CN105913494A - Multi-scale fracture fine geological modeling and value simulation method and device - Google Patents
Multi-scale fracture fine geological modeling and value simulation method and device Download PDFInfo
- Publication number
- CN105913494A CN105913494A CN201610192042.9A CN201610192042A CN105913494A CN 105913494 A CN105913494 A CN 105913494A CN 201610192042 A CN201610192042 A CN 201610192042A CN 105913494 A CN105913494 A CN 105913494A
- Authority
- CN
- China
- Prior art keywords
- grid
- fracture
- model
- grade
- fractures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004088 simulation Methods 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title claims abstract description 48
- 238000004364 calculation method Methods 0.000 claims abstract description 42
- 239000011159 matrix material Substances 0.000 claims abstract description 38
- 238000013507 mapping Methods 0.000 claims abstract description 6
- 230000035699 permeability Effects 0.000 claims description 27
- 230000009977 dual effect Effects 0.000 claims description 13
- 238000002224 dissection Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 2
- 238000012216 screening Methods 0.000 abstract 1
- 206010017076 Fracture Diseases 0.000 description 196
- 208000010392 Bone Fractures Diseases 0.000 description 125
- 238000010586 diagram Methods 0.000 description 16
- 239000012530 fluid Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 241001415846 Procellariidae Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 208000013201 Stress fracture Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005465 channeling Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002948 stochastic simulation Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/30—Polynomial surface description
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
- G06T17/05—Geographic models
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Software Systems (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- Computer Graphics (AREA)
- Mathematical Analysis (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Algebra (AREA)
- Remote Sensing (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Geophysics And Detection Of Objects (AREA)
Abstract
本发明公开了一种多尺度裂缝精细地质建模及数值模拟方法和装置,属于油藏数值模拟技术领域。所述方法包括:获取角点网格和裂缝网络数据;对裂缝进行分级筛选;生成非结构化基础网格和非结构化数值模拟网格,进行角点网格基质属性映射;将III级裂缝等效到基础网格,进一步等效到数值模拟网格;利用全局粗化技术计算最终数值模拟网格的所有传导率。本发明能有针对性的分级处理不同性质的裂缝,从而在保证数值模拟精度的前提下,减少数值模拟网格数量,提高数值模拟计算速度。
The invention discloses a multi-scale fracture fine geological modeling and numerical simulation method and device, belonging to the technical field of oil reservoir numerical simulation. The method includes: acquiring corner grid and fracture network data; classifying and screening fractures; generating unstructured basic grid and unstructured numerical simulation grid, and performing corner grid matrix property mapping; class III fractures Equivalent to the basic grid, and further equivalent to the numerical simulation grid; use the global coarsening technique to calculate all conductivities of the final numerical simulation grid. The invention can process cracks with different properties in a targeted manner, thereby reducing the number of numerical simulation grids and increasing the calculation speed of numerical simulation under the premise of ensuring the accuracy of numerical simulation.
Description
技术领域technical field
本发明涉及油藏描述以及油藏数值模拟技术领域,特别是指一种多尺度裂缝精细地质建模及数值模拟方法和装置。The invention relates to the technical field of reservoir description and reservoir numerical simulation, in particular to a multi-scale fracture fine geological modeling and numerical simulation method and device.
背景技术Background technique
裂缝油藏是广泛存在的一种油藏类型,据不完全统计,当前已探明地质储量中,裂缝性油藏占了28%以上。裂缝油藏的建模和数模一直以来都是业内的一大主要难点,主要体现在基质与不同级别的裂缝在尺度、渗流传导能力以及其他流动特性的巨大差异上。Fractured reservoirs are a widely existing type of reservoirs. According to incomplete statistics, fractured reservoirs account for more than 28% of the proven geological reserves. The modeling and numerical modeling of fractured reservoirs has always been a major difficulty in the industry, mainly reflected in the huge differences in scale, seepage conductivity and other flow characteristics between matrix and fractures of different levels.
针对裂缝的特性,现在主要有双重介质模型和离散裂缝模型两种方法来对裂缝进行描述,并为后续数值模拟提供模型与参数。这两种模型分别具有不同的特点和适应性:双重介质模型优点是稳定高效,然而精度较低,往往只适用于中小裂缝发育的区域,不适合对全油藏流动具有重大影响的大尺度裂缝的情形;而离散裂缝模型的特点是对裂缝刻画精细、数值模拟精度高,然而由于极高的分辨率导致无法高效模拟中小裂缝发育的油藏。图1即示出了一个裂缝油藏(左),及其对应的双重介质模型(中)与离散裂缝模型(右)的示意图。Aiming at the characteristics of fractures, there are mainly two methods of dual-media model and discrete fracture model to describe fractures, and provide models and parameters for subsequent numerical simulations. These two models have different characteristics and adaptability: the dual-media model has the advantage of being stable and efficient, but its accuracy is low, and it is often only suitable for areas with developed medium and small fractures, and is not suitable for large-scale fractures that have a major impact on the flow of the entire reservoir. The discrete fracture model is characterized by fine fracture description and high numerical simulation accuracy. However, due to its extremely high resolution, it cannot efficiently simulate reservoirs with medium and small fractures. Figure 1 shows a schematic diagram of a fractured reservoir (left), and its corresponding dual-media model (middle) and discrete fracture model (right).
然而,由于裂缝储层通常存在着不同成因、尺度与分布规律的裂缝,导致上述两种模型均无法同时达到精度和效率上的要求,因此有必要针对多尺度裂缝油藏开发一种新的建模与数值模拟技术。However, since fractured reservoirs usually have fractures of different origins, scales and distribution patterns, the above two models cannot meet the requirements of accuracy and efficiency at the same time. Therefore, it is necessary to develop a new model for multi-scale fractured reservoirs. Modular and numerical simulation techniques.
由于小尺度裂缝的存在,对于针对多尺度裂缝油藏的建模与数值模拟,当前国内外仍多采用双重介质模型。即,不区分裂缝的尺度或流动特性,对全油藏的裂缝系统统一用特定的方法计算得到数值模拟模型参数:裂缝孔隙度与渗透率,以及基质与裂缝网格之间的窜流系数,也称为形状因子。Due to the existence of small-scale fractures, for the modeling and numerical simulation of multi-scale fractured reservoirs, dual-media models are still mostly used at home and abroad. That is, without distinguishing the scale or flow characteristics of fractures, the numerical simulation model parameters are calculated uniformly for the fracture system of the whole reservoir by a specific method: fracture porosity and permeability, and the channeling coefficient between matrix and fracture grid, Also known as form factor.
其中,双重介质模型参数的计算方式有很多,有传统的基于裂缝几何统计的计算方法,有基于局部流动计算的计算方法,还有一个近年来较为流行的基于流动的粗化方法。无论采用哪种方法,都不可避免的存在双重介质模型的局限性。例如,流动粗化方法在对裂缝较为发育或呈现网状分布的情形下,可以获得精度较高的双重介质模型,但是在裂缝零星分布或者某些大裂缝起主导作用的区域,则有可能造成较大的误差。图2即示出了适合应用双重介质模型(左)和适合应用离散裂缝模型(右)的情形。Among them, there are many ways to calculate the parameters of the dual-media model, including the traditional calculation method based on fracture geometry statistics, the calculation method based on local flow calculation, and a flow-based upscaling method that has become more popular in recent years. No matter which method is adopted, there are inevitably limitations of the dual-media model. For example, the flow coarsening method can obtain a high-accuracy dual-media model when fractures are relatively developed or distributed in a network pattern, but in areas where fractures are scattered or some large fractures play a dominant role, it may cause large error. Figure 2 shows the situation where the dual-media model (left) and the discrete fracture model (right) are suitable.
因此,现有技术中双重介质模型技术存在如下缺点:Therefore, there are following disadvantages in the dual medium model technology in the prior art:
1)无法对不同尺度裂缝进行分开处理;1) It is impossible to treat cracks of different scales separately;
2)对于裂缝零星分布或者某些大裂缝起主导作用的区域,精度较低。2) For areas where fractures are scattered or some large fractures play a dominant role, the accuracy is low.
综上所述,多尺度裂缝的存在,导致了离散裂缝模型数值模拟计算效率上无法适应,通常只能采用双重介质模型进行建模与数值模拟。然而由于双重介质模型对于裂缝较为粗糙的描述与等效处理,精度上会大打折扣,对于某些主裂缝控制区域原油流动的情形可能会出现较大误差。To sum up, the existence of multi-scale fractures makes the numerical simulation calculation efficiency of the discrete fracture model unsuitable, and usually only dual-media models can be used for modeling and numerical simulation. However, due to the rough description and equivalent treatment of fractures in the dual-media model, the accuracy will be greatly reduced, and large errors may occur in the case of crude oil flow in some main fracture control areas.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种能够兼顾计算精度和计算效率的多尺度裂缝精细地质建模及数值模拟方法和装置。The technical problem to be solved by the present invention is to provide a multi-scale fracture fine geological modeling and numerical simulation method and device that can take into account both calculation accuracy and calculation efficiency.
为解决上述技术问题,本发明提供技术方案如下:In order to solve the problems of the technologies described above, the present invention provides technical solutions as follows:
一方面,提供一种多尺度裂缝精细地质建模及数值模拟方法,包括:On the one hand, a multi-scale fracture fine geological modeling and numerical simulation method is provided, including:
步骤1:加载数据,所述数据包括角点网格模型、基质属性模型、裂缝网络模型和裂缝属性模型;Step 1: loading data, the data includes a corner grid model, a matrix property model, a fracture network model and a fracture property model;
步骤2:根据裂缝参数,将裂缝划分为I、II和III三个级别,分别为离散裂缝级、双孔介质级和等效介质级,其中,I级对应的裂缝尺度最大,II级对应的裂缝尺度中等,III级对应的裂缝尺度最小;Step 2: According to the fracture parameters, divide the fractures into three grades of I, II and III, which are discrete fracture grade, double-porous medium grade and equivalent medium grade respectively. Among them, grade I corresponds to the largest fracture scale, and grade II corresponds to The fracture scale is medium, and the fracture scale corresponding to grade III is the smallest;
步骤3:根据角点网格模型与I级和II级裂缝系统几何信息,生成I级和II级离散裂缝的非结构化网格Gf,并将角点网格的基质属性映射其中,作为基础网格;Step 3: According to the corner grid model and the geometric information of the I and II fracture systems, generate the unstructured grid G f of the I and II discrete fractures, and map the matrix properties of the corner grid to it as base mesh;
步骤4:根据角点网格模型与I级裂缝系统几何信息,生成I级离散裂缝的非结构化网格Gc,作为数模网格;Step 4: According to the corner point grid model and the geometric information of the I-level fracture system, generate the unstructured grid G c of the I-level discrete fracture as the digital model grid;
步骤5:将III级裂缝等效到Gf的基质网格中,计算其等效孔隙度和渗透率;Step 5: Equivalently insert grade III fractures into the matrix grid of Gf , and calculate their equivalent porosity and permeability;
步骤6:将II级裂缝对应到数模网格Gc中,成为双重介质模型中的裂缝介质网格;根据全局粗化方法,计算Gc网格的数值模拟参数,得到的结果为离散裂缝+双重介质混合模型。Step 6: Correspond level II fractures to the digital model grid G c to become the fracture medium grid in the dual medium model; calculate the numerical simulation parameters of the G c grid according to the global coarsening method, and the obtained result is a discrete fracture + Dual media hybrid models.
另一方面,提供一种多尺度裂缝精细地质建模及数值模拟模型获取装置,包括:On the other hand, a multi-scale fracture fine geological modeling and numerical simulation model acquisition device is provided, including:
加载模块:用于加载数据,所述数据包括角点网格模型、基质属性模型、裂缝网络模型和裂缝属性模型;Loading module: used to load data, the data includes corner grid model, matrix property model, fracture network model and fracture property model;
裂缝分级模块:用于根据裂缝参数,将裂缝划分为I、II和III三个级别,分别为离散裂缝级、双孔介质级和等效介质级,其中,I级对应的裂缝尺度最大,II级对应的裂缝尺度中等,III级对应的裂缝尺度最小;Fracture classification module: used to divide fractures into three grades I, II and III according to fracture parameters, which are discrete fracture grade, double-porous medium grade and equivalent medium grade, among which, grade I corresponds to the largest fracture scale, and grade II Grade III corresponds to a medium-scale fracture, and Grade III corresponds to a minimum fracture scale;
第一网格生成模块:用于根据角点网格模型与I级和II级裂缝系统几何信息,生成I级和II级离散裂缝的非结构化网格Gf,并将角点网格的基质属性映射其中,作为基础网格;The first grid generation module: it is used to generate the unstructured grid G f of level I and level II discrete fractures according to the corner point grid model and the geometric information of level I and level II fracture systems, and convert the corner point grid Matrix attributes are mapped to it, as the base grid;
第二网格生成模块:根据角点网格模型与I级裂缝系统几何信息,生成I级离散裂缝的非结构化网格Gc,作为数模网格;The second grid generation module: according to the corner point grid model and the geometric information of the I-level fracture system, generate the unstructured grid G c of the I-level discrete fracture as a digital model grid;
第一等效计算模块:用于将III级裂缝等效到Gf的基质网格中,计算其等效孔隙度和渗透率;The first equivalent calculation module: it is used to equivalent the grade III fractures to the matrix grid of G f , and calculate its equivalent porosity and permeability;
第二等效计算模块:用于将II级裂缝对应到数模网格Gc中,成为双重介质模型中的裂缝介质网格;根据全局粗化方法,计算Gc网格的数值模拟参数,得到的结果为离散裂缝+双重介质混合模型。The second equivalent calculation module: it is used to correspond the grade II fractures to the digital model grid Gc , and become the fractured medium grid in the dual medium model; according to the global coarsening method, calculate the numerical simulation parameters of the Gc grid, The result obtained is a discrete fracture + dual-medium mixture model.
本发明具有以下有益效果:The present invention has the following beneficial effects:
上述方案中,对尺寸不一的裂缝进行了分级筛选处理。In the above scheme, cracks of different sizes are classified and screened.
(1)对小尺度(III级)裂缝作等效介质处理,在等效后的数值模拟模型中III级裂缝无需额外数值模拟网格,避免了对尺度较小、数量巨大同时数据不确定性较大的裂缝进行高分辨率建模与模型,极大的降低了计算代价,可以在损失极少精度的前提下,大幅度提高数值计算效率。(1) Small-scale (level III) fractures are treated as equivalent media. In the equivalent numerical simulation model, level III fractures do not need additional numerical simulation grids, which avoids the small-scale, large number and data uncertainty High-resolution modeling and modeling of larger fractures can greatly reduce the calculation cost, and can greatly improve the efficiency of numerical calculation with little loss of accuracy.
(2)对中尺度(II级)裂缝采用双重介质处理,采用全局粗化流程,可以保证II裂缝的等效精度,在最终数值模拟模型中,II级裂缝由双重介质网格表征,仅需增加很少的数值模拟网格。(2) For mesoscale (level II) fractures, dual-medium treatment is adopted, and the global coarsening process is adopted, which can ensure the equivalent accuracy of II fractures. In the final numerical simulation model, the second-level fractures are represented by dual-medium grids, and only Add few meshes for numerical simulations.
(3)对大尺度(I级)裂缝进行离散裂缝处理,可精确描述并模拟对油藏起重要作用的裂缝,保持了传统离散裂缝模型的高精度。(3) Discrete fracture processing for large-scale (level I) fractures can accurately describe and simulate fractures that play an important role in the reservoir, maintaining the high precision of traditional discrete fracture models.
综上,本发明方法对于不同尺度和可靠性的裂缝采用分开处理,有针对性的采用不同数值模拟策略,保证了数值计算精度,提高了数值计算的效率。To sum up, the method of the present invention adopts separate processing for cracks of different scales and reliability, and uses different numerical simulation strategies in a targeted manner, which ensures the accuracy of numerical calculation and improves the efficiency of numerical calculation.
附图说明Description of drawings
图1为现有技术中裂缝油藏(左),及其对应的双重介质模型(中)与离散裂缝模型(右)的示意图;Fig. 1 is a schematic diagram of a fractured reservoir (left) and its corresponding dual-media model (middle) and discrete fracture model (right) in the prior art;
图2为现有技术中适合应用双重介质模型(左)和适合应用离散裂缝模型(右)的裂缝油藏的示意图;Fig. 2 is a schematic diagram of a fractured reservoir suitable for the application of the dual-media model (left) and the discrete fracture model (right) in the prior art;
图3为本发明中得到非结构化网格Gf作为基础网格的示意图;Fig. 3 is the schematic diagram that obtains unstructured grid G f as basic grid in the present invention;
图4为本发明中得到非结构化网格Gc作为数模网格的示意图;Fig. 4 is the schematic diagram that obtains unstructured grid G c as digital-analog grid in the present invention;
图5为本发明中读取角点网格及其属性时得到的孔隙度属性示意图;Fig. 5 is a schematic diagram of porosity attributes obtained when reading corner grids and their attributes in the present invention;
图6为本发明中根据读取的裂缝网络几何数据,进行裂缝分级的示意图,其中上为III级裂缝,左下为II级裂缝,右下为:I级裂缝;Fig. 6 is a schematic diagram of fracture grading according to the fracture network geometric data read in the present invention, wherein the upper part is III-level cracks, the lower left is II-level cracks, and the lower right is: I-level cracks;
图7为本发明的步骤3和步骤4中根据读取的角点网格信息生成模型边界的示意图;Fig. 7 is a schematic diagram of generating a model boundary according to the read corner grid information in steps 3 and 4 of the present invention;
图8为本发明中基于I+II级离散裂缝剖分非结构化网格Gf的示意图;Fig. 8 is a schematic diagram of dividing an unstructured grid Gf based on I+II level discrete fractures in the present invention;
图9为本发明中从角点网格向Gf网格映射基质属性的示意图,其中图中所示为孔隙度属性;Fig. 9 is a schematic diagram of mapping matrix properties from corner point grids to Gf grids in the present invention, wherein the porosity properties are shown in the figure;
图10为本发明中基于I级离散裂缝剖分非结构化网格Gc的示意图;Fig. 10 is a schematic diagram of dividing an unstructured grid Gc based on class I discrete fractures in the present invention;
图11为III级裂缝参数计算的示意图,其中右图为III级裂缝等效渗透率;Fig. 11 is a schematic diagram of calculating the parameters of grade III fractures, where the right figure is the equivalent permeability of grade III fractures;
图12为混合模型粗化(得到传导率等参数)的示意图;Fig. 12 is a schematic diagram of the coarsening of the hybrid model (obtaining parameters such as conductivity);
图13为采用本发明方法的测试算例,其中上图为对比模型数值模拟结果饱和度分布图(数值模拟计算时间为1619秒),下图为本发明的混合网格数值模拟结果饱和度分布图(数值模拟计算时间为88秒),两者误差仅为5%,而计算仅为原来的1/18;Fig. 13 is a test calculation example adopting the method of the present invention, wherein the upper figure is a saturation distribution diagram of the comparison model numerical simulation results (the numerical simulation calculation time is 1619 seconds), and the lower figure is the saturation distribution of the mixed grid numerical simulation results of the present invention Figure (numerical simulation calculation time is 88 seconds), the error of the two is only 5%, and the calculation is only 1/18 of the original;
图14为本发明方法的流程原理示意图。Fig. 14 is a schematic diagram of the flow principle of the method of the present invention.
具体实施方式detailed description
为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具体实施例进行详细描述。In order to make the technical problems, technical solutions and advantages to be solved by the present invention clearer, the following will describe in detail with reference to the drawings and specific embodiments.
通常储层中存在着尺寸和性质不同的裂缝,如:Usually there are fractures of different sizes and properties in the reservoir, such as:
(1)压裂主裂缝通常尺寸大、导流能力强、对流体渗流和储层开发的影响大,从分布上来讲,这类裂缝数量较少,呈现稀疏分布的状态。由于单条裂缝对渗流影响大且分布较为稀疏,对这类裂缝而言,采用传统双重介质模型会有较大的误差用,采用离散裂缝模型更有精确有效。(1) The main fractures of fracturing are usually large in size, strong in conductivity, and have a great impact on fluid seepage and reservoir development. In terms of distribution, the number of such fractures is small and sparsely distributed. Since a single fracture has a great influence on seepage and the distribution is relatively sparse, for this type of fracture, the traditional dual-media model will have a large error, and the discrete fracture model is more accurate and effective.
(2)压裂缝网和天然裂缝缝网等一些裂缝通常尺寸中等,导流能力也较强,分布上呈网状交错分布,适合双重介质模型来模拟,若采用离散裂缝模型,会造成网格数量过多从而计算速度太慢的问题。(2) Some fractures, such as fracturing fracture network and natural fracture network, are usually medium in size and have strong flow conductivity. They are distributed in a network-like staggered distribution, which is suitable for dual-media model simulation. If the discrete fracture model is used, the grid There are too many problems and the calculation speed is too slow.
(3)储层中还存在一些微裂缝,这些裂缝分布十分密集,然而由于裂缝尺寸很小,并不一定形成有效缝网,因此对这类裂缝既不适合离散裂缝模型也也不适合采用双重介质模型进行模拟,可将其属性通过特定方法,赋予到基质上。(3) There are still some micro-fractures in the reservoir, and these fractures are very densely distributed. However, due to the small size of the fractures, an effective fracture network may not be formed. Therefore, neither the discrete fracture model nor the dual fracture model is suitable for such fractures. The medium model is simulated, and its properties can be assigned to the substrate through specific methods.
由此可见,采用单一的双重介质模型或者离散裂缝模型无法有效模拟储层中不同类型的裂缝,本发明采用了三级裂缝分级的思路,就是将这些性质不同的裂缝进行分级筛选,进而采用不同方法建立模型,最后统一到一个混合模型中进行数值模拟。It can be seen that using a single dual-media model or a discrete fracture model cannot effectively simulate different types of fractures in the reservoir. method to build the model, and finally unified into a mixed model for numerical simulation.
一方面,本发明提供一种多尺度裂缝精细地质建模及数值模拟方法,如图3-14所示,包括以下步骤:On the one hand, the present invention provides a multi-scale fracture fine geological modeling and numerical simulation method, as shown in Fig. 3-14, including the following steps:
步骤1:加载(读取)数据,该数据包括角点网格模型、基质属性模型、裂缝网络模型和裂缝属性模型;Step 1: load (read) data, the data includes corner grid model, matrix property model, fracture network model and fracture property model;
对于各数据的来源,分别说明如下:The sources of each data are explained as follows:
(1)角点网格模型(1) Corner mesh model
角点网格模型一般可由三维地质建模软件生成,并导出成Eclipse角点网格文件(*.GRDECL)格式文件,常用三维地质建模软件有Petrel、SKUA/GOCAD、RMS等。The corner grid model can generally be generated by 3D geological modeling software and exported to Eclipse corner grid file (*.GRDECL) format. The commonly used 3D geological modeling software includes Petrel, SKUA/GOCAD, RMS, etc.
(2)基质属性模型(2) Matrix attribute model
基质属性模型在角点网格模型生成后建立,通常也在三维地质建模软件中完成,也可借助GsLib等专业地质统计软件来完成。建立每种属性的模型都需要硬数据(hard data)作为输入数据,硬数据根据其来源可分为岩心数据、测井数据、地震数据等,在硬数据的约束下,通过特定的属性建模方法建立起网格对应的属性模型,即:为每个网格单位赋予属性。常用的属性建模方法有随机模拟方法(如高斯序贯模拟方法)、插值方法(如普通克里金方法)和表达式求值方法等。该基质属性模型基于(1)中角点网格模型,包括基质的孔隙度、渗透率和净毛比三个属性。The matrix attribute model is established after the corner point grid model is generated, and it is usually completed in 3D geological modeling software, and it can also be completed with the help of professional geostatistical software such as GsLib. Establishing a model for each attribute requires hard data as input data. According to its source, hard data can be divided into core data, logging data, seismic data, etc. Under the constraints of hard data, modeling through specific attributes The method establishes the attribute model corresponding to the grid, that is, assigns attributes to each grid unit. Common attribute modeling methods include stochastic simulation methods (such as Gaussian sequential simulation methods), interpolation methods (such as ordinary kriging methods), and expression evaluation methods. The matrix attribute model is based on the corner point grid model in (1), including three attributes of the matrix: porosity, permeability and net-to-gross ratio.
(3)裂缝网络模型(3) Fracture network model
裂缝网络模型一般由专业裂缝建模软件建立,常见的裂缝建模软件有Fraca、FracMan等,随着裂缝模型研究的深入和推广,许多三维地质建模软件(如Petrel、GOCAD等)也支持裂缝网络建模。建模后导出并保存为GOCAD的surface文件(*.ts)格式。Fracture network models are generally established by professional fracture modeling software. Common fracture modeling software includes Fraca, FracMan, etc. With the deepening and popularization of fracture model research, many 3D geological modeling software (such as Petrel, GOCAD, etc.) also support fracture modeling software. network modeling. Export and save as GOCAD surface file (*.ts) format after modeling.
(4)裂缝属性模型(4) Fracture attribute model
裂缝属性模型通常与裂缝网络模型一起建立,可由建立裂缝网络模型的软件自动计算,也可手动输入。一般包括裂缝的开度、渗透率。The fracture attribute model is usually established together with the fracture network model, which can be automatically calculated by the software for establishing the fracture network model, or can be input manually. Generally, it includes fracture opening and permeability.
步骤2:裂缝分级Step 2: Crack Grading
根据裂缝参数,将裂缝划分为I、II和III三个级别,分别为离散裂缝级、双孔介质级和等效介质级,其中,I级对应的裂缝尺度最大,II级对应的裂缝尺度中等,III级对应的裂缝尺度最小;According to the fracture parameters, the fractures are divided into three grades: I, II and III, which are discrete fracture grade, double-porous medium grade and equivalent medium grade respectively. Among them, the fracture scale corresponding to grade I is the largest, and the fracture scale corresponding to grade II is medium. , the fracture scale corresponding to grade III is the smallest;
具体来说,可以根据裂缝的尺度(如长度、高度及开度)、裂缝的导流能力以及裂缝的分布情况等数据,将裂缝分为三个级别:Specifically, fractures can be divided into three levels according to the scale of the fracture (such as length, height, and opening), the conductivity of the fracture, and the distribution of the fracture:
(1)离散裂缝级(I级)(1) Discrete crack level (level I)
该级裂缝尺度最大,裂缝导流能力强,单条裂缝对流体渗流影响最大,在最终数模模型中以离散裂缝存在;This level of fractures has the largest scale and strong conductivity, and a single fracture has the greatest impact on fluid seepage, and exists as discrete fractures in the final digital model;
(2)双孔介质级(II级)(2) Double-hole medium grade (II grade)
该级裂缝尺度中等,同级裂缝连通情况较好,单条裂缝对流体渗流影响中等,在最终数值模拟模型中以双重介质模型的裂缝介质存在;The scale of fractures at this level is medium, the connectivity of fractures at the same level is relatively good, and a single fracture has a moderate influence on fluid seepage. In the final numerical simulation model, the fracture medium of the dual-media model exists;
(3)等效介质级(III级)(3) Equivalent medium level (level III)
该级裂缝尺度最小,单条裂缝对流体渗流影响最小,在最终数模模型中,其对渗流的作用被等效到基质网格中。The scale of fractures at this level is the smallest, and a single fracture has the least impact on fluid seepage. In the final digital model, its effect on seepage is equivalent to the matrix grid.
具体的分级步骤可以为:The specific grading steps can be:
(1)I级裂缝(1) Class I cracks
根据预先设定的I级-II级裂缝分级参数,包括临界长度L1、临界开度d1、临界渗透率k1,则裂缝网络F中,子集FI={f∈F|Lf>L1且df>d1且kf>k1}为I级裂缝;According to the preset grade I-II fracture classification parameters, including critical length L 1 , critical opening d 1 , and critical permeability k 1 , in the fracture network F, the subset F I ={f∈F|L f >L 1 and d f >d 1 and k f >k 1 } are class I fractures;
(2)III级裂缝(2) Class III cracks
根据预先设定的II级-III级裂缝分级参数,包括临界长度L2、临界开度d2、临界渗透率k2,则裂缝网络F中,子集FIII={f∈F|Lf<L2或df<d2或kf<k2}为III级裂缝;According to the preset grade II-III fracture classification parameters, including critical length L 2 , critical opening d 2 , and critical permeability k 2 , in the fracture network F, subset F III ={f∈F|L f <L 2 or d f <d 2 or k f <k 2 } are class III cracks;
(3)II级裂缝(3) Grade II cracks
裂缝网络F的子集FII=F-FI-FIII为II级裂缝。The subset F II =FF I -F III of the fracture network F is class II fractures.
步骤3:生成基础网格Gf Step 3: Generate the base mesh G f
根据角点网格模型与I级和II级裂缝系统几何信息,生成I级和II级离散裂缝的非结构化网格Gf,并将角点网格的基质属性映射其中,作为基础网格;According to the corner grid model and the geometric information of the I and II fracture systems, the unstructured grid G f of the I and II discrete fractures is generated, and the matrix properties of the corner grid are mapped to it as the basic grid ;
本步骤中,根据角点网格模型与I+II级裂缝系统几何信息,剖分I+II级离散裂缝的非结构化网格Gf,作为基础网格(如图3所示)。具体可以包括以下子步骤:In this step, according to the corner point grid model and the geometric information of the I+II fracture system, the unstructured grid G f of the I+II discrete fractures is subdivided as the basic grid (as shown in Fig. 3 ). Specifically, the following sub-steps may be included:
(1)生成模型边界(1) Generate model boundaries
根据输入角点网格,生成模型外包络面,作为非结构化网格Gf边界;According to the input corner grid, the outer envelope surface of the model is generated as the boundary of the unstructured grid G f ;
(2)剖分非结构化网格Gf (2) Split unstructured grid G f
网格剖分工作可由Triangle、TetGen或CGAL等网格生成软件完成;Mesh division can be done by mesh generation software such as Triangle, TetGen or CGAL;
(3)映射基质属性(3) Mapping matrix attributes
对于Gf中的任一网格g,根据其中心点坐标寻找网格对应的角点网格,将该角点网格的基质属性一一赋予网格g。For any grid g in G f , find the corner grid corresponding to the grid according to the coordinates of its center point, and assign the matrix properties of the corner grid to grid g one by one.
本网格具备了数值模拟的所有参数,实际上,该基础网格模型就是传统离散裂缝模型,与本专利提出的混合网格模型相比,该基础网格模型网格数多,数值模拟计算代价较高。因此在本专利技术中,该基础网格模型仅作为后续工作的一个基础,不直接用于数值模拟计算。后续工作中,III级裂缝参数计算和混合模型粗化步骤均以此网格作为基础开展。This grid has all the parameters for numerical simulation. In fact, the basic grid model is the traditional discrete fracture model. Compared with the hybrid grid model proposed in this patent, the basic grid model The price is higher. Therefore, in this patented technology, the basic grid model is only used as a basis for follow-up work, and is not directly used for numerical simulation calculations. In the follow-up work, the calculation of grade III fracture parameters and the coarsening steps of the hybrid model are carried out on the basis of this grid.
步骤4:生成数模网格Gc Step 4: Generate digital-analog grid G c
根据角点网格模型与I级裂缝系统几何信息,生成I级离散裂缝的非结构化网格Gc,作为数模网格;According to the corner point grid model and the geometric information of the I-level fracture system, the unstructured grid G c of the I-level discrete fracture is generated as a digital model grid;
该步骤与步骤3类似,区别在于这里仅对I级裂缝进行非结构化网格剖分,且无需进行基质属性的映射(在混合模型粗化步骤中进行)。This step is similar to step 3, the difference is that here only unstructured grid division is performed on class I fractures, and there is no need to map matrix properties (performed in the mixed model coarsening step).
该步骤得到I级离散裂缝非结构化网格Gc(如图4所示),作为最终数模网格。由于最终数值模拟模型参数系由混合网格粗化得到,因此本步骤中无需进行属性映射。In this step, the unstructured grid Gc of level I discrete fractures (as shown in Fig. 4) is obtained as the final digital-analog grid. Since the final numerical simulation model parameters are obtained by coarsening the hybrid grid, no attribute mapping is required in this step.
具体的,本步骤可以包括以下子步骤:Specifically, this step may include the following sub-steps:
(1)生成模型边界(1) Generate model boundaries
根据输入角点网格,生成模型外包络面,作为非结构化网格Gc边界;According to the input corner grid, the outer envelope surface of the model is generated as the boundary of the unstructured grid G c ;
(2)剖分非结构化网格Gc (2) Split unstructured grid G c
网格剖分工作可由Triangle、TetGen或CGAL等网格生成软件完成。Mesh division can be done by mesh generation software such as Triangle, TetGen or CGAL.
该网格作为最终混合网格的载体,即:最终得到的数值模拟模型是基于该网格上的。This grid is the carrier of the final hybrid grid, that is, the final numerical simulation model is based on this grid.
步骤5:III级裂缝参数计算Step 5: Calculation of Grade III Fracture Parameters
将III级裂缝等效到Gf的基质网格中,计算其等效孔隙度和渗透率;Equivalent the grade III fractures to the matrix grid of G f , and calculate their equivalent porosity and permeability;
这一步骤中,基于步骤3中的基础网格Gf,将III级裂缝等效到Gf的基质网格中。之所以将III级裂缝参数等效到基础网格Gf而非数模网格Gc,是因为前者已具备除了III级裂缝之外的所有数值模信息,而后者还缺少II级裂缝和其他基质属性信息,因此将III级裂缝等效计算到基础网格Gf,最终混合网格粗化步骤才能得到具备完整信息的混合网格模型。In this step, based on the basic grid G f in step 3, class III fractures are equivalent to the matrix grid of G f . The reason why the class III fracture parameters are equivalent to the basic grid G f instead of the digital model grid G c is that the former already has all the numerical model information except the class III fracture, while the latter lacks the class II fracture and other Therefore, the grade III fractures are equivalently calculated to the basic grid G f , and the final hybrid grid upscaling step can obtain a hybrid grid model with complete information.
III级裂缝参数计算中,孔隙度可以采用传统计算方法等效(见下式),渗透率优选采用基于流动的局部粗化方法等效。即对于Gf中任一网格g:In the calculation of grade III fracture parameters, the porosity can be equivalent to the traditional calculation method (see the following formula), and the permeability is preferably equivalent to the flow-based local coarsening method. That is, for any grid g in G f :
(1)遍历FIII,确定落在网格内部的所有III级裂缝 (1) Traverse F III to determine all grade III cracks falling inside the grid
(2)修正基质孔隙度,计算公式为(2) To correct matrix porosity, the calculation formula is
其中为φ为孔隙度,V为体积;Wherein, φ is the porosity, V is the volume;
(3)修正基质渗透率,计算公式为(3) To correct matrix permeability, the calculation formula is
其中Q为垂直于渗透率方向网格横截面的总流量,d为渗透率方向上的网格长度,A为垂直于渗透率方向网格横截面平均面积,ΔP为压力梯度在渗透率方向上的分量。where Q is the total flow of the grid cross-section perpendicular to the permeability direction, d is the grid length in the permeability direction, A is the average area of the grid cross-section perpendicular to the permeability direction, and ΔP is the pressure gradient in the permeability direction weight.
由于该级别裂缝尺度小,且不确定性高,因此不需要进行全局离散裂缝表征,只需在非结构化网格Gf单个网格块内进行等效计算。Due to the small fracture scale and high uncertainty of this level, it is not necessary to perform global discrete fracture characterization, and only need to perform equivalent calculations in a single grid block of the unstructured grid G f .
等效参数计算完毕,则III级裂缝可从裂缝网络中剔除舍去。After the calculation of equivalent parameters is completed, grade III fractures can be eliminated from the fracture network.
步骤6:混合模型粗化Step 6: Mixture Model Coarsening
将II级裂缝对应到数模网格Gc中,成为双重介质模型中的裂缝介质网格;根据全局粗化方法,计算Gc网格的数值模拟参数,得到的结果为离散裂缝+双重介质混合模型。Corresponding level II fractures to the digital model grid G c becomes the fracture medium grid in the dual medium model; according to the global coarsening method, the numerical simulation parameters of the G c grid are calculated, and the result obtained is discrete fracture + dual medium Hybrid model.
前述步骤已生成了一套具备完整数模信息的基础网格Gf,其缺点是网格数众多,数值模拟的计算代价太高。此外,在步骤4中还获得了最终数值模拟采用的非结构化网格Gc,数模网格Gc相对Gf而言要少得多,然而目前为止,其仅含有I级裂缝的信息。因此,本步骤的目标就是将基础网格Gf的信息(II级裂缝和其他基质属性),通过粗化方法,赋予到数模网格Gc中。The aforementioned steps have generated a set of basic grid G f with complete numerical model information. The disadvantage is that the number of grids is too large, and the calculation cost of numerical simulation is too high. In addition, in step 4, the unstructured grid G c used in the final numerical simulation is also obtained. Compared with G f , the numerical simulation grid G c is much less, but so far, it only contains the information of class I fractures . Therefore, the goal of this step is to assign the information of the basic grid G f (level II fractures and other matrix properties) to the digital model grid G c through the coarsening method.
为了实现上述目标,这一步骤采用基于流动的全局粗化方法,得到最终数值模拟模型的所有参数,工作分为两个部分,一是将II级裂缝对应到Gc网格中,成为双重介质模型中的裂缝介质网格,二是计算Gc网格的数值模拟参数,得到的结果为离散裂缝+双重介质混合模型。具体步骤例如:In order to achieve the above goals, this step adopts the flow-based global coarsening method to obtain all the parameters of the final numerical simulation model. The work is divided into two parts. One is to map II-level fractures to the G c grid and become a dual medium The fracture medium grid in the model, the second is to calculate the numerical simulation parameters of the Gc grid, and the result obtained is a discrete fracture + dual medium mixed model. Specific steps such as:
(1)遍历FII,确定落在Gc各网格内部的所有II级裂缝;(1) traverse F II and determine all II-level cracks falling inside each grid of G c ;
(2)计算裂缝网格孔隙度,计算公式为(2) To calculate the porosity of the fracture grid, the calculation formula is
其中为φ为孔隙度,V为体积,where φ is the porosity, V is the volume,
(3)根据全局粗化方法,分别计算得到传导率TMM、TFF和TMF,这里T为传导率,M和F分别指基质和裂缝网格。注意,这里F有I和II两个级别的裂缝,因此,传导率可进一步细分为TMM、 (3) According to the global coarsening method, the conductivities T MM , T FF and T MF are calculated respectively, where T is the conductance, M and F refer to the matrix and the fracture grid, respectively. Note that here F has two levels of cracks, I and II, so the conductivity can be further subdivided into T MM ,
至此,得到基于Gc网格的最终数值模拟参数:So far, the final numerical simulation parameters based on the G c grid are obtained:
(1)数值模拟网格的孔隙度;(1) Numerical simulation of the porosity of the grid;
(2)数值模拟网格的控制点深度;(2) The control point depth of the numerical simulation grid;
(3)数值模拟网格的体积;(3) The volume of the numerical simulation grid;
(4)数值模拟网格的传导率联通表。(4) Conductivity connectivity table of numerical simulation grid.
图13为采用本发明方法的测试算例,其中上图为对比模型数值模拟结果饱和度分布图(数值模拟计算时间为1619秒),下图为本发明的混合网格数值模拟结果饱和度分布图(数值模拟计算时间为88秒),两者误差仅为5%,而计算仅为原来的1/18。Fig. 13 is a test calculation example adopting the method of the present invention, wherein the upper figure is a saturation distribution diagram of the comparison model numerical simulation results (the numerical simulation calculation time is 1619 seconds), and the lower figure is the saturation distribution of the mixed grid numerical simulation results of the present invention Figure (numerical simulation calculation time is 88 seconds), the error of the two is only 5%, and the calculation is only 1/18 of the original.
另一方面,与上述的方法相对应,本发明还提供一种多尺度裂缝精细地质建模及数值模拟装置,包括:On the other hand, corresponding to the above method, the present invention also provides a multi-scale fracture fine geological modeling and numerical simulation device, including:
加载模块:用于加载数据,所述数据包括角点网格模型、基质属性模型、裂缝网络模型和裂缝属性模型;Loading module: used to load data, the data includes corner grid model, matrix property model, fracture network model and fracture property model;
裂缝分级模块:用于根据裂缝参数,将裂缝划分为I、II和III三个级别,分别为离散裂缝级、双孔介质级和等效介质级,其中,I级对应的裂缝尺度最大,II级对应的裂缝尺度中等,III级对应的裂缝尺度最小;Fracture classification module: used to divide fractures into three grades I, II and III according to fracture parameters, which are discrete fracture grade, double-porous medium grade and equivalent medium grade, among which, grade I corresponds to the largest fracture scale, and grade II Grade III corresponds to a medium-scale fracture, and Grade III corresponds to a minimum fracture scale;
第一网格生成模块:用于根据角点网格模型与I级和II级裂缝系统几何信息,生成I级和II级离散裂缝的非结构化网格Gf,并将角点网格的基质属性映射其中,作为基础网格;The first grid generation module: it is used to generate the unstructured grid G f of level I and level II discrete fractures according to the corner point grid model and the geometric information of level I and level II fracture systems, and convert the corner point grid Matrix attributes are mapped to it, as the base grid;
第二网格生成模块:根据角点网格模型与I级裂缝系统几何信息,生成I级离散裂缝的非结构化网格Gc,作为数模网格;The second grid generation module: according to the corner point grid model and the geometric information of the I-level fracture system, generate the unstructured grid G c of the I-level discrete fracture as a digital model grid;
第一等效计算模块:用于将III级裂缝等效到Gf的基质网格中,计算其等效孔隙度和渗透率;The first equivalent calculation module: it is used to equivalent the grade III fractures to the matrix grid of G f , and calculate its equivalent porosity and permeability;
第二等效计算模块:用于将II级裂缝对应到数模网格Gc中,成为双重介质模型中的裂缝介质网格;根据全局粗化方法,计算Gc网格的数值模拟参数,得到的结果为离散裂缝+双重介质混合模型。The second equivalent calculation module: it is used to correspond the grade II fractures to the digital model grid Gc , and become the fractured medium grid in the dual medium model; according to the global coarsening method, calculate the numerical simulation parameters of the Gc grid, The result obtained is a discrete fracture + dual-medium mixture model.
进一步的,所述裂缝分级模块优选包括:Further, the crack classification module preferably includes:
第一分级子模块:根据预先设定的I级-II级裂缝分级参数,包括临界长度L1、临界开度d1、临界渗透率k1,则裂缝网络F中,子集FI={f∈F|Lf>L1且df>d1且kf>k1}为I级裂缝;The first grading sub-module: according to the preset grade I-II fracture grading parameters, including critical length L 1 , critical opening d 1 , and critical permeability k 1 , in the fracture network F, the subset F I ={ f∈F|L f >L 1 and d f >d 1 and k f >k 1 } are Class I fractures;
第二分级子模块:根据预先设定的II级-III级裂缝分级参数,包括临界长度L2、临界开度d2、临界渗透率k2,则裂缝网络F中,子集FIII={f∈F|Lf<L2或df<d2或kf<k2}为III级裂缝;The second grading sub-module: according to the preset II-III fracture grading parameters, including critical length L 2 , critical opening d 2 , and critical permeability k 2 , in the fracture network F, subset F III ={ f∈F|L f <L 2 or d f <d 2 or k f <k 2 } are class III cracks;
第三分级子模块:裂缝网络F的子集FII=F-FI-FIII为II级裂缝。The third grading sub-module: the subset F II =FF I -F III of the fracture network F is grade II fractures.
进一步的,所述第一网格生成模块优选包括:Further, the first grid generation module preferably includes:
第一模型边界生成子模块:用于根据输入角点网格,生成模型外包络面,作为非结构化网格Gf边界;The first model boundary generation submodule: used to generate the outer envelope surface of the model as the boundary of the unstructured grid G f according to the input corner grid;
第一剖分子模块:用于剖分非结构化网格Gf;The first dissection sub-module: used to divide unstructured grid G f ;
映射子模块:用于对于Gf中的任一网格g,根据其中心点坐标寻找网格对应的角点网格,将该角点网格的基质属性一一赋予网格g。Mapping sub-module: For any grid g in G f , find the corner grid corresponding to the grid according to its center point coordinates, and assign the matrix properties of the corner grid to grid g one by one.
进一步的,所述第二网格生成模块优选包括:Further, the second grid generation module preferably includes:
第二模型边界生成子模块:用于根据输入角点网格,生成模型外包络面,作为非结构化网格Gc边界;The second model boundary generation submodule: used to generate the outer envelope surface of the model according to the input corner grid, as the unstructured grid Gc boundary;
第二剖分子模块:用于剖分非结构化网格Gc。The second dissection submodule: used for dissection of the unstructured grid G c .
进一步的,所述第一等效计算模块中,III级裂缝参数计算时,孔隙度可以采用传统计算方法等效,渗透率优选采用基于流动的局部粗化方法等效。Further, in the first equivalent calculation module, when calculating the grade III fracture parameters, the porosity can be equivalent using the traditional calculation method, and the permeability can preferably be equivalent using the flow-based local coarsening method.
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above description is a preferred embodiment of the present invention, it should be pointed out that for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610192042.9A CN105913494B (en) | 2016-03-30 | 2016-03-30 | The modeling of multi-scale facture fine geology and method for numerical simulation and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610192042.9A CN105913494B (en) | 2016-03-30 | 2016-03-30 | The modeling of multi-scale facture fine geology and method for numerical simulation and device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105913494A true CN105913494A (en) | 2016-08-31 |
CN105913494B CN105913494B (en) | 2018-09-14 |
Family
ID=56745324
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610192042.9A Expired - Fee Related CN105913494B (en) | 2016-03-30 | 2016-03-30 | The modeling of multi-scale facture fine geology and method for numerical simulation and device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105913494B (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106934185A (en) * | 2017-04-27 | 2017-07-07 | 中国石油大学(华东) | A kind of multiple dimensioned flow simulating method of the fluid structurecoupling of elastic fluid |
CN107064193A (en) * | 2017-02-28 | 2017-08-18 | 中国石油大学(华东) | A kind of slit formation compact reservoir microcrack graded quantitative characterizing method |
CN107704685A (en) * | 2017-10-10 | 2018-02-16 | 中国石油大学(北京) | A kind of Meshing Method and device |
CN107832482A (en) * | 2017-08-14 | 2018-03-23 | 中国石油化工股份有限公司 | Compact reservoir multi-scale facture network modelling and analogy method |
CN108627882A (en) * | 2017-03-24 | 2018-10-09 | 中国石油化工股份有限公司 | A method of establishing parallel fracture equivalent medium mode |
CN108710734A (en) * | 2018-05-04 | 2018-10-26 | 南京特雷西能源科技有限公司 | Method for numerical simulation and device based on mesh adaption encryption and coarsening technique |
CN109558631A (en) * | 2018-10-24 | 2019-04-02 | 北京大学 | A kind of densification oil-gas reservoir multi-scale facture medium automatic history matching method |
CN110069791A (en) * | 2018-01-22 | 2019-07-30 | 中国石油化工股份有限公司 | A kind of modified laboratory experiment analogy method of scale |
CN110263434A (en) * | 2019-06-20 | 2019-09-20 | 中国石油大学(华东) | A kind of flow unit method for numerical simulation based on multiple dimensioned mixed finite element |
CN111324947A (en) * | 2020-01-21 | 2020-06-23 | 中国石油化工股份有限公司 | Oil reservoir numerical simulation non-uniform angular point grid optimization method based on attribute distribution |
CN111400932A (en) * | 2020-04-09 | 2020-07-10 | 上海勘测设计研究院有限公司 | Method and device for generating grid in water environment simulation, storage medium and terminal |
CN111898251A (en) * | 2020-07-06 | 2020-11-06 | 中国海洋石油集团有限公司 | An Envelope Construction Method Based on Geological Prototype Model |
CN114429525A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Multi-scale fracture simulation method and computer readable storage medium for fractured oil reservoir |
CN115345079A (en) * | 2022-10-20 | 2022-11-15 | 中科数智能源科技(深圳)有限公司 | Oil reservoir numerical simulation data processing method and system of 2.5D unstructured network |
CN117390998A (en) * | 2023-12-08 | 2024-01-12 | 西安石油大学 | A local grid refinement method and device for embedded discrete crack models |
CN118411338A (en) * | 2024-04-23 | 2024-07-30 | 西南石油大学 | Core multi-scale crack extraction method based on crack enhancement and screening technology |
CN111898251B (en) * | 2020-07-06 | 2025-02-18 | 中国海洋石油集团有限公司 | A method for constructing an envelope surface based on a geological prototype model |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130096889A1 (en) * | 2011-10-12 | 2013-04-18 | IFP Energies Nouvelles | Method for generating a fractured reservoir mesh with a limited number of nodes in the matrix medium |
CN104730596A (en) * | 2015-01-25 | 2015-06-24 | 中国石油大学(华东) | Discrete fracture modeling method based on multiscale factor restraint |
CN104750896A (en) * | 2013-12-31 | 2015-07-01 | 中国石油化工股份有限公司 | Numerical simulation method of fractured-vug carbonate reservoir |
CN104933208A (en) * | 2014-02-21 | 2015-09-23 | 中国石油化工股份有限公司 | Different-dimension crack numerical reservoir simulation comprehensive processing method |
CN105160134A (en) * | 2015-09-30 | 2015-12-16 | 中国石油天然气股份有限公司 | Mixed medium simulation method and device for oil-gas flow in multiple media of tight reservoir |
CN105205273A (en) * | 2015-09-30 | 2015-12-30 | 中国石油天然气股份有限公司 | Method and device for simulating oil-gas relay flow in multiple media of tight reservoir |
CN105260543A (en) * | 2015-10-19 | 2016-01-20 | 中国石油天然气股份有限公司 | Multi-medium oil-gas flow simulation method and device based on double-hole model |
-
2016
- 2016-03-30 CN CN201610192042.9A patent/CN105913494B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130096889A1 (en) * | 2011-10-12 | 2013-04-18 | IFP Energies Nouvelles | Method for generating a fractured reservoir mesh with a limited number of nodes in the matrix medium |
CN104750896A (en) * | 2013-12-31 | 2015-07-01 | 中国石油化工股份有限公司 | Numerical simulation method of fractured-vug carbonate reservoir |
CN104933208A (en) * | 2014-02-21 | 2015-09-23 | 中国石油化工股份有限公司 | Different-dimension crack numerical reservoir simulation comprehensive processing method |
CN104730596A (en) * | 2015-01-25 | 2015-06-24 | 中国石油大学(华东) | Discrete fracture modeling method based on multiscale factor restraint |
CN105160134A (en) * | 2015-09-30 | 2015-12-16 | 中国石油天然气股份有限公司 | Mixed medium simulation method and device for oil-gas flow in multiple media of tight reservoir |
CN105205273A (en) * | 2015-09-30 | 2015-12-30 | 中国石油天然气股份有限公司 | Method and device for simulating oil-gas relay flow in multiple media of tight reservoir |
CN105260543A (en) * | 2015-10-19 | 2016-01-20 | 中国石油天然气股份有限公司 | Multi-medium oil-gas flow simulation method and device based on double-hole model |
Non-Patent Citations (3)
Title |
---|
张允 等: "复杂介质油藏多尺度数值模拟研究", 《中国力学大学-2015》 * |
肖阳 等: "缝洞型碳酸盐岩油气藏数值模拟技术研究", 《新疆石油天然气》 * |
郎晓玲 等: "基于DFN离散裂缝网络模型的裂缝性储层建模方法", 《北京大学学报(自然科学版)》 * |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107064193A (en) * | 2017-02-28 | 2017-08-18 | 中国石油大学(华东) | A kind of slit formation compact reservoir microcrack graded quantitative characterizing method |
CN107064193B (en) * | 2017-02-28 | 2018-05-22 | 中国石油大学(华东) | A kind of slit formation compact reservoir microcrack graded quantitative characterizing method |
CN108627882A (en) * | 2017-03-24 | 2018-10-09 | 中国石油化工股份有限公司 | A method of establishing parallel fracture equivalent medium mode |
CN106934185A (en) * | 2017-04-27 | 2017-07-07 | 中国石油大学(华东) | A kind of multiple dimensioned flow simulating method of the fluid structurecoupling of elastic fluid |
CN106934185B (en) * | 2017-04-27 | 2019-08-06 | 中国石油大学(华东) | A Fluid-Structure Interaction Multiscale Flow Simulation Method for Elastic Media |
CN107832482A (en) * | 2017-08-14 | 2018-03-23 | 中国石油化工股份有限公司 | Compact reservoir multi-scale facture network modelling and analogy method |
CN107832482B (en) * | 2017-08-14 | 2021-03-23 | 中国石油化工股份有限公司 | Compact reservoir multi-scale fracture network modeling and simulation method |
CN107704685B (en) * | 2017-10-10 | 2020-04-17 | 中国石油大学(北京) | Mesh division method and device |
CN107704685A (en) * | 2017-10-10 | 2018-02-16 | 中国石油大学(北京) | A kind of Meshing Method and device |
CN110069791A (en) * | 2018-01-22 | 2019-07-30 | 中国石油化工股份有限公司 | A kind of modified laboratory experiment analogy method of scale |
CN110069791B (en) * | 2018-01-22 | 2021-11-02 | 中国石油化工股份有限公司 | Indoor experiment simulation method for scale correction |
CN108710734A (en) * | 2018-05-04 | 2018-10-26 | 南京特雷西能源科技有限公司 | Method for numerical simulation and device based on mesh adaption encryption and coarsening technique |
CN108710734B (en) * | 2018-05-04 | 2022-12-20 | 特雷西能源科技(杭州)有限公司 | Numerical simulation method and device based on grid adaptive encryption and coarsening technology |
CN109558631A (en) * | 2018-10-24 | 2019-04-02 | 北京大学 | A kind of densification oil-gas reservoir multi-scale facture medium automatic history matching method |
CN110263434A (en) * | 2019-06-20 | 2019-09-20 | 中国石油大学(华东) | A kind of flow unit method for numerical simulation based on multiple dimensioned mixed finite element |
CN111324947A (en) * | 2020-01-21 | 2020-06-23 | 中国石油化工股份有限公司 | Oil reservoir numerical simulation non-uniform angular point grid optimization method based on attribute distribution |
CN111400932B (en) * | 2020-04-09 | 2022-09-16 | 上海勘测设计研究院有限公司 | Method and device for generating grid in water environment simulation, storage medium and terminal |
CN111400932A (en) * | 2020-04-09 | 2020-07-10 | 上海勘测设计研究院有限公司 | Method and device for generating grid in water environment simulation, storage medium and terminal |
CN111898251A (en) * | 2020-07-06 | 2020-11-06 | 中国海洋石油集团有限公司 | An Envelope Construction Method Based on Geological Prototype Model |
CN111898251B (en) * | 2020-07-06 | 2025-02-18 | 中国海洋石油集团有限公司 | A method for constructing an envelope surface based on a geological prototype model |
CN114429525A (en) * | 2020-09-29 | 2022-05-03 | 中国石油化工股份有限公司 | Multi-scale fracture simulation method and computer readable storage medium for fractured oil reservoir |
CN115345079A (en) * | 2022-10-20 | 2022-11-15 | 中科数智能源科技(深圳)有限公司 | Oil reservoir numerical simulation data processing method and system of 2.5D unstructured network |
CN115345079B (en) * | 2022-10-20 | 2023-01-10 | 中科数智能源科技(深圳)有限公司 | A 2.5D unstructured network reservoir numerical simulation data processing method and system |
CN117390998A (en) * | 2023-12-08 | 2024-01-12 | 西安石油大学 | A local grid refinement method and device for embedded discrete crack models |
CN118411338A (en) * | 2024-04-23 | 2024-07-30 | 西南石油大学 | Core multi-scale crack extraction method based on crack enhancement and screening technology |
Also Published As
Publication number | Publication date |
---|---|
CN105913494B (en) | 2018-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105913494B (en) | The modeling of multi-scale facture fine geology and method for numerical simulation and device | |
US10838108B2 (en) | Method and system for interpolating discontinuous functions in a subsurface model | |
US8463586B2 (en) | Machine, program product, and computer-implemented method to simulate reservoirs as 2.5D unstructured grids | |
US10260317B2 (en) | Automated generation of local grid refinement at hydraulic fractures for simulation of tight gas reservoirs | |
CN106605158B (en) | It is simulated using the Sediment transport for cuing open the parameterized template drawn for depth | |
CN101188022B (en) | A Flood Inundation Analysis Method for Large City Disaster Display | |
Qi et al. | Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas | |
GB2322702A (en) | Seismic data processing | |
CA2816931A1 (en) | Constructing geologic models from geologic concepts | |
CN109102564B (en) | Coupling modeling method for numerical model of complex geologic body | |
CA2914348C (en) | Method of modelling hydrocarbon production from fractured unconventional formations | |
CN103400020A (en) | Numerical reservoir simulation method for measuring flowing situation of a plurality of intersected discrete cracks | |
CN107145671B (en) | A kind of numerical reservoir simulation method and system | |
CN114429525A (en) | Multi-scale fracture simulation method and computer readable storage medium for fractured oil reservoir | |
AU2011271175B2 (en) | Machine, program product, and computer-implemented method to simulate reservoirs as 2.5D unstructured grids | |
AU2011360602B2 (en) | Computerized method for the estimation of a value for at least a parameter of a hydrocarbon-producing region, for planning the operation and operating the region | |
Kumar et al. | Comparative analysis of dual continuum and discrete fracture simulation approaches to model fluid flow in naturally fractured, low-permeability reservoirs | |
CN111768503B (en) | Sea sand resource amount estimation method based on three-dimensional geological model | |
CN103477345A (en) | Variable fidelity simulation of flow in porous media | |
CN103105629B (en) | A kind of equal electrical resistivity surface chart electromagnetic survey interpretation methods | |
CA2965871A1 (en) | Defining non-linear petrofacies for a reservoir simulation model | |
CN107762495A (en) | The optimization method of ultra-high water cut stage reservoir model longitudinal grid size | |
AU2020250261A1 (en) | Automatic cartesian gridding with logarithmic refinement at arbitrary locations | |
de Menezes | Gridding and scaling strategies for unstructured reservoir flow simulation | |
Pal | Families of control-volume distributed cvd (mpfa) finite volume schemes for the porous medium pressure equation on structured and unstructured grids |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180914 Termination date: 20190330 |
|
CF01 | Termination of patent right due to non-payment of annual fee |