again when this section vehicle is few when;
Sweep the floor robot built-in temperature sensor, the temperature signal swept the floor on robot circuit board of detection is transmitted to controller by temperature sensor, when temperature signal reaches the temperature upper limit set, controller controls to sweep the floor robot break-off, by the time temperature signal reach to set at a temperature of in limited time, the controller robot that controls to sweep the floor works on;
Sweep the floor and 360 degree of full-view cameras are set on robot, the image information of 360 degree of full-view camera collections preserves and is uploaded to remote control center by wireless network while the bin that robot of sweeping the floor is built-in, robot of sweeping the floor remotely can be controlled by remote control center by the remote control module being arranged in controller, and the priority level that remote control center remotely controls is the highest;
The output signal of ultrasonic sensor, ultrasonic distance-measuring sensor and infrared sensor is transmitted to controller after all sequentially passing through filter circuit, amplifying circuit and analog to digital conversion circuit.
nullAs shown in Figure 2,Filter circuit,Including transport and placing device A1 and transport and placing device A2,Input signal is input to the in-phase input end of transport and placing device A1 by resistance R4,And series resistance R3 between the in-phase input end of transport and placing device A1 and ground,Series resistance R2 between the inverting input of transport and placing device A1 and ground,Series resistance R5 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A1,Series resistance R1 between inverting input and the inverting input of transport and placing device A2 of transport and placing device A1,The outfan of transport and placing device A2 is connected with the inverting input of transport and placing device A2,Series inductance L1 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A2,Inductance L2 is in parallel with inductance L1,The series circuit of electric capacity C1 and electric capacity C4 composition is in parallel with inductance L1,The series circuit of electric capacity C2 and electric capacity C3 composition is in parallel with inductance L1,And the node ground connection between electric capacity C1 and electric capacity C4,Node ground connection between electric capacity C2 and electric capacity C3.
Preferably, the resistance of resistance R1 is 10K Ω, and the resistance of resistance R2 and resistance R3 is 200 Ω, and the resistance of resistance R4 is 10K Ω, and the resistance of resistance R5 is 54.1 K Ω, the capacitance of electric capacity C1 is 10 pF, and the capacitance of electric capacity C2 is 10 μ F, and the capacitance of electric capacity C3 is 4700 μ F, and the capacitance of electric capacity C4 is 10 pF, and the size of inductance L1 and inductance L2 is 33 μ H.
nullAs shown in Figure 3,Amplifying circuit: include audion T201、Audion T202 and audion T203,Series capacitance C201 in the base stage of audion T201,Series capacitance R201 between the base stage of audion T201 and power supply VCC,Series capacitance R202 between the colelctor electrode of audion T201 and power supply VCC,Series capacitance R204 between the colelctor electrode of audion T202 and power supply VCC,Series capacitance R205 between the colelctor electrode of audion T203 and power supply VCC,Series capacitance C202 between the colelctor electrode of audion T201 and the base stage of audion T202,The base stage of audion T202 and inter-collector series resistance R203,The emitter stage of audion T201 and the emitter stage series connection ground connection of audion T202,The colelctor electrode of audion T202 is sequentially connected in series swept resistance R206 and resistance R208 with the transmitting interpolar of audion T203,And series capacitance C203 between the base stage of the sliding end of swept resistance R206 and audion T203,The base stage of audion T203 and inter-collector series resistance R207,And on the colelctor electrode of audion T203, connect electric capacity C204,The emitter stage of audion T203 is connected with resistance 208 ground connection.
The size of resistance R201 is 680K Ω, the size of resistance R202 is 22K Ω, and the size of resistance R203 is 220K Ω, and the size of resistance R204 is 10K Ω, the size of resistance R205 is 3.3K Ω, the size of resistance R206 is 47K Ω, and the size of resistance R207 is 220K Ω, and the size of resistance R208 is 100 Ω, the size of electric capacity C201 is 0.1 μ F, the size of electric capacity C202 is 0.1 μ F, and the size of electric capacity C203 is 4.7 μ F, and the size of electric capacity C204 is 10 μ F.
Last it is noted that the foregoing is only the preferred embodiments of the present invention, it is not limited to the present invention, although the present invention being described in detail with reference to previous embodiment, for a person skilled in the art, technical scheme described in foregoing embodiments still can be modified by it, or wherein portion of techniques feature is carried out equivalent.All within the spirit and principles in the present invention, any modification, equivalent substitution and improvement etc. made, should be included within the scope of the present invention.

Claims (3)

1. the control platform for robot of sweeping the floor with road real-time detection function, it is characterised in that including:
It is arranged on the ultrasonic sensor swept the floor within robot: be used for detecting whether have barrier in sweeping robot course;
It is arranged on multiple ultrasonic distance-measuring sensors of surrounding bottom robot of sweeping the floor: when sweeping robot marches to step edge, ultrasonic distance-measuring sensor utilizes ultrasound wave to record the distance between sweeping robot and ground, when distance between the sweeping robot recorded and ground exceedes limit value, ultrasonic distance-measuring sensor sends signal to controller, controller controls sweeping robot and turns to, change sweeping robot direction of advance, thus the robot that prevents from sweeping the floor falls;
It is arranged on the infrared sensor at the garbage storing storage top of robot of sweeping the floor, this infrared sensor includes infrared transmitter and infrared remote receiver, what infrared transmitter was relative with infrared remote receiver is arranged on the inwall of garbage storing storage, when infrared remote receiver does not receives the infrared signal that infrared transmitter is launched, illustrate garbage storing storage already filled with, infrared remote receiver sends signal to controller, and controller sends instruction and reminds cleaning garbage storing storage;
It is arranged in the controller swept the floor within robot and running orbit planning module is set, running orbit planning module is according to storing map, planning travel route, and the built-in locating module of robot of sweeping the floor, the running orbit of robot of sweeping the floor is corrected in real time by controller according to the location information of locating module and the travel route of running orbit planning module planning;
Controller built-in Real-time Road state acquisition module, Real-time Road state acquisition module obtains road information by connecting network from urban traffic control platform in real time, when the travel route planned according to running orbit planning module cleans, Real-time Road state acquisition module get the road vehicle that will clean many time, running orbit planning module in controller is from new planning travel route, sections many for vehicle is skipped, thus clean next section, and by more than section be labeled as not cleaning, clean again when this section vehicle is few when;
Sweep the floor robot built-in temperature sensor, the temperature signal swept the floor on robot circuit board of detection is transmitted to controller by temperature sensor, when temperature signal reaches the temperature upper limit set, controller controls to sweep the floor robot break-off, by the time temperature signal reach to set at a temperature of in limited time, the controller robot that controls to sweep the floor works on;
Sweep the floor and 360 degree of full-view cameras are set on robot, the image information of 360 degree of full-view camera collections preserves and is uploaded to remote control center by wireless network while the bin that robot of sweeping the floor is built-in, robot of sweeping the floor remotely can be controlled by remote control center by the remote control module being arranged in controller, and the priority level that remote control center remotely controls is the highest;
The output signal of described ultrasonic sensor, ultrasonic distance-measuring sensor and infrared sensor is transmitted to controller after all sequentially passing through filter circuit, amplifying circuit and analog to digital conversion circuit.
nullThe control platform for robot of sweeping the floor with road real-time detection function the most according to claim 1,It is characterized in that,Described filter circuit,Including transport and placing device A1 and transport and placing device A2,Input signal is input to the in-phase input end of transport and placing device A1 by resistance R4,And series resistance R3 between the in-phase input end of transport and placing device A1 and ground,Series resistance R2 between the inverting input of transport and placing device A1 and ground,Series resistance R5 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A1,Series resistance R1 between inverting input and the inverting input of transport and placing device A2 of transport and placing device A1,The outfan of transport and placing device A2 is connected with the inverting input of transport and placing device A2,Series inductance L1 between outfan and the in-phase input end of transport and placing device A2 of transport and placing device A2,Inductance L2 is in parallel with inductance L1,The series circuit of electric capacity C1 and electric capacity C4 composition is in parallel with inductance L1,The series circuit of electric capacity C2 and electric capacity C3 composition is in parallel with inductance L1,And the node ground connection between electric capacity C1 and electric capacity C4,Node ground connection between electric capacity C2 and electric capacity C3.
The control platform for robot of sweeping the floor with road real-time detection function the most according to claim 2, it is characterized in that, the resistance of described resistance R1 is 10K Ω, the resistance of described resistance R2 and resistance R3 is 200 Ω, the resistance of described resistance R4 is 10K Ω, the resistance of described resistance R5 is 54.1 K Ω, the capacitance of described electric capacity C1 is 10 pF, the capacitance of described electric capacity C2 is 10 μ F, the capacitance of described electric capacity C3 is 4700 μ F, the capacitance of described electric capacity C4 is 10 pF, and the size of described inductance L1 and inductance L2 is 33 μ H.
CN201610305690.0A 2016-05-10 2016-05-10 Control platform having road real-time detection function and applied to sweeping robots Pending CN105955264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610305690.0A CN105955264A (en) 2016-05-10 2016-05-10 Control platform having road real-time detection function and applied to sweeping robots

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610305690.0A CN105955264A (en) 2016-05-10 2016-05-10 Control platform having road real-time detection function and applied to sweeping robots

Publications (1)

Publication Number Publication Date
CN105955264A true CN105955264A (en) 2016-09-21

Family

ID=56914269

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610305690.0A Pending CN105955264A (en) 2016-05-10 2016-05-10 Control platform having road real-time detection function and applied to sweeping robots

Country Status (1)

Country Link
CN (1) CN105955264A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604799A (en) * 2017-04-10 2018-01-19 金华知产婺源信息技术有限公司 A kind of municipal works bridge construction is removed obstacles method with road surface

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299154A (en) * 2008-05-23 2008-11-05 深圳职业技术学院 Unmanned cleaning device
CN203807993U (en) * 2014-04-11 2014-09-03 东北林业大学 Waste containing barrel for automatic cleaning robot
CN204080716U (en) * 2014-09-20 2015-01-07 河南省黄河防爆起重机有限公司 A kind of city automatic sweeping system
CN104887155A (en) * 2015-05-21 2015-09-09 南京创维信息技术研究院有限公司 Intelligent sweeper
CN204799077U (en) * 2015-06-25 2015-11-25 蓝海娟 Air purifier
CN105182980A (en) * 2015-09-23 2015-12-23 上海物景智能科技有限公司 Automatic cleaning equipment control system and control method
CN105388896A (en) * 2015-09-23 2016-03-09 上海物景智能科技有限公司 CAN bus-based distributed cleaning robot control system and control method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299154A (en) * 2008-05-23 2008-11-05 深圳职业技术学院 Unmanned cleaning device
CN203807993U (en) * 2014-04-11 2014-09-03 东北林业大学 Waste containing barrel for automatic cleaning robot
CN204080716U (en) * 2014-09-20 2015-01-07 河南省黄河防爆起重机有限公司 A kind of city automatic sweeping system
CN104887155A (en) * 2015-05-21 2015-09-09 南京创维信息技术研究院有限公司 Intelligent sweeper
CN204799077U (en) * 2015-06-25 2015-11-25 蓝海娟 Air purifier
CN105182980A (en) * 2015-09-23 2015-12-23 上海物景智能科技有限公司 Automatic cleaning equipment control system and control method
CN105388896A (en) * 2015-09-23 2016-03-09 上海物景智能科技有限公司 CAN bus-based distributed cleaning robot control system and control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107604799A (en) * 2017-04-10 2018-01-19 金华知产婺源信息技术有限公司 A kind of municipal works bridge construction is removed obstacles method with road surface

Similar Documents

Publication Publication Date Title
CN105773626A (en) Robotic vacuum cleaner control platform with real-time road detection function
CN105955263A (en) Control platform having road detection and fingerprint detection functions and applied to sweeping robots
US11352757B2 (en) Automatic moving snow removal device
CN105773624A (en) Robotic vacuum cleaner control platform with real-time road detection and fingerprint defection functions
CN108021884B (en) Sweeping machine power-off continuous sweeping method and device based on visual repositioning and sweeping machine
CN109144067A (en) A kind of Intelligent cleaning robot and its paths planning method
CN108594828B (en) Method for generating cleaning operation path
CN108143364A (en) A kind of method for cleaning map area division from mobile clean robot
CN108762273B (en) Sweeping method
CN108733060A (en) A kind of processing method of operation cartographic information
CN108366531A (en) Utilize the system and method on mobile robot cell processing ground
US20170090456A1 (en) Autonomous cleaning robot
CN109440699A (en) Environmental sanitation is intelligently clean to sweep Work robot control system and cleaning machine
CN109152505A (en) For the system and method by clean robot cleaning floor
CN110493572B (en) Smart city monitoring system based on image recognition
CN105974915A (en) Floor-sweeping robot control system capable of fingerprint detection
CN105962849A (en) Sweeper robot control platform
CN105974916A (en) Floor-sweeping robot control system capable of real-time road detection
CN108776479B (en) Collaborative sweeping operation method
CN105955264A (en) Control platform having road real-time detection function and applied to sweeping robots
CN105974914A (en) Control system for floor-sweeping robot
CN210446911U (en) Commercial automatic floor cleaning and sweeping machine
CN106020185A (en) Floor sweeping robot control system having real-time road detection function
CN105786005A (en) Sweeping robot control system
CN105786004A (en) Sweeping robot control system with functions of road real-time detection and fingerprint detection

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160921

RJ01 Rejection of invention patent application after publication