CN105952675A - 计算机风扇控制方法及风扇控制系统 - Google Patents

计算机风扇控制方法及风扇控制系统 Download PDF

Info

Publication number
CN105952675A
CN105952675A CN201510432424.XA CN201510432424A CN105952675A CN 105952675 A CN105952675 A CN 105952675A CN 201510432424 A CN201510432424 A CN 201510432424A CN 105952675 A CN105952675 A CN 105952675A
Authority
CN
China
Prior art keywords
fan
control signal
control
energy rate
computer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510432424.XA
Other languages
English (en)
Inventor
周乐生
施思勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quanta Computer Inc
Original Assignee
Quanta Computer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quanta Computer Inc filed Critical Quanta Computer Inc
Publication of CN105952675A publication Critical patent/CN105952675A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/10Programme control other than numerical control, i.e. in sequence controllers or logic controllers using selector switches
    • G05B19/106Programme control other than numerical control, i.e. in sequence controllers or logic controllers using selector switches for selecting a programme, variable or parameter
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/25Pc structure of the system
    • G05B2219/25425Personal computer

Abstract

本发明披露了计算机风扇控制方法及风扇控制系统,涉及多节点计算装置中的散热管理。本发明揭示的技术可从多个计算节点接收多个控制信号,每一个控制信号与风扇能率请求相关,风扇能率请求用于决定所需的风扇能率,以保持相关的计算节点于预先决定的温度范围中操作的一请求。逻辑控制器可排序接收到的控制信号,并选择一控制信号,此选择的控制信号用以请求一最高风扇能率。最后,逻辑控制器可使多个冷却风扇于此选择的最高风扇能率下进行操作。

Description

计算机风扇控制方法及风扇控制系统
技术领域
本发明涉及一般计算机装置中的散热管理方法及其系统。
背景技术
现今的运算装置包含多个电子元件,像是中央处理器(CPU)、图形处理器(GPU)、随机存取存储器(RAM)等等。随着更快速的运算装置性能发展(例如:一多节点伺服器),这些电子元件会产生更多的热能。在运算装置中所产生的过量热能会导致电子元件的物理性损坏,并且使数据遗失及系统发生错误。
冷却风扇被广泛地使用于排除累积的热空气,以将热能从运算装置中移除,由此维持系统操作所能接受的温度。有效地控制冷却风扇转速以保持内部温度在一预先设定值是必要的。例如,一不具备效率的低风扇转速会导致较差的空气循环,及使电子装置具有过高的温度。相反地,一不必要的高风扇转速会导致使装置过冷,且浪费能源。
发明内容
本发明借助一逻辑控制器以提供有效地控制风扇能率。风扇能率是指于一特定的总压力(Pt)下,风扇必须移除的空气体积。风扇能率可以例如为,测量一百分比(%)。本发明可调整一风扇能率以改变一风扇转速,像是风扇能率与风扇转速具有一线性比例。例如,一风扇能率的范围为0%~100%,则对应一风扇转速的变化为从最慢至最快速度。逻辑控制器的一例为一复杂可编程逻辑装置(CPLD),借助复杂可编程逻辑装置实现一最佳化的方法,以决定计算机风扇的风扇能率。
依据一些实施例,逻辑控制器可由多个计算节点接收多个控制信号,每一个控制信号相关于风扇能率请求,风扇能率请求用于决定所需的风扇能率,以保持相关的计算节点于预先决定的温度范围中操作的一请求。逻辑控制器可排序接收到的控制信号,并选择一控制信号,此选择的控制信号用以请求一最高风扇能率。最后,逻辑控制器可使多个冷却风扇于此选择的最高风扇能率下进行操作。
本发明借助一逻辑控制器,以更有效率地于一多散热区域的计算装置中致能风扇能率的控制。例如,计算装置可包含散热区域#1,散热区域#1具有第一群组的计算节点,此第一群组的计算节点借助一组冷却风扇以冷却之。计算装置可进一步包含散热区域#2,散热区域#2具有第二群组的计算节点,此第二群组的计算节点借助另一组冷却风扇以冷却之。依据一些实施例,计算装置的一逻辑控制器可接收相关于散热区域#1的第一群组的控制信号,及相关于散热区域#2的第二群组的控制信号。逻辑控制器可针对第一群组的控制信号及第二群组的控制信号分别排序,以决定每一个散热区域中的最高风扇能率请求。逻辑控制器可进一步分别使第一群组的计算机风扇于一转速进行操作,此转速对应于散热区域#1的最高风扇能率请求,以及第二群组的计算机风扇于另一转速进行操作,此另一转速对应于散热区域#2的最高风扇能率请求。
此外,借助将冷却风扇划分至不同的散热群组,及依据散热需求,允许每个冷却风散群组于一不同的风扇能率下进行操作,使本发明可致能最佳风扇控制以达到弹性地冷却及节省能源的效果。
此外,即使本发明使用风扇能率控制作为用以致能冷却计算机装置的一例,本发明理论上也可应用于其他冷却方法。例如,液体冷却的流量速度控制或是其他冷却装置的控制。
以下将于说明书中描述本发明的附加技术特征及优点,发明的附加技术特征和优点,作为说明书的一部分进行描述,或者通过本发明实施例获得。本发明的附加技术特征和优点可由权利要求所指出的内容以理解并获得其教示及组合。本发明的这些与其他技术特征将于下述的说明书及权利要求提供更完整的解释或是通过本发明实施例获得。
附图说明
本发明不同的实施例或举例揭示于下述具体实施方式部分及附图中:
图1绘示依照本发明一些实施例的多节点风扇能率控制系统的一例。
图2绘示依照本发明一些实施例的多节点风扇能率控制系统的一例的方块图。
图3绘示依照本发明一些实施例的多节点风扇能率控制系统的另一例的另一方块图。
图4绘示依照本发明一些实施例的多节点风扇能率控制系统的示例流程图。
图5绘示依照本发明一些实施例的多节点风扇能率控制系统的另一示例流程图。
图6绘示依照本发明一些实施例的放置于一计算装置的示例计算平台。
附图符号说明
214:风扇#1
216:风扇#2
218:风扇#3
204:节点#1
206:节点#2
114、116、118、120:冷却风扇
102:控制装置
106、108、110、112:计算节点
104:机架
326:散热区域#2
328:散热区域#1
100、200、300、400、500:多节点风扇能率控制系统
600:计算平台
212、320:逻辑控制器
208、210:风扇能率控制IC
202、302:计算装置
322、324:风扇#1~#3
316、318:风扇能率控制IC
304:节点#1
306:节点#2
308:节点#3
310:节点#4
312:节点#5
314:节点#6
602:基板管理控制器
604:处理器
608:逻辑控制器
610:网络接口
612:显示器
626:系统存储器
606:输入装置
614:储存装置
624:总线
402~408、502~208:步骤
具体实施方式
以下将以附图及具体实施方式清楚说明本发明内容的精神,任何本领域技术人员在了解本发明内容的实施例后,当可由本发明内容所教示的技术,加以改变及修饰,其并不脱离本发明内容的精神与范围。
采用高密度的多节点运算装置在计算效能及弹性上是理想的方式。例如,位于双单位尺寸(2-unit)计算装置中的四个计算节点,其每一个计算节点可独自进行工作或是与其他计算节点合作,以对应客户需求并提供计算上的弹性。此外,四个运算节点可分享电源供应及冷却风扇,提供最佳化的电源及冷却效能。
在高密度计算架构中,机架空间会被限制,此被限制的机架空间中会制造具有一定程度的热能,因此在高密度计算架构下,多节点运算装置的热能管理是重要的。传统上,是利用一微处理器,例如是基架管理控制器(CMC)经由复杂且基于演算法的程序以决定一冷却风扇能率。
举例而言,基架管理控制器需要先由每一个计算节点接收散热数据,比对接收到的散热数据,以及,借助一风扇映射(mapping)以决定一适当的风扇能率(cooling fan duty),其中一个或多个冷却风扇与计算装置中的一个或多个热能产生单元相关。因此,传统技术易于在散热数据的收集上、散热数据的比对及风扇映射上产生不必要的错误。
因此,需要提供一个简单且有效率的冷却风扇的控制,以最佳化计算装置的散热管理。
本发明利用一逻辑控制器以致提供一有效率且简单的计算装置的风扇能率的控制。依据一些实施例,逻辑控制器可由多个计算节点接收多个控制信号,每一个控制信号相关于一风扇能率请求。风扇能率请求用于决定所需的风扇能率,以保持相关的计算节点于预先决定的温度范围中操作。逻辑控制器可排序接收到的控制信号,并选择一控制信号,此选择的控制信号用以请求一最高风扇能率。最后,逻辑控制器可使多个冷却风扇于此选择的最高风扇能率下进行操作。
本发明还可借助一逻辑控制器,以有效率地致能风扇能率的控制于一多散热区域。例如,计算装置可包含散热区域#1,散热区域#1具有第一群组的多个计算节点,此第一群组的计算节点借助一组冷却风扇以冷却之。计算装置可进一步包含散热区域#2,散热区域#2具有第二群组的多个计算节点,此第二群组的计算节点借助另一组冷却风扇以冷却之。依据一些实施例,计算装置的一逻辑控制器可接收第一群组的控制信号相关于散热区域#1,及第二群组的控制信号相关于散热区域#2。计算装置可针对第一群组的控制信号及第二群组的控制信号分别排序,以决定每一个散热区域中的最高风扇能率请求。计算装置可进一步分别使第一群组的冷却风扇于一转速进行操作,此转速对应于散热区域#1的最高风扇能率请求,以及第二群组的冷却风扇于另一转速进行操作,此另一转速对应于散热区域#2的最高风扇能率请求。此外,依据此处所述技术,计算装置可包含且管理多散热区域。
依据一些实施例,多散热管理区可以是被物理元件像是空气导管以划分及分隔的静态区域。依据一些实施例,多散热管理区可以是依据计算节点的散热需求,而时常被重新分组的动态区域。例如,当计算装置检测到计算节点产生大量的热能,包含过热的计算节点的散热区域#1可以被决定或建立。此外,相关于散热区域#1的多个风扇能率可以被增加,由此移除计算节点周围的累积热能。这种动态区域的方法可使计算装置基于每一个计算节点的实际散热需求,以弹性地调整风扇能率。
此外,借助将冷却风扇分隔为不同散热群组,及允许每个散热群组的冷却风扇操作于不同的风扇能率,本发明可最佳化风扇的控制,以达到弹性且省电的效果。
依据一些实施例,本发明可利用不同的风扇控制方法以控制风扇能率。这些风扇控制的示例方法包含线性电压调节、脉冲宽度调制(PWM)及软件控制。
依据一些实施例,本发明可利用一逻辑控制器(例如:复杂可编程逻辑装置),借助排序风扇能率请求,并基于最高风扇能率请求,以决定一风扇能率。逻辑控制器可以是一独立装置或嵌入式装置,负责控制风扇能率。因此,本发明技术除去借助微控制器及复杂演算法以决定一适当风扇能率的缺点。
以下将于说明书中描述本发明的附加技术特征及优点,发明的附加技术特征和优点,作为说明书的一部分进行描述,或者通过本发明实施例获得。本发明的附加技术特征和优点可由权利要求所指出的内容以理解并获得其教示及组合。本发明的这些与其他技术特征将于下述的说明书及权利要求提供更完整的解释或是通过本发明实施例获得。
图1绘示依照本发明一些实施例的多节点风扇能率控制系统100的一例。节点风扇能率控制系统100可包含一控制装置102。控制装置102包含一机架104以及多个计算节点(例如:106、108、110及112),每一个计算节点包括多个热能产生元件,像是;中央处理器、图形处理器及芯片组(未绘示)及多个冷却风扇(例如:114、116、118及120)。
依据一些实施例,每一个计算节点(例如:106、108、110及112)包含一中央处理器,一温度传感器(如:散热二极管温度传感器)用以测量计算节点的实际温度,及一风扇能率整合电路(如:基板管理控制器,未绘示)用以基于实际温度及预先决定的工作温度(如:摄氏25度到摄氏55度)的差异,以产生风扇能率请求。
依据一些实施例,一个或多个冷却风扇(例如:114、116、118及120)可从机架104中,由前到后的气流、由侧到侧的气流、或由后到前的气流以排放热空气。如图1中所示的由前到后的气流,表示冷却风扇(例如:114、116、118及120)可从机架104中排放热空气,以控制内部温度于一预先决定的范围(如:摄氏25度到摄氏55度)。从机架104中排放热空气的速度,可借助一选择的风扇能率及其对应的风扇转速以决定。
请再参阅图1,依据机架104所累计的热能,不同的风扇控制机制可被用于改变风扇能率。典型的风扇控制机制包含线性伏特调节、脉冲宽度调制及软件控制,此些机制为本领域已知的方法。
例如,在一脉冲宽度调制的风扇控制方法中,温度传感器可于计算节点106中检测一摄氏60度的实际温度,并传送实际温度至风扇能率集成电路。风扇能率集成电路可基于实际温度摄氏60度及预设操作温度范围(例如:摄氏25度到摄氏55度)的差异,以产生一风扇能率请求。此外,每一个计算节点106、108、110及112可具有不同的实际温度,例如每一个计算节点皆具有不同的计算负载。因此,相关于不同计算节点的风扇能率请求可为不同的风扇能率请求,每个计算节点的风扇能率请求的范围由一低风扇能率请求至一高风扇能率请求,其中低风扇能率请求是由一低温度计算节点所得,高风扇能率请求是由一高温度计算节点所得。
基于一些实施例,风扇能率控制系统100可使用一逻辑控制器以排序并选择一最高风扇能率请求。此外,风扇能率控制系统100可使冷却风扇(如:114、116、118及120)于一对应最高风扇能率请求的风扇转速下进行操作。
此外,风扇能率控制系统100可将机架100分隔为一个或多个散热区域(例如:散热区域#1及散热区域#2),以达到更精确的风扇能率控制。依据一些实施例,每一个散热区域可具有不同的最高风扇能率请求。例如,散热区域#1可具有计算节点106及计算节点108,计算节点106的实际温度为摄氏60度,计算节点108的实际温度为摄氏45度。根据此处描述的技术,散热区域#1可采用一最高风扇能率请求,此最高风扇能率请求是由计算节点106产生,并应用此最高风扇能率请求至所有散热区域#1的冷却风扇(例如:114及116)。同时,散热区域#2可具有计算节点110及计算节点112,计算节点110的实际温度为摄氏70度,计算节点112的实际温度为摄氏35度。因此,散热区域#2可采用一最高风扇能率请求,此最高风扇能率请求是由计算节点110产生,并应用此最高风扇能率请求至所有散热区域#2的冷却风扇(例如:118及120)。因此,借助将冷却风扇分为多个群组,并允许每一个群组依据其散热需求以于不同的风扇能率进行操作。本发明可达成用于改善冷却效率的最佳风扇控制方法。
图2绘示依照本发明一些实施例的多节点风扇能率控制系统的一例的方块图。如图2所示,多节点计算系统200可包含至少一节点#1 204及与其耦接的风扇能率控制集成电路(风扇能率控制IC)208,及节点#2 206及与其耦接的风扇能率控制集成电路(风扇能率控制IC)210。多节点计算系统200亦包含逻辑控制212及一个或多个冷却风扇(如,风扇#1 214、风扇#2 216及风扇#3 218)。风扇能率控制集成电路例如为基板管理控制器(BMC)。于一些实施例中,基板管理控制器是一独立且嵌入式微控制器,用以负责管理及监控主要中央处理器、固件及操作系统。依据一些实施例,基板管理控制器可借助从机架中安装的传感器所接收到的数据,以监控伺服器的硬件元件,例如,风扇转速、中央处理器温度、电源消耗程度等等。
依据一些实施例,每一个节点#1 204及节点#2 206可进一步包含中央处理器(未绘示)及温度传感器(未绘示)。温度传感器可量测节点的实际温度。依据一些实施例,温度传感器可耦接至中央处理器芯片,并提供一中央处理器芯片温度。依据其他实施例,温度传感器可耦接至节点#1 204或节点#2 206的主机板,并提供一主机板温度。例如,风扇能率集成电路208可接收来自温度传感器所量测的节点#1 204的实际温度,将节点#1 204的实际温度与节点#1 204预先决定的操作温度范围(例如:摄氏25度至摄氏55度)作比较,并产生一风扇能率请求。风扇能率请求可对应至一风扇能率,此风扇能率提供一有效空气排放量,以将节点#1 204的实际温度控制于预先决定的操作温度的范围内。
此外,风扇能率集成电路208产生的风扇能率请求可对应至一控制信号,控制信号被设置以控制一个或多个冷却风扇(例如:214、216及218)的能率。例如,一典型的控制信号可以是一脉冲宽度调制,可借助脉冲宽度调制的脉冲及脉冲宽度调制的不同的能率周期,以控制一风扇能率。此外,脉冲宽度调制的脉冲的能率周期与风扇的能率具相关性。依据一些实施例,脉冲宽度调制的脉冲具有范围由30%至100%的能率周期,其中此30%的脉冲宽度调制的能率周期对应于最小的风扇能率,100%的脉冲宽度调制的能率周期对应于最大的风扇能率。
依据一些实施例,逻辑控制器212可以是用于控制风扇能率的嵌入式及独立控制器。逻辑控制器212例如为一复杂可编程逻辑装置。依据一些实施例,逻辑控制器212可以接收一第一脉冲宽度调制信号及一第二脉冲宽度调制信号,此第一脉冲宽度调制信号对应于节点#1 204的风扇能率请求,第二脉冲宽度调制信号对应于节点#2 206的风扇能率请求。逻辑控制器212可基于脉冲宽度调制能率周期或其对应的风扇能率请求,以排序两个脉冲宽度调制信号。排序后,逻辑控制器212可选择与较高脉冲宽度调制能率周期或较高风扇能率请求相关的一脉冲宽度调制信号。此外,逻辑控制器212可使风扇#1 214、风扇#2 216及风扇#3 218于一风扇能率下进行操作,此风扇能率对应于所选择的脉冲宽度调制信号。
此外,逻辑控制器212可传送风扇转速信号至风扇能率控制集成电路208及210,提供风扇转速的反馈。风扇转速信号用以表示是否冷却风扇正在转动及其转速。
此外,计算装置202可包含更多节点与节点#1 204及节点#2 206,经由此处所述的技术,可分享冷却风扇#1 214、冷却风扇#2 216及冷却风扇#3218。节点或计算节点可以是独立计算单元,包含一主中央处理器、一存储器、一温度传感器,和/或其他元件。
图3绘示依照本发明一些实施例的多节点风扇能率控制系统300的另一例的方块图。如图3所示,计算装置302可包含散热区域#1 328及散热区域#2 326。散热区域#1 328可包含至少一个节点#1 304及其耦接的风扇能率控制集成电路316,节点#2 306及其耦接的风扇能率控制集成电路,及节点#3308及其耦接的风扇能率控制集成电路。散热区域#1 328可进一步包含一个或多个风扇(例如,风扇#1 322、风扇#2及风扇#3)。如图3所示,散热区域#2 326可进一步包含至少一个节点#4 310及其耦接的风扇能率控制集成电路318,节点#5 312及其耦接的风扇能率控制集成电路,及节点#6 314及其耦接的风扇能率控制集成电路。散热区域#2 326可进一步包含一个或多个风扇(例如,风扇#1 324、风扇#2及风扇#3)。
依据一些实施例,每一个节点#1 304、节点#2 306、节点#3 308可包含一中央处理器(未绘示)及一温度传感器(未绘示)。温度传感器用以量测节点的实际温度。依据一些实施例,温度传感器可耦接至中央处理器的芯片,并提供一中央处理器芯片温度。依据其他实施例,温度传感器可耦接至一节点的主机板,并提供一主机板温度。依据一些实施例,每个节点使用一风扇能率控制集成电路,风扇能率控制集成电路可基于其散热需求,以产生风扇能率请求。举例而言,风扇能率控制集成电路316(例如:基板管理控制器)可接收来自温度传感器所量测的节点#1 304的实际温度,将节点#1 304的实际温度与节点#1 304的预先决定的操作温度范围(例如:摄氏25度至摄氏55度)作比较,并产生一风扇能率请求。此风扇能率请求可对应至一风扇能率,此风扇能率提供一有效空气排放量,以将节点#1 304的实际温度控制于预先决定的操作温度的范围内。
此外,风扇能率集成电路316产生的风扇能率请求可对应至一控制信号,控制信号被设置以控制一个或多个冷却风扇(例如:风扇#1 324、风扇#2及风扇#3)的能率。例如,一典型的控制信号可以是一脉冲宽度调制,可借助脉冲宽度调制的脉冲及脉冲宽度调制的不同的能率周期,以控制一风扇能率。此外,脉冲宽度调制的脉冲的能率周期与风扇的能率具相关性。依据一些实施例,脉冲宽度调制的脉冲具有范围由30%至100%的能率周期,其中此30%的脉冲宽度调制的能率周期对应于最小的风扇能率,100%的脉冲宽度调制的能率周期对应于最大的风扇能率。
此外,计算装置302可包含逻辑控制器320,用以负责控制风扇能率。依据一些实施例,逻辑控制器320可从散热区域#1 328的计算节点接收一组风扇能率请求,及从散热区域#2 326的计算节点接收另一组风扇能率请求。
依据一些实施例,每一个散热区域可以具有不同的最高风扇能率请求。例如,散热区域#1 328可具有节点#1 304及节点#2 306,节点#1 304回报摄氏60度的实际温度,节点#2 306回报摄氏45度的实际温度。依据此处所述的技术,散热区域#1 328可采用的最高风扇能率请求由计算节点#1 304产生,并应用此最高风扇能率请求至所有散热区域#1 328的冷却风扇(例如:风扇#1、风扇#2及风扇#3)。同时,散热区域#2 326可具有节点#4 310及节点#5 312,节点#4 310回报实际温度为摄氏70度,节点#5 312回报实际温度为摄氏35度。由此,散热区域#2 326可采用的最高风扇能率请求由节点#4 310产生,并应用此最高风扇能率请求至所有散热区域#2 326的冷却风扇(例如:风扇#1、风扇#2及风扇#3)。因此,借助将冷却风扇分为多个群组(散热区域#1 328及散热区域#2 326),并允许每一个群组依据其散热需求,以按不同的风扇能率进行操作。本发明借助一最佳化的风扇控制方法,以改善风扇弹性及达成省电的效果。
依据一些实施例,逻辑控制器320可提供风扇转速反馈(例如:转速信号)至散热区域#1 328及散热区域#2 326中的每个节点。例如,风扇转速信号用以表示是否冷却风扇正在转动及其转速。
请再参阅图3,基于一些实施例,散热区域#1 328及散热区域#2 326被物理元件(例如:空气导管(未绘示))以划分及分隔的静态区域。依据一些实施例,散热区域#1 328及散热区域#2 326多散热管理区可以是依据计算节点的散热需求,而时常被重新分组的动态区域。例如,当计算装置302检测到节点#1 304产生大量的热量,即可定义并产生包含节点#1 304的散热区域#1328。此外,例如,位于散热区域#1 328的风扇#1 322的风扇能率可以被增加,由此移除计算节点#1 304周围的累积热能。同时,其他风扇(例如:风扇#1 324、风扇#2)由于并没有相关于散热区域#1 328,则可维持其原始的风扇能率。这种动态区域的方法可使计算装置基于每一个计算节点的实际散热需求,以弹性地调整风扇能率。
图4绘示依照本发明一些实施例的多节点风扇能率控制系统400的示例流程图。应可理解,于此些不同的实施例中除非另有说明,可借助增加、减少或替代步骤,以执行类似或替代的顺序,或是平行地实施。于步骤402,逻辑控制器可接收多个控制信号,每一个控制信号相关于一风扇能率请求用于一个或多个冷却风扇。例如,逻辑控制器可接收一组脉冲宽度调制信号,借助不同的脉冲宽度调制信号的能率周期,以校正一风扇能率。
于步骤404,逻辑控制器可基于至少一部分的一个或多个计算机风扇(或冷却风扇)的相关能率请求,排序接收到的多个控制信号。例如,逻辑控制器可基于脉冲宽度能率周期或是其对应的风扇能率请求,以排序一组脉冲宽度调制信号。
于步骤406,逻辑控制器可选择一控制信号,此选择的控制信号相关于一最高风扇能率请求。例如,于排序后,逻辑控制器可选择一脉冲宽度调制信号相关于一最高脉冲宽度调制能率周期或一风扇能率请求。
于步骤408,逻辑控制器可使一个或多个冷却风扇操作于对应所选择的控制信号的一风扇转速。例如,逻辑控制器可传输所选择的脉冲宽度调制信号至一个或多个计算机风扇,使计算机风扇可操作于对应此所选择的脉冲宽度调制信号的一风扇转速。
图5绘示依照本发明一些实施例的多节点风扇能率控制系统500的另一示例流程图。应可理解,于此些不同的实施例中除非另有说明,可借助增加、减少或替代步骤,以执行类似或替代的顺序,或是平行地实施。于步骤502,逻辑控制器可接收多个第一控制信号及多个第二控制信号,每个第一控制信号相关于用于多个第一计算机风扇的风扇能率请求,第一计算机风扇位于第一散热区域,及每个第二控制信号相关于用于多个第二计算机风扇的风扇能率请求,第二计算机风扇位于第二散热区域。例如,逻辑控制器可接收第一群组的脉冲宽度调制信号,此第一群组的脉冲宽度调制信号来自散热区域#1中的一组节点,及接收第二群组的脉冲宽度调制信号,此第二群组的脉冲宽度调制信号来自散热区域#2中的一组节点。于步骤504,逻辑控制单元可基于至少一部分的用于多个第一计算机风扇及多个第二计算机风扇的相关风扇能率请求,以分别排序多个第一控制信号及多个第二控制信号。例如,逻辑控制器可基于脉冲宽度调制能率周期或其对应的风扇能率请求,以排序分别第一群组的脉冲宽度调制信号及第二群组的脉冲宽度调制信号。
于步骤506中,逻辑控制器可以分别选择第一控制信号及第二控制信号,且选择的第一控制信号相关于多个第一计算机风扇的最高风扇能率请求,及选择的第二控制信号相关于多个第二计算机风扇的最高风扇能率请求。例如,于排序后,逻辑控制器可选择第一脉冲宽度调制信号相关于第一散热区域#1的一最高脉冲宽度调制能率周期或一最高风扇能率请求,及相关于第二散热区域#2的一最高脉冲宽度调制能率周期或一最高风扇能率请求。
于步骤508,逻辑控制器可使多个第一计算机风扇操作于对应第一控制信号的第一风扇转速,多个第二计算机风扇操作于对应第二控制信号的第二风扇转速。例如,逻辑控制器可传输被选择的第一脉冲宽度调制信号至散热区域#1的计算机风扇,使这些计算机风扇可操作于对应选择的第一脉冲宽度调制信号的风扇转速。逻辑控制器可传输被选择的第二脉冲宽度调制信号至散热区域#2的计算机风扇,使这些计算机风扇可操作于对应选择的第二脉冲宽度调制信号的风扇转速。
图6绘示用以实施图1~5的系统及流程的计算平台600的一例。计算平台600包含总线624,总线624用以内部连接子系统及装置,像是基板管理控制器602、处理器604、储存装置614、系统存储器626、网络接口610、逻辑控制器608。处理器604可由一个或多个中央处理器(CPUs),像是由公司所制造的,或是一个或多个虚拟处理器,及任何整并中央处理器及虚拟处理器。计算平台600交换数据表示经由输入及输出装置以进行输入及输出,像是输入装置606与显示器612,其包含但不限制于键盘、鼠标、音频输入(例如:语音转文字装置)用户界面、显示器、监视器、游标、触控显示器、LCD或LED显示器,及其他输入/输出相关装置。
依据一些例子,借助处理器604执行一个或多个储存于系统存储器626中的指令的一个或多个序列,使计算平台600执行特定的操作。计算平台600可以实施为一伺服器装置或客户端装置于一客户-伺服器配置中,点对点配置、或是任何移动计算装置,移动计算装置包含智能手机及其类似装置。这些指令或数据可从另一个计算机可读式媒体以读入系统存储器626,计算机可读式媒体可像是储存装置614。于另一例中,硬件线路电路可被使用或结合软件指令以实施。指令可已被嵌入于软件或固件中。用语“计算机可读式媒体”相关于任何有形的媒体,用于提供指令至处理器604以执行。媒体可以是很多种形式,包含但不限制于,非易失性媒体及易失性媒体。非易失性媒体包含,例如,光学或磁性硬盘及其类似装置。易失性媒体包含动态存储器,像是系统存储器626。
计算机可读式媒体的一般形式包含,例如,软盘、可挠性碟片、硬盘、磁带、或其他磁性媒体、光盘只读存储器(CD-ROM)、或其他光学媒体、打孔卡片、纸带、或其他硬件媒体具有孔动的图样,随机存取存储器(RAM)、可编程只读存储器(PROM)、可擦除可编程只读存储器(EPROM)、快闪可擦除可编程只读存储器(FLASH-EPROM)、及其他存储器芯片或盒式磁带、或任何其他由计算机可读的媒体。指令可借助传输媒体以进一步被传输或接收。用语“传输媒体”可以包含可被储存、编码或携带指令的任何有形或无形的媒体,用以借助机器执行,传输媒体包含数字或模拟通讯信号或其他无形媒体以促使指令的通讯。传输媒体包含同轴电缆、铜线及光纤,包含总线624的线路以传输计算机数据信号。
于上述例子中,系统存储器626可包含不同的模块,这些不同的模块包含可执行的指令以实施上述功能。于上述例子中,系统存储器626包含日志管理器、日志缓冲器或日志储存库,每一个都可被设置以提供一个或多个上述的功能。
虽然本发明已以实施例揭示如上,然其并非用以限定本发明,任何本领域技术人员在不脱离本发明的精神和范围下,当可作各种的更动与润饰,因此本发明的保护范围应当以权利要求为准。

Claims (20)

1.一种计算机风扇控制方法,包含:
借助一计算装置的一逻辑控制器以接收多个控制信号,所述控制信号中的每个控制信号相关于至少一个计算机风扇的风扇能率请求;
基于至少一部分的该至少一个计算机风扇的相关风扇能率请求,以排序所述控制信号:
选择所述控制信号中的一控制信号,且该选择的控制信号相关于一最高风扇能率请求;以及
使该至少一个计算机风扇操作于对应该选择的控制信号的一风扇转速。
2.如权利要求1所述的计算机风扇控制方法,还包含:
传输该选择的控制信号至该至少一个计算机风扇。
3.如权利要求1所述的计算机风扇控制方法,其中,该计算装置包含至少一个风扇能率控制集成电路,每个该至少一个风扇能率控制集成电路耦接于该计算装置的至少一个计算节点中的一计算节点,以及其中每个该至少一个风扇集成电路产生所述控制信号中的一控制信号。
4.如权利要求3所述的计算机风扇控制方法,还包含:
借助该逻辑控制器传送至少一个风扇转速信号至该至少一个风扇能率控制集成电路。
5.如权利要求3所述的计算机风扇控制方法,其中该计算装置包含至少一个温度传感器,每个该至少一个温度测器耦接于该计算装置的至少一个计算节点中的一计算节点,以及,借助操作每个该至少一个温度传感器,以测量相关的该计算节点的一实际温度。
6.如权利要求1所述的计算机风扇控制方法,其中所述控制信号包含多个脉宽调制信号,借助操作所述脉宽调制信号以调整该至少一个计算机风扇的一风扇工作周期。
7.如权利要求1所述的计算机风扇控制方法,其中该计算装置包含至少一个计算节点,以及,借助操作每个该至少一个计算节点,以产生所述控制信号中的一控制信号。
8.一种计算机风扇控制方法,包含:
借助一计算装置的一逻辑控制器以接收多个第一控制信号及多个第二控制信号,所述第一控制信号中的每个第一控制信号相关于多个第一计算机风扇的风扇能率请求,所述第一计算机风扇位于一第一散热区域,及所述第二控制信号中的每个第二控制信号相关于多个第二计算机风扇的风扇能率请求,所述第二计算机风扇位于一第二散热区域;
基于至少一部分的所述第一计算机风扇及所述第二计算机风扇的相关风扇能率请求,以分别排序所述第一控制信号及所述第二控制信号:
分别选择所述第一控制信号中的一第一控制信号及所述第二控制信号中的一第二控制信号,且该选择的第一控制信号相关于所述第一计算机风扇的最高风扇能率请求,及该选择的第二控制信号相关于所述第二计算机风扇的最高风扇能率请求;以及
使所述第一计算机风扇操作于对应该选择的第一控制信号的一第一风扇转速,所述第二计算机风扇操作于对应该选择的第二控制信号的一第二风扇转速。
9.如权利要求8所述的计算机风扇控制方法,其中,该计算装置包含多个第一风扇能率控制集成电路,每个所述第一风扇能率控制集成电路耦接于多个第一计算节点中的一计算节点,所述第一计算节点位于该第一散热区域,且其中借助操作每个所述第一风扇能率控制集成电路,以产生所述第一控制信号中的一控制信号,以及,其中该计算装置包含多个第二风扇集成电路,每个所述第二风扇集成电路耦接于多个第二计算节点中的一计算节点,且其中借助操作每个所述第二风扇能率控制集成电路,以产生所述第二控制信号中的一控制信号。
10.如权利要求8所述的计算机风扇控制方法,其中该第一散热区域包含多个第一计算节点,借助操作每个所述第一计算节点,以产生所述第一控制信号中的一控制信号,且其中该第二散热区域包含多个第二计算节点,借助操作每个所述第二计算节点,以产生所述第二控制信号中的一控制信号。
11.如权利要求8所述的计算机风扇控制方法,其中该计算装置包含至少一个温度传感器,每个该至少一个温度测器耦接于该计算装置的至少一个计算节点中的一计算节点,以及其中,借助操作每个该至少一个温度传感器,以测量相关的该计算节点的一实际温度。
12.如权利要求8所述的计算机风扇控制方法,还包含:
借助该逻辑控制器传送该第一控制信号至所述第一计算机风扇及该第二控制信号至所述第二计算机风扇。
13.如权利要求8所述的计算机风扇控制方法,其中所述第一控制信号包含多个脉宽调制信号,借助操作所述脉宽调制信号以调整所述第一计算机风扇的风扇工作周期,且其中所述第二控制信号包含所述脉宽调制信号,借助操作所述脉宽调制信号以调整所述第二计算机风扇的风扇工作周期。
14.如权利要求8所述的计算机风扇控制方法,其中第一散热区域及第二散热区域于计算装置中,分别为多个散热区域的其中的一散热区域。
15.一种风扇控制系统,包含:
多个计算节点;
多个计算机风扇;
一逻辑控制器,该逻辑控制器用于:
接收多个控制信号,所述控制信号中的每个控制信号相关于用于所述计算机风扇的风扇能率请求;
基于至少一部分的所述计算机风扇的相关风扇能率请求,以排序所述控制信号:
选择所述控制信号中的一控制信号,且该选择的控制信号相关于一最高风扇能率请求;以及
使所述计算机风扇操作于对应该选择的控制信号的一风扇转速。
16.如权利要求15所述的风扇控制系统,还包含:
传输该选择的控制信号至所述计算机风扇。
17.如权利要求15所述的风扇控制系统,其中,所述控制信号包含多个脉宽调制信号,借助操作所述脉宽调制信号,以调整所述计算机风扇的一风扇能率。
18.如权利要求15所述的风扇控制系统,其中所述计算机风扇位于计算机装置中的至少一个散热区域。
19.如权利要求15所述的风扇控制系统,其中借助操作每个所述计算节点,以产生所述控制信号中的一控制信号。
20.如权利要求15所述的风扇控制系统,其中该逻辑控制器还用于:
传输至少一个风扇转速信号至所述计算节点。
CN201510432424.XA 2015-03-09 2015-07-22 计算机风扇控制方法及风扇控制系统 Pending CN105952675A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/641,945 2015-03-09
US14/641,945 US9785134B2 (en) 2015-03-09 2015-03-09 Fan duty control for multi-node computing device

Publications (1)

Publication Number Publication Date
CN105952675A true CN105952675A (zh) 2016-09-21

Family

ID=56886553

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510432424.XA Pending CN105952675A (zh) 2015-03-09 2015-07-22 计算机风扇控制方法及风扇控制系统

Country Status (3)

Country Link
US (1) US9785134B2 (zh)
CN (1) CN105952675A (zh)
TW (1) TWI624215B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678067A (zh) * 2017-03-10 2017-05-17 郑州云海信息技术有限公司 一种多分区服务器系统中的风扇控制方法和系统
CN107390735A (zh) * 2017-08-17 2017-11-24 深圳市优品壹电子有限公司 温度控制方法及装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105241021B (zh) * 2015-10-28 2018-07-31 华为技术有限公司 一种房间级空调调节方法、装置及控制器
US10426059B2 (en) * 2016-05-24 2019-09-24 Dell Products, L.P. System and method to enhance airflow request algorithm for modular chassis
TWI589112B (zh) * 2016-09-26 2017-06-21 技嘉科技股份有限公司 電子裝置的風扇控制方法
US10153225B1 (en) * 2017-06-05 2018-12-11 Dell Products L.P. Systems and methods for optimizing information handling system component temperature for performance
EP3499326B1 (en) * 2017-12-14 2022-06-15 Olmo Electronic Controls S.r.l. Driving system for a thermoregulation system
US10856437B2 (en) * 2018-01-30 2020-12-01 Quanta Computer Inc. System for automatically classifying electrical devices for fan control application
US10854065B1 (en) * 2019-08-07 2020-12-01 Quanta Computer Inc. Fan filter replacement mechanism
US11687134B2 (en) * 2020-05-19 2023-06-27 Quanta Computer Inc. Cooling device identification
US11927996B2 (en) * 2021-04-28 2024-03-12 Dell Products L.P. High-performance computing cooling system
TWI784690B (zh) * 2021-08-27 2022-11-21 立端科技股份有限公司 智慧風扇系統

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758170A (zh) * 2004-10-09 2006-04-12 华为技术有限公司 温控风扇转速的控制装置及控制方法
CN102251978A (zh) * 2010-05-20 2011-11-23 英业达科技有限公司 一种风扇控制方法
US20120257348A1 (en) * 2011-04-07 2012-10-11 Hon Hai Precision Industry Co., Ltd. Data center and heat dissipating system thereof
CN103047163A (zh) * 2012-12-21 2013-04-17 加弘科技咨询(上海)有限公司 服务器机柜的风扇模块的控制装置及控制方法
CN103062091A (zh) * 2013-01-28 2013-04-24 浪潮电子信息产业股份有限公司 一种风扇智能调控方法
US20140177172A1 (en) * 2012-12-25 2014-06-26 Hon Hai Precision Industry Co., Ltd. Fan control system and method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349385B1 (en) * 1998-11-20 2002-02-19 Compaq Computer Corporation Dual power supply fan control—thermistor input or software command from the processor
US20070297893A1 (en) * 2006-06-27 2007-12-27 Winbond Electronics Corporation Fan speed change control
US7792597B2 (en) * 2007-06-28 2010-09-07 International Business Machines Corporation Control systems and method using a shared component actuator
CN101644948B (zh) * 2008-08-06 2012-02-22 辉达公司 风扇速度控制系统
US8714116B2 (en) * 2011-05-12 2014-05-06 Cnh Industrial America Llc Engine cooling fan speed control system
US9625888B2 (en) * 2014-01-03 2017-04-18 Dell Products L.P. System and method of thermal control in a chassis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1758170A (zh) * 2004-10-09 2006-04-12 华为技术有限公司 温控风扇转速的控制装置及控制方法
CN102251978A (zh) * 2010-05-20 2011-11-23 英业达科技有限公司 一种风扇控制方法
US20120257348A1 (en) * 2011-04-07 2012-10-11 Hon Hai Precision Industry Co., Ltd. Data center and heat dissipating system thereof
CN103047163A (zh) * 2012-12-21 2013-04-17 加弘科技咨询(上海)有限公司 服务器机柜的风扇模块的控制装置及控制方法
US20140177172A1 (en) * 2012-12-25 2014-06-26 Hon Hai Precision Industry Co., Ltd. Fan control system and method
CN103062091A (zh) * 2013-01-28 2013-04-24 浪潮电子信息产业股份有限公司 一种风扇智能调控方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106678067A (zh) * 2017-03-10 2017-05-17 郑州云海信息技术有限公司 一种多分区服务器系统中的风扇控制方法和系统
CN107390735A (zh) * 2017-08-17 2017-11-24 深圳市优品壹电子有限公司 温度控制方法及装置

Also Published As

Publication number Publication date
US9785134B2 (en) 2017-10-10
TW201633888A (zh) 2016-09-16
US20160266560A1 (en) 2016-09-15
TWI624215B (zh) 2018-05-11

Similar Documents

Publication Publication Date Title
CN105952675A (zh) 计算机风扇控制方法及风扇控制系统
CN106194806B (zh) 风扇能率控制系统、方法与非暂态计算机可读储存介质
CN1333320C (zh) 电脑装置的冷却系统
US9020656B2 (en) Information handling system thermal control by energy conservation
CN106211715B (zh) 一种风扇控制方法及装置
US7549070B2 (en) Method and apparatus for generating a dynamic power-flux map for a set of computer systems
US7555666B2 (en) Power profiling application for managing power allocation in an information handling system
US11035371B2 (en) Parallel-series hybrid fan cooling apparatus and optimization
US8712597B2 (en) Method of optimizing air mover performance characteristics to minimize temperature variations in a computing system enclosure
US9968011B2 (en) Systems and methods for dynamically updated thermal options based on thermal state
RU2012102508A (ru) Способ оценки потребления мощности
US10976793B2 (en) Mass storage device electrical power consumption monitoring
US20100235011A1 (en) Determining optimal settings for resource actuators
CN102110040A (zh) Bmc根据不同功率cpu来调整cpu报警温度的方法
BRPI0800014B1 (pt) Sistema e método para geração dinâmica de modelos operacionais ambientais
CN110096123A (zh) 一种具有可分级调整散热功能的电子装置
CN103775367A (zh) 智能风扇的控制方法
CN104598005A (zh) 一种服务器系统硬盘的功耗监控装置设计方法
US10216212B1 (en) Operating temperature-based mass storage device management
CN104598365A (zh) 一种具有高精度风扇功耗监控功能的服务器系统
Manousakis et al. Btl: A framework for measuring and modeling energy in memory hierarchies
EP2575003B1 (en) Method for determining assignment of loads of data center and information processing system
CN104514742A (zh) 采集服务器系统内部立体空间温度服务于风扇调控的方法
US20180321735A1 (en) Operating voltage regulators in an information handling system
CN112433585A (zh) 一种计算机智能散热系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160921

WD01 Invention patent application deemed withdrawn after publication