CN105929947A - 一种基于场景态势感知的人机交互方法 - Google Patents
一种基于场景态势感知的人机交互方法 Download PDFInfo
- Publication number
- CN105929947A CN105929947A CN201610237410.7A CN201610237410A CN105929947A CN 105929947 A CN105929947 A CN 105929947A CN 201610237410 A CN201610237410 A CN 201610237410A CN 105929947 A CN105929947 A CN 105929947A
- Authority
- CN
- China
- Prior art keywords
- distance
- image
- bounding box
- man
- machine interaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 80
- 230000003993 interaction Effects 0.000 title claims abstract description 42
- 230000008447 perception Effects 0.000 title claims description 12
- 230000008859 change Effects 0.000 claims abstract description 9
- 230000033001 locomotion Effects 0.000 claims description 15
- 230000006870 function Effects 0.000 claims description 13
- 238000003709 image segmentation Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 5
- 230000003068 static effect Effects 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 230000004048 modification Effects 0.000 claims 1
- 238000012986 modification Methods 0.000 claims 1
- 238000002474 experimental method Methods 0.000 description 17
- 238000001514 detection method Methods 0.000 description 12
- 238000011160 research Methods 0.000 description 8
- 230000011218 segmentation Effects 0.000 description 7
- 230000009471 action Effects 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003708 edge detection Methods 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000004424 eye movement Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
- G06V40/28—Recognition of hand or arm movements, e.g. recognition of deaf sign language
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Social Psychology (AREA)
- Psychiatry (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Processing Or Creating Images (AREA)
- Image Analysis (AREA)
Abstract
Description
正确 | 失败 |
87.4% | 13.6% |
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610237410.7A CN105929947B (zh) | 2016-04-15 | 2016-04-15 | 一种基于场景态势感知的人机交互方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610237410.7A CN105929947B (zh) | 2016-04-15 | 2016-04-15 | 一种基于场景态势感知的人机交互方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105929947A true CN105929947A (zh) | 2016-09-07 |
CN105929947B CN105929947B (zh) | 2020-07-28 |
Family
ID=56839297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610237410.7A Expired - Fee Related CN105929947B (zh) | 2016-04-15 | 2016-04-15 | 一种基于场景态势感知的人机交互方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105929947B (zh) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682643A (zh) * | 2017-01-09 | 2017-05-17 | 济南大学 | 一种手势的多语义识别方法 |
CN107679512A (zh) * | 2017-10-20 | 2018-02-09 | 济南大学 | 一种基于手势关键点的动态手势识别方法 |
CN109190357A (zh) * | 2018-08-30 | 2019-01-11 | 袁精侠 | 一种仅利用缓存资源进行人机验证的手势验证码实现方法 |
CN110909183A (zh) * | 2019-10-29 | 2020-03-24 | 联想(北京)有限公司 | 一种多媒体数据处理方法、装置和存储介质 |
CN113299416A (zh) * | 2021-04-29 | 2021-08-24 | 中核核电运行管理有限公司 | 一种核电厂操作人员操作意图智能识别系统及方法 |
CN116882148A (zh) * | 2023-07-03 | 2023-10-13 | 成都信息工程大学 | 一种基于空间社会力图神经网络的行人轨迹预测方法及系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012022458A (ja) * | 2010-07-13 | 2012-02-02 | Canon Inc | 情報処理装置およびその制御方法 |
CN102902355A (zh) * | 2012-08-31 | 2013-01-30 | 中国科学院自动化研究所 | 移动设备的空间交互方法 |
CN103472923A (zh) * | 2013-09-23 | 2013-12-25 | 济南大学 | 一种三维虚拟手势选择场景物体的方法 |
-
2016
- 2016-04-15 CN CN201610237410.7A patent/CN105929947B/zh not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012022458A (ja) * | 2010-07-13 | 2012-02-02 | Canon Inc | 情報処理装置およびその制御方法 |
CN102902355A (zh) * | 2012-08-31 | 2013-01-30 | 中国科学院自动化研究所 | 移动设备的空间交互方法 |
CN103472923A (zh) * | 2013-09-23 | 2013-12-25 | 济南大学 | 一种三维虚拟手势选择场景物体的方法 |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106682643A (zh) * | 2017-01-09 | 2017-05-17 | 济南大学 | 一种手势的多语义识别方法 |
CN107679512A (zh) * | 2017-10-20 | 2018-02-09 | 济南大学 | 一种基于手势关键点的动态手势识别方法 |
CN109190357A (zh) * | 2018-08-30 | 2019-01-11 | 袁精侠 | 一种仅利用缓存资源进行人机验证的手势验证码实现方法 |
CN109190357B (zh) * | 2018-08-30 | 2021-08-06 | 袁精侠 | 一种仅利用缓存资源进行人机验证的手势验证码实现方法 |
CN110909183A (zh) * | 2019-10-29 | 2020-03-24 | 联想(北京)有限公司 | 一种多媒体数据处理方法、装置和存储介质 |
CN113299416A (zh) * | 2021-04-29 | 2021-08-24 | 中核核电运行管理有限公司 | 一种核电厂操作人员操作意图智能识别系统及方法 |
CN116882148A (zh) * | 2023-07-03 | 2023-10-13 | 成都信息工程大学 | 一种基于空间社会力图神经网络的行人轨迹预测方法及系统 |
CN116882148B (zh) * | 2023-07-03 | 2024-01-30 | 成都信息工程大学 | 基于空间社会力图神经网络的行人轨迹预测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN105929947B (zh) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105929947B (zh) | 一种基于场景态势感知的人机交互方法 | |
CN106682598B (zh) | 一种基于级联回归的多姿态的人脸特征点检测方法 | |
Yang et al. | Hand gesture recognition: An overview | |
CN110688965A (zh) | 基于双目视觉的ipt模拟训练手势识别方法 | |
CN110751097B (zh) | 一种半监督的三维点云手势关键点检测方法 | |
Tara et al. | Hand segmentation from depth image using anthropometric approach in natural interface development | |
Wu et al. | Depth-based hand gesture recognition | |
CN103426000B (zh) | 一种静态手势指尖检测方法 | |
Hou et al. | Multi-modal feature fusion for 3D object detection in the production workshop | |
Zhang et al. | Infrastructure 3D target detection based on multi-mode fusion for intelligent and connected vehicles | |
CN103810480B (zh) | 基于rgb‑d图像的手势检测方法 | |
Li et al. | A novel art gesture recognition model based on two channel region-based convolution neural network for explainable human-computer interaction understanding | |
Lee et al. | Comparison of facial expression recognition performance according to the use of depth information of structured-light type RGB-D camera | |
CN105929944B (zh) | 一种三维人机交互方法 | |
Tang et al. | Position-free hand gesture recognition using single shot multibox detector based neural network | |
CN117218192A (zh) | 一种基于深度学习与合成数据的弱纹理物体位姿估计方法 | |
Itkarkar et al. | A study of vision based hand gesture recognition for human machine interaction | |
Rong et al. | RGB-D hand pose estimation using fourier descriptor | |
Ruan et al. | A semantic octomap mapping method based on cbam-pspnet | |
Xu et al. | A novel multimedia human-computer interaction (HCI) system based on kinect and depth image understanding | |
Zhi et al. | One-shot learning classification and recognition of gesture expression from the egocentric viewpoint in intelligent human-computer interaction | |
Wang | Hand gesture recognition based on fingertip detection | |
Zhang et al. | Object detection based on deep learning and b-spline level set in color images | |
Nagel | A perspective on machine vision | |
Wu et al. | Bimanual gesture recognition based on convolution neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Feng Zhiquan Inventor after: Cai Mengmeng Inventor after: Luan Min Inventor after: Ai Changsheng Inventor after: Wei Jun Inventor after: Li Yingjun Inventor after: Li Jianxin Inventor after: Xie Wei Inventor after: Zhang Kai Inventor before: Feng Zhiquan Inventor before: Cai Mengmeng Inventor before: Luan Min |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200728 Termination date: 20210415 |