CN105935453B - 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法 - Google Patents

一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法 Download PDF

Info

Publication number
CN105935453B
CN105935453B CN201610338712.3A CN201610338712A CN105935453B CN 105935453 B CN105935453 B CN 105935453B CN 201610338712 A CN201610338712 A CN 201610338712A CN 105935453 B CN105935453 B CN 105935453B
Authority
CN
China
Prior art keywords
natural wollastonite
wollastonite
natural
prepared
bone holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610338712.3A
Other languages
English (en)
Other versions
CN105935453A (zh
Inventor
杨景周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei Dazhou Medical Technology Co ltd
Original Assignee
Hebei Dazhou Smart Manufacturing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei Dazhou Smart Manufacturing Technology Co ltd filed Critical Hebei Dazhou Smart Manufacturing Technology Co ltd
Priority to CN201610338712.3A priority Critical patent/CN105935453B/zh
Publication of CN105935453A publication Critical patent/CN105935453A/zh
Application granted granted Critical
Publication of CN105935453B publication Critical patent/CN105935453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/10Ceramics or glasses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/22Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in calcium oxide, e.g. wollastonite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/067Macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明涉及一种天然硅灰石矿物生物陶瓷骨组织工程支架材料,属于先进陶瓷材料和生物医用材料技术领域。该生物陶瓷骨支架材料以典型高纯天然钙硅酸盐矿物硅灰石(CaSiO3)为主要原料,经过料浆陈化,凝胶注模,冷冻干燥和高温烧结制备得到。本发明优点在于,天然硅灰石呈纤维状,含有少量玻璃相,所制备的陶瓷材料力学性能突出。天然硅灰石具有良好的生物降解性和生物矿化能力,在生理环境中能够释放钙、硅和镁等离子。硅和镁元素具有骨诱导性能,能够促进干细胞成骨分化。所制备的生物陶瓷骨支架材料同时兼具优异的力学性能和生物学性能,原料来源广泛,制备工艺简单,成本低廉,可广泛应用骨科、口腔外科和整形外科等领域。

Description

一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法
技术领域
本发明涉及一种天然硅灰石矿物生物陶瓷骨组织工程支架材料及其制备方法,属于先进陶瓷材料和生物医用材料领域。
背景技术
生物活性陶瓷骨组织工程支架作为骨修复材料广泛应用于骨科、整形外科和口腔外科等领域。与自体骨和异体骨植入材料相比,传统磷酸盐生物陶瓷支架,包括羟基磷灰石、磷酸三钙和二者复合陶瓷,尚存在力学性能差、生物活性弱、骨诱导和血管诱导性能差等缺点。因此,大尺寸承重骨缺损修复材料仍有待开发。近年来,由于研究证明硅和镁等元素具有促进干细胞向成骨细胞分化,改善成骨细胞活力,促进血管化,进而增强骨再生的作用,人工合成硅酸盐新型生物活性陶瓷骨修复材料引起广泛关注。Biomaterials 26(2005)3455–3460,Biomaterials 55(2015)1–11,Acta Biomaterialia 9(2013)5379–5389,Biomaterials 34(2013)64–77,Materials Science and Engineering C 55(2015)126–130,J Biomed Mater Res Part A,2015:00A:000–000,J.Am.Ceram.Soc.,94(2011)99–105和无机材料学报28(2013)29-39等论文报道了人工合成硅酸盐生物陶瓷包括硅灰石表现出优异的骨诱导和血管诱导性能,同时具有很好的力学性能,在大尺寸承重骨修复领域应用前景广阔。发明专利CN02110848.X、CN200910198812.0和CN03115941.9公开了人工合成硅灰石复合磷酸钙骨支架以及相关制备方法,旨在提高磷酸钙基生物陶瓷的力学和生物学性能。发明专利CN201510092772.7、CN201310439715.2、CN201210528004.8和CN02137248.9公开了多种硅灰石人工合成方法和制备生物陶瓷骨支架的方法。由于硅灰石为纤维状形貌,人工合成粉体烧结致密化难,发明专利CN201510658430.7公开了一种添加硼化物烧结助剂的制备硅灰石生物陶瓷的方法。此外,人工合成硅灰石生物陶瓷骨支架材料成本高,在一定程度上限制了其作为骨修复材料的应用。天然硅灰石矿物与人工合成硅灰石材料相比,具有如下优势:来源广泛,成本低廉,含有镁等有益微量元素促进成骨,粉体长径比大,含有玻璃相可促进烧结提高力学性能。尚未发现有关天然硅灰石制备生物陶瓷的专利申请。本发明提出一种高纯天然硅灰石矿物生物陶瓷骨支架材料及其制备方法,与现有陶瓷骨支架材料相比,具有成本低,强度高和生物学性能更好的技术优势。
发明内容
本发明是针对传统磷酸钙基生物陶瓷骨组织工程支架材料力学性能差和生物活性弱,人工合成硅酸钙(硅灰石)生物陶瓷骨支架成本高和不易烧结等问题,提出一种新型低成本高性能天然硅灰石矿物生物陶瓷骨支架材料及其制备方法。
本发明提出的一种天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,所述的生物陶瓷骨支架材料以天然硅灰石矿物粉体为主体原料制备而成。该材料主要物相为高温型三斜硅灰石,即假硅灰石(β-CaSiO3),同时含有少量玻璃相。主要原料为天然硅灰石矿物,包括低温型三斜硅灰石(α-CaSiO3)、单斜硅灰石,即副硅灰石(α’-CaSiO3)和高温型三斜硅灰石,即假硅灰石(β-CaSiO3),以及所含有的少量玻璃相物质。主要原料高纯天然硅灰石矿物化学组成(wt.%)为SiO2≥45;CaO≥40;MgO≤2;Al2O3≤1;Fe2O3≤0.1;K2O≤0.1。主要原料天然硅灰石矿物粉体具有纤维状形貌,长径比为10:1到30:1。所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,具有连通孔道结构,孔隙率大于50%,孔径大于100μm,满足骨组织工程对支架材料物理性能的要求。该材料制备成本低,工艺简单,力学性能优良,具有良好的生物降解性能,在生理环境中能够快速释放硅、钙和镁离子,生物矿化(类骨磷灰石生成)能力突出,具有优异的骨诱导性,能够促进干细胞成骨分化和骨再生。
本发明提出的一种天然硅灰石矿物生物陶瓷骨支架材料,其制备方法主要包括料浆陈化,凝胶注模,冷冻干燥和高温烧结等步骤。(1)料浆陈化:将天然硅灰石矿物粉体与水按照质量比例1:10到4:1进行混合,外加0.2-1wt.%羧甲基纤维素或三聚磷酸钠作为减水剂,湿磨6到12小时,静置陈化6到24小时备用。(2)凝胶注模:重新搅拌均匀,外加5-30wt.%明胶,加热至70℃,继续搅拌,直到料浆和明胶混合均匀。将料浆-明胶混合液倒入模具中成型,将注模试样放入冰箱,-20到-80℃冷冻24到48小时。(3)冷冻干燥:将预冷冻注模试样用冷冻干燥机在0℃以下充分干燥3天到7天。(4)高温烧结:将冷冻干燥试样在1100℃到1400℃空气气氛烧结2-6小时即制备得到所述的天然硅灰石矿物生物陶瓷骨支架材料。
附图说明
图1为本发明所述天然硅灰石矿物生物陶瓷骨支架材料的典型粉晶衍射图谱。
图2为本发明所述天然硅灰石矿物生物陶瓷骨支架材料的典型外观照片。
图3为本发明实施例1所制备的骨支架材料的显微结构和晶粒形貌。(a)天然硅灰矿物粉体的纤维状形貌;(b)冷冻干燥形成的层状孔道结构;(c)高温烧结后材料中的硅灰石长柱状晶粒;(d)树脂固定材料抛光面的扫描电镜照片,显示大于100μm的连通孔道结构。
图4为本发明实施例1所制备的骨支架材料在模拟体液中浸泡一天后形成的生物矿化磷灰石层。(a)低倍扫描电镜照片;(b)高倍扫描电镜照片,显示矿化磷灰石层的纳米多孔结构;(c)电子能谱元素分析;(d)粉晶衍射图谱。
图5为本发明实施例1所制备的骨支架材料在模拟体液中浸泡9天,累积钙、磷和硅离子释放/吸收曲线图。证明天然硅灰石具有快速释放离子和快速生物矿化(1天)的特性。
图6为本发明实施例1所制备的骨支架材料表面种植鼠成骨细胞活死细胞染色图,证明天然硅灰石具有好的生物相容性。(a)第1天;(b)第7天。
图7为本发明所述天然硅灰石矿物粉体浸提液培养人骨髓基质干细胞的细胞质/细胞核(Actin/Dapi)染色图,证明天然硅灰石降解释放的离子对细胞没有毒性,不会降低细胞的增殖能力。(a)参照材料羟基磷灰石浸提液培养的干细胞;(b)天然硅灰石浸提液培养的干细胞。
图8为本发明所述天然硅灰石矿物粉体浸提液培养人骨髓基质干细胞第28天形成的类骨钙结节茜素红染色照片,证明天然硅灰石能够促进人骨髓基质干细胞成骨分化,具有好的骨诱导性能。(a)参照材料羟基磷灰石;(b)天然硅灰石。
具体实施方式
下面结合实施例对本发明的技术方案做进一步说明:
实施例1
原料:
天然硅灰石矿物特级针状粉体,粒径(d97)4μm,长径比12:1,化学成分(wt.%)为SiO2 51;CaO 47;MgO 1;Al2O3 0.5;Fe2O3 0.1;K2O 0.1。
制备步骤:
将天然硅灰石矿物粉体与水按照质量比例3:2进行混合,即料浆的固相含量为60%,外加0.5wt.%羧甲基纤维素作为减水剂,湿磨8小时,静置陈化12小时。重新搅拌均匀,外加15wt.%明胶,加热至70℃,继续搅拌,直到料浆和明胶混合均匀。将料浆-明胶混合液倒入模具中成型,将注模试样放入冰箱,-20℃冷冻24小时。将预冷冻注模试样用冷冻干燥机在0℃以下充分干燥5天。将冷冻干燥试样在1300℃空气气氛烧结2小时即制备得到所述的天然硅灰石矿物多孔生物陶瓷骨支架材料。
理化性能:
所制备天然硅灰石矿物生物陶瓷骨支架试样气孔率为67.3%,耐压强度33.2MPa。
实施例2
原料:
天然硅灰石矿物特级针状粉体,粒径(d97)4μm,长径比15:1,化学成分(wt.%)为SiO2 50.8;CaO 47.4;MgO 0.8;Al2O3 0.8;Fe2O3 0.1;K2O 0.1。
制备步骤:
将天然硅灰石矿物粉体与水按照质量比例1:4进行混合,即料浆的固相含量为20%,外加0.7wt.%三聚磷酸钠作为减水剂,湿磨6小时,静置陈化24小时。重新搅拌均匀,外加20wt.%明胶,加热至70℃,继续搅拌,直到料浆和明胶混合均匀。将料浆-明胶混合液倒入模具中成型,将注模试样放入冰箱,-20℃冷冻48小时。将预冷冻注模试样用冷冻干燥机在0℃以下充分干燥5天。将冷冻干燥试样在1250℃空气气氛烧结4小时即制备得到所述的天然硅灰石矿物生物陶瓷骨支架材料。
理化性能:
所制备天然硅灰石矿物生物陶瓷骨支架试样气孔率为85.7%,耐压强度10.5MPa。
实施例3
原料:
天然硅灰石矿物特级针状粉体,粒径(d97)8μm,长径比12:1,化学成分(wt.%)为SiO2 52;CaO 46.2;MgO 0.9;Al2O3 0.7;Fe2O3 0.1;K2O 0.1。
制备步骤:
将天然硅灰石矿物粉体与水按照质量比例2:3进行混合,即料浆的固相含量为40%,外加0.6wt.%羧甲基纤维素作为减水剂,湿磨10小时,静置陈化12小时。重新搅拌均匀,外加18wt.%明胶,加热至70℃,继续搅拌,直到料浆和明胶混合均匀。将料浆-明胶混合液倒入模具中成型,将注模试样放入冰箱,-40℃冷冻24小时。将预冷冻注模试样用冷冻干燥机在0℃以下充分干燥4天。将冷冻干燥试样在1250℃空气气氛烧结3小时即制备得到所述的天然硅灰石矿物生物陶瓷骨支架材料。
理化性能:
所制备天然硅灰石矿物生物陶瓷骨支架试样气孔率为72.7%,耐压强度18.7MPa。

Claims (6)

1.一种天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,所述的生物陶瓷骨支架材料以天然硅灰石矿物粉体为原料制备而成;
所述天然硅灰石矿物生物陶瓷骨支架材料的制备方法包括料浆陈化,凝胶注模,冷冻干燥和高温烧结步骤:
(1)料浆陈化:将天然硅灰石矿物粉体与水按照质量比例1:10到4:1进行混合,外加0.2-1wt.%羧甲基纤维素或三聚磷酸钠作为减水剂,湿磨6到12小时,静置陈化6到24小时备用;(2)凝胶注模:重新搅拌均匀,外加5-30wt.%明胶,加热至70℃,继续搅拌,直到料浆和明胶混合均匀;将料浆-明胶混合液倒入模具中成型,将注模试样放入冰箱,-20到-80℃冷冻24到48小时;(3)冷冻干燥:将预冷冻注模试样用冷冻干燥机在0℃以下充分干燥3天到7天;(4)高温烧结:将冷冻干燥试样在1100℃到1400℃空气气氛烧结2-6小时即制备得到所述的天然硅灰石矿物生物陶瓷骨支架材料。
2.根据权利要求书1所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,主要物相为高温型三斜硅灰石,即假硅灰石(β-CaSiO3),同时含有少量玻璃相。
3.根据权利要求书1所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,主要原料为天然硅灰石矿物,包括低温型三斜硅灰石(α-CaSiO3)、单斜硅灰石,即副硅灰石(α’-CaSiO3)和高温型三斜硅灰石,即假硅灰石(β-CaSiO3),以及所含有的少量玻璃相物质。
4.根据权利要求书1所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,主要原料高纯天然硅灰石矿物化学组成(wt.%)为SiO2≥45;CaO≥40;MgO≤2;Al2O3≤1;Fe2O3≤0.1;K2O≤0.1。
5.根据权利要求书1所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,主要原料天然硅灰石矿物粉体具有纤维状形貌,长径比为10:1到30:1。
6.根据权利要求书1所述的天然硅灰石矿物生物陶瓷骨支架材料,其特征在于,具有连通孔道结构,孔径大于100μm。
CN201610338712.3A 2016-05-20 2016-05-20 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法 Active CN105935453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610338712.3A CN105935453B (zh) 2016-05-20 2016-05-20 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610338712.3A CN105935453B (zh) 2016-05-20 2016-05-20 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法

Publications (2)

Publication Number Publication Date
CN105935453A CN105935453A (zh) 2016-09-14
CN105935453B true CN105935453B (zh) 2019-10-18

Family

ID=57151565

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610338712.3A Active CN105935453B (zh) 2016-05-20 2016-05-20 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法

Country Status (1)

Country Link
CN (1) CN105935453B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411495B (zh) * 2018-02-07 2020-08-11 清华大学 骨诱导膜及其制备方法
CN108569896B (zh) * 2018-03-21 2021-04-06 山东大学 一种聚磷酸钙/硅灰石生物复合陶瓷材料及其制备方法
CN116813370B (zh) * 2023-07-05 2024-04-12 深圳大洲医学科技有限公司 一种生物陶瓷棒及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3305572A1 (de) * 1983-02-18 1984-08-23 Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar Bioaktives implantatmaterial
CN1087279A (zh) * 1992-11-27 1994-06-01 中国科学院光电技术研究所 生物活性玻璃陶瓷人工骨及其制法
CN1187281C (zh) * 2002-02-09 2005-02-02 中国科学院上海硅酸盐研究所 生物活性硅灰石陶瓷的制备方法
CN1187101C (zh) * 2002-09-28 2005-02-02 中国科学院上海硅酸盐研究所 可降解多孔硅酸钙陶瓷生物活性材料的制备方法

Also Published As

Publication number Publication date
CN105935453A (zh) 2016-09-14

Similar Documents

Publication Publication Date Title
Guo et al. Biocompatibility and osteogenicity of degradable Ca-deficient hydroxyapatite scaffolds from calcium phosphate cement for bone tissue engineering
Shuai et al. Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering
Pei et al. Three-dimensional printing of tricalcium silicate/mesoporous bioactive glass cement scaffolds for bone regeneration
Liu et al. The outstanding mechanical response and bone regeneration capacity of robocast dilute magnesium-doped wollastonite scaffolds in critical size bone defects
Lin et al. Improvement of mechanical properties of macroporous β-tricalcium phosphate bioceramic scaffolds with uniform and interconnected pore structures
Liu et al. Setting behavior, mechanical property and biocompatibility of anti-washout wollastonite/calcium phosphate composite cement
Matsumoto et al. Zirconia–hydroxyapatite composite material with micro porous structure
Feng et al. Calcium silicate ceramic scaffolds toughened with hydroxyapatite whiskers for bone tissue engineering
Lett et al. Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth
Lett et al. Porous hydroxyapatite scaffolds for orthopedic and dental applications-the role of binders
Dong et al. Microstructures and mechanical properties of biphasic calcium phosphate bioceramics fabricated by SLA 3D printing
FU et al. Zirconia incorporation in 3D printed β-Ca2SiO4 scaffolds on their physicochemical and biological property
Lin et al. High mechanical strength bioactive wollastonite bioceramics sintered from nanofibers
CN105935453B (zh) 一种天然硅灰石矿物生物陶瓷骨支架材料及其制备方法
Novotna et al. Biphasic calcium phosphate scaffolds with controlled pore size distribution prepared by in-situ foaming
He et al. Preparation and characterization of novel lithium magnesium phosphate bioceramic scaffolds facilitating bone generation
Liu et al. Effect of polycaprolactone impregnation on the properties of calcium silicate scaffolds fabricated by 3D printing
Shen et al. Direct ink writing core-shell Wollastonite@ Diopside scaffolds with tailorable shell micropores favorable for optimizing physicochemical and biodegradation properties
He et al. Fabrication of a zirconia/calcium silicate composite scaffold based on digital light processing
Yuan et al. 3D-plotted zinc silicate/β-tricalcium phosphate ceramic scaffolds enable fast osteogenesis by activating the p38 signaling pathway
Dong et al. Three-dimensional printing of β-tricalcium phosphate/calcium silicate composite scaffolds for bone tissue engineering
Li et al. Design and fabrication of CAP scaffolds by indirect solid free form fabrication
Yang et al. Preparation, mechanical property and cytocompatibility of freeze-cast porous calcium phosphate ceramics reinforced by phosphate-based glass
Yuan et al. Enhancing the bioactivity of hydroxyapatite bioceramic via encapsulating with silica-based bioactive glass sol
Feng et al. Diopside modified porous polyglycolide scaffolds with improved properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20180824

Address after: 071000 Room 202, building 8, University Science and Technology Park, 5699 north two ring road, Baoding, Hebei.

Applicant after: Hebei Da Zhou Zhi Zhi Technology Co., Ltd.

Address before: 071000 Room 201, unit four, building 6, East Jinchang, Baoding, Hebei.

Applicant before: Yang Jingzhou

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 071000 Room 202, building 8, University Science and Technology Park, 5699 north two ring road, Baoding, Hebei.

Patentee after: Hebei Dazhou Medical Technology Co.,Ltd.

Address before: 071000 Room 202, building 8, University Science and Technology Park, 5699 north two ring road, Baoding, Hebei.

Patentee before: HEBEI DAZHOU SMART MANUFACTURING TECHNOLOGY Co.,Ltd.

CP01 Change in the name or title of a patent holder