CN105932099A - ZnS纳米带/CdS纳米柱异质结的合成方法 - Google Patents

ZnS纳米带/CdS纳米柱异质结的合成方法 Download PDF

Info

Publication number
CN105932099A
CN105932099A CN201610324899.1A CN201610324899A CN105932099A CN 105932099 A CN105932099 A CN 105932099A CN 201610324899 A CN201610324899 A CN 201610324899A CN 105932099 A CN105932099 A CN 105932099A
Authority
CN
China
Prior art keywords
zns
cds
powder
argon gas
nanobelt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610324899.1A
Other languages
English (en)
Inventor
祁小四
谢忍
白忠臣
钟伟
都有为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guizhou University
Original Assignee
Guizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guizhou University filed Critical Guizhou University
Priority to CN201610324899.1A priority Critical patent/CN105932099A/zh
Publication of CN105932099A publication Critical patent/CN105932099A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:包含以下步骤:首先,利用离子溅射仪在硅基片上沉积金膜,ZnS粉末放置在陶瓷舟里,并将陶瓷舟放置在管式炉的热电偶位置处,然后,将上述的硅基片放置在ZnS粉末的下风向,通入氩气,在氩气的保护下将反应温度升至900±20℃,并在此温度反应2±0.5h,反应结束后硅片上有白色样品生成,最后,打开装置将CdS粉末放置在热电偶位置处,将上述制备的白色样品放置在距离CdS粉末下风口处,在氩气的保护下将反应温度升至800±20℃,并在氩气的保护下在此温度反应1±0.3h,待反应完成并降到室温,在硅基片上得到淡黄色的样品。

Description

ZnS纳米带/CdS纳米柱异质结的合成方法
技术领域
本发明是一种II-VI族半导体异质结材料(ZnS纳米带/CdS纳米柱异质结)的合成方法。
背景技术
II-VI族化合物半导体因具有较宽的禁带范围、直接跃迁型的能带结构及丰富的发光色彩等显著特点而在激光器、发光二极管、太阳能电池等应用方面一直发挥着重要的作用。纳米尺度的II-VI族半导体材料更因其独特的发光性质、半导体量子化性能以及更能满足器件微型化的需求,在纳米光电子器件领域表现出巨大的应用潜力。因此,II-VI族半导体纳米材料的合成、光电等性能及其应用方面的相关研究在近些年来备受人们的关注。ZnS和CdS作为代表性的II-VI族半导体材料,有关这两种纳米材料的研究成为科研工作者关注的焦点。ZnS是一种具有纤锌矿结构的半导体材料,在室温下禁带宽度约为3.91eV;而CdS的室温禁带宽度约为2.42 eV,两者在可见光范围内具有很好的光电特性。并且,随着尺寸和维度的降低,ZnS 和CdS纳米材料表现出许多不同于块体和薄膜材料的光学、电学及非线性光学等性质。如量子尺寸效应使得CdS的能级改变、能隙变宽,吸收和发射光谱向短波方向移动;表面效应引起CdS纳米微粒的表面原子输运和构型发生变化,同时也引起其表面电子自旋构象和电子能谱发生变化。因而,CdS纳米结构材料在电子、光电子方面具有非常重要的潜在应用前景。目前为止,虽然已经有很多关于不同结构(如纳米带、纳米线等)ZnS 和CdS纳米材料合成工艺的报道。但是有关ZnS/CdS纳米材料异质节的合成很少有报道。
发明内容
本发明要解决的技术问题是:提供一种ZnS纳米带/CdS纳米柱异质结的合成方法,从而为该种先进半导体异质结材料的研发和应用奠定物质基础。
本发明的技术方案是:一种ZnS纳米带/CdS纳米柱异质结的合成方法,包含以下步骤:首先,利用离子溅射仪在硅基片上沉积金膜,ZnS粉末放置在陶瓷舟里,并将陶瓷舟放置在管式炉的热电偶位置处,然后,将上述的硅基片放置在ZnS粉末的下风向,通入氩气,在氩气的保护下将反应温度升至900±20℃,并在此温度反应2±0.5h,反应结束后硅片上有白色样品生成,最后,打开装置将CdS粉末放置在热电偶位置处,将上述制备的白色样品放置在距离CdS粉末下风口处,在氩气的保护下将反应温度升至800±20℃,并在氩气的保护下在此温度反应1±0.3h,待反应完成并降到室温,在硅基片上得到淡黄色的样品。
所述的金膜厚度为100±20nm。
所述的硅基片与ZnS粉末之间的距离为15-17cm。
所述的白色样品距离CdS粉末17-19cm。
所述的ZnS粉末与CdS粉末的质量比为:6.5-7.5:1。
本发明的有益效果:利用Au纳米颗粒作为催化剂,采取两步化学气相法,通过调控ZnS、CdS的质量比、沉积温度等工艺参数,实现了ZnS纳米带/CdS纳米柱异质结的合成。本发明具有实验方案简易、成本较低、实验可重复性强等优势和特点,从而为该类型功能材料的实际应用研究和开发提供了实验基础。
本发明以ZnS、CdS粉末为原料,以氩气为载流气体,以Au纳米颗粒为催化剂,利用化学气相沉积法成功地合成出了高选择性的ZnS纳米带/CdS纳米柱异质结,为该类型异质节复合物的物性研究和开发奠定了坚实的实验基础。
附图说明
图1是所合成样品的场发射扫描电子显微镜照片,图1a和1b所示,通过仔细的扫描电镜可以观察出所合成的样品为双层结构,其底层为带状结构,上层为针状阵列结构;
图2为所合成样品X射线衍射图,结果分析结果除催化剂和基片为,所合成的样品为ZnS和CdS的混合相,结合所有所得实验结果,样品的表征结果表明所合成的样品为高选择性的ZnS纳米带/CdS纳米柱异质结。
具体实施方式
以下是本发明的实例(实例中所用试剂均为化学纯),该实验过程的主要步骤分三步:
实施例1
第一步:利用离子溅射仪在硅片(100晶向、0.9cm*0.9cm)上镀厚度约为100nm的Au膜,并以此镀膜硅片作为催化剂。第二步:将盛有0.7gZnS粉末的陶瓷舟推入石英管内至管式炉热电偶位置处,然后将上述基片推入石英管至距此陶瓷舟下风口15cm处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下将反应温度由室温升至900℃并在该温度下反应2小时,待整个装置冷却至室温,可观察到在基片上沉积有一定量的白色样品。第三步:将盛有0.1gCdS粉末的陶瓷舟放置在热电偶位置处,将第二步已制备好的白色样品放置距离盛有CdS粉末的陶瓷舟下风口17cm位置处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下快速升温至800℃,并在此温度下反应1小时。反应完成后待整个装置冷却至室温后,可在镀金硅片上得到一层淡黄色样品。
表1:所设计实验的可重复性统计
编号 反应温度(℃) 距离(cm) ZnS/CdS 氩气(sccm) 压强(MPa) 样品选择性
1 900/800 15/17 7:1 30 0.1 95%
2 900/800 15/17 7:1 30 0.1 94%
3 900/800 15/17 7:1 30 0.1 96%
实施例2
第一步:利用离子溅射仪在硅片(100晶向、0.9 cm*0.9 cm)上镀厚度约为120 nm的Au膜,并以此镀膜硅片作为催化剂。第二步:将盛有0.75g ZnS粉末的陶瓷舟推入石英管内至管式炉热电偶位置处,然后将上述基片推入石英管至距此陶瓷舟下风口16 cm处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下将反应温度由室温升至920℃并在该温度下反应2.5小时,待整个装置冷却至室温,可观察到在基片上沉积有一定量的白色样品。第三步:将盛有0.1gCdS粉末的陶瓷舟放置在热电偶位置处,将第二步已制备好的白色样品放置距离盛有CdS粉末的陶瓷舟下风口18cm位置处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下快速升温至820℃,并在此温度下反应1.2小时。反应完成后待整个装置冷却至室温后,可在镀金硅片上得到一层淡黄色样品。
实施例3
第一步:利用离子溅射仪在硅片(100晶向、0.9 cm*0.9 cm)上镀厚度约为80nm的Au膜,并以此镀膜硅片作为催化剂。第二步:将盛有0.65g ZnS粉末的陶瓷舟推入石英管内至管式炉热电偶位置处,然后将上述基片推入石英管至距此陶瓷舟下风口17cm处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下将反应温度由室温升至880℃并在该温度下反应1.5小时,待整个装置冷却至室温,可观察到在基片上沉积有一定量的白色样品。第三步:将盛有0.1g CdS粉末的陶瓷舟放置在热电偶位置处,将第二步已制备好的白色样品放置距离盛有CdS粉末的陶瓷舟下风口19cm位置处。之后通入氩气30分钟以排出石英管内存在的氧气,在氩气的保护下快速升温至780℃,并在此温度下反应0.8小时。反应完成后待整个装置冷却至室温后,可在镀金硅片上得到一层淡黄色样品。

Claims (5)

1.一种ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:包含以下步骤:首先,利用离子溅射仪在硅基片上沉积金膜,ZnS粉末放置在陶瓷舟里,并将陶瓷舟放置在管式炉的热电偶位置处,然后,将上述的硅基片放置在ZnS粉末的下风向,通入氩气,在氩气的保护下将反应温度升至900±20℃,并在此温度反应2±0.5h,反应结束后硅片上有白色样品生成,最后,打开装置将CdS粉末放置在热电偶位置处,将上述制备的白色样品放置在距离CdS粉末下风口处,在氩气的保护下将反应温度升至800±20℃,并在氩气的保护下在此温度反应1±0.3h,待反应完成并降到室温,在硅基片上得到淡黄色的样品。
2.根据权利要求1所述的一种ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:金膜厚度为100±20nm。
3.根据权利要求1所述的一种ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:硅基片与ZnS粉末之间的距离为15-17cm。
4.根据权利要求1所述的一种ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:白色样品距离CdS粉末17-19cm。
5.根据权利要求1所述的一种ZnS纳米带/CdS纳米柱异质结的合成方法,其特征在于:ZnS粉末与CdS粉末的质量比为:6.5-7.5:1。
CN201610324899.1A 2016-05-17 2016-05-17 ZnS纳米带/CdS纳米柱异质结的合成方法 Pending CN105932099A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610324899.1A CN105932099A (zh) 2016-05-17 2016-05-17 ZnS纳米带/CdS纳米柱异质结的合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610324899.1A CN105932099A (zh) 2016-05-17 2016-05-17 ZnS纳米带/CdS纳米柱异质结的合成方法

Publications (1)

Publication Number Publication Date
CN105932099A true CN105932099A (zh) 2016-09-07

Family

ID=56840682

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610324899.1A Pending CN105932099A (zh) 2016-05-17 2016-05-17 ZnS纳米带/CdS纳米柱异质结的合成方法

Country Status (1)

Country Link
CN (1) CN105932099A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663144A (zh) * 2020-12-10 2021-04-16 华中科技大学 二维In2S3/SnS异质结晶体材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263036A (zh) * 2011-07-01 2011-11-30 新疆大学 一种制备CdS/ZnS纳米线异质结的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102263036A (zh) * 2011-07-01 2011-11-30 新疆大学 一种制备CdS/ZnS纳米线异质结的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
刘洪超: "半导体纳米材料的制备与性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112663144A (zh) * 2020-12-10 2021-04-16 华中科技大学 二维In2S3/SnS异质结晶体材料的制备方法

Similar Documents

Publication Publication Date Title
Bhaumik et al. Copper oxide based nanostructures for improved solar cell efficiency
Patel et al. Transparent NiO/ZnO heterojunction for ultra-performing zero-bias ultraviolet photodetector on plastic substrate
Zhang et al. Synthesis, properties, and optical applications of low-dimensional perovskites
Hsueh et al. Cu2O/n-ZnO nanowire solar cells on ZnO: Ga/glass templates
Alvi et al. The origin of the red emission in n-ZnO nanotubes/p-GaN white light emitting diodes
Hayden et al. Core–shell nanowire light‐emitting diodes
Chirakkara et al. Study of n-ZnO/p-Si (100) thin film heterojunctions by pulsed laser deposition without buffer layer
US20050230673A1 (en) Colloidal quantum dot light emitting diodes
KR20180018660A (ko) 단분산, ir-흡수 나노입자, 및 관련 방법 및 장치
Wu et al. ${\rm Ga} _ {2}{\rm O} _ {3} $ Nanowire Photodetector Prepared on ${\rm SiO} _ {2}/{\rm Si} $ Template
Xu et al. CsCu2I3 nanoribbons on various substrates for UV photodetectors
Dutta et al. Why is making epitaxially grown all inorganic perovskite–chalcogenide nanocrystal heterostructures challenging? Some facts and some strategies
CN103077963B (zh) 一种欧姆接触电极、其制备方法及包含该欧姆接触电极的半导体元件
Chu et al. Improved UV-sensing of Au-decorated ZnO nanostructure MSM photodetectors
KR101865755B1 (ko) h-BN을 보호층으로 사용하는 봉지 재료 및 이의 제조방법
Ning et al. Growth of multinary copper-based sulfide shells on CuInSe2 nanocrystals for significant improvement of their near-infrared emission
Shim Colloidal nanorod heterostructures for photovoltaics and optoelectronics
Wei et al. Thin-shell CdSe/ZnCdS core/shell quantum dots and their electroluminescent device application
Xie et al. Narrow-Bandwidth Blue-Emitting Ag–Ga–Zn–S Semiconductor Nanocrystals for Quantum-Dot Light-Emitting Diodes
Oh et al. CuGaS2–CuInE2 (E= S, Se) colloidal nanorod heterostructures
Thyda et al. Solution processed highly transparent nitrogen-doped carbon quantum dots/ZnO hybrid thin films: A study on structural and enhanced UV emission
Xie et al. Polarity-controlled ultraviolet/visible light ZnO nanorods/p-Si photodetector
CN113257932A (zh) 一种高性能的光电探测器及其制备方法
Zhou et al. Enhanced self-powered CsCu2I3/GaN heterojunction UV photodetectors based on highly oriented CsCu2I3 thin films
CN105932099A (zh) ZnS纳米带/CdS纳米柱异质结的合成方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160907