CN105913465A - Overall sparsity regularization model-based fiber reconstructing method - Google Patents
Overall sparsity regularization model-based fiber reconstructing method Download PDFInfo
- Publication number
- CN105913465A CN105913465A CN201610216710.7A CN201610216710A CN105913465A CN 105913465 A CN105913465 A CN 105913465A CN 201610216710 A CN201610216710 A CN 201610216710A CN 105913465 A CN105913465 A CN 105913465A
- Authority
- CN
- China
- Prior art keywords
- phi
- coefficient
- fod
- signal
- expressed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 49
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 238000009792 diffusion process Methods 0.000 claims description 28
- 238000009826 distribution Methods 0.000 claims description 18
- 239000013598 vector Substances 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 12
- 238000005316 response function Methods 0.000 claims description 7
- 230000003190 augmentative effect Effects 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 5
- 238000005070 sampling Methods 0.000 claims description 5
- 238000005315 distribution function Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 239000000203 mixture Substances 0.000 claims description 3
- 230000035945 sensitivity Effects 0.000 claims description 3
- 210000004885 white matter Anatomy 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 238000010276 construction Methods 0.000 claims 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T11/00—2D [Two Dimensional] image generation
- G06T11/001—Texturing; Colouring; Generation of texture or colour
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种基于全局稀疏正则化模型的纤维重构方法,包括如下步骤:1)建立基于字典基重构方法的局部稀疏模型;2)建立全局模型;3)全局优化算法的价值函数。本发明提供一种准确性较高的基于全局稀疏正则化模型的纤维重构方法。A fiber reconstruction method based on a global sparse regularization model, comprising the following steps: 1) establishing a local sparse model based on a dictionary-based reconstruction method; 2) establishing a global model; 3) a value function of a global optimization algorithm. The invention provides a fiber reconstruction method based on a global sparse regularization model with high accuracy.
Description
技术领域technical field
本发明涉及计算机图形学下的医学成像、神经解剖学领域,尤其是一种纤维重构方法。The invention relates to the fields of medical imaging and neuroanatomy under computer graphics, especially a fiber reconstruction method.
背景技术Background technique
为了建立准确的纤维取向估算办法,解决神经结构复合纤维的地区,就必须使用新型的高角分辨率扩散成像(HARDI)技术;球面卷积方法是一种有效的纤维取向(FOD)估计方法,该模型为纤维取向分布响应函数的卷积;然而,这些方法大多以基于体素的方式估计FOD,而忽略了与领域体素的空间先验信息;领域体素的FOD估计误差,可能会由于纤维跟踪的累计误差导致重构纤维偏离实际纤维;为了克服限制,空间HARDI或全局重构方法已经被用来将空间约束作为空间信号的参数重构,并尝试通过判定它们的结构能够更好地描述测量数据的同时重构纤维束。全局重构的目的是在整体中提供纤维架构一致性视图;然而,这些方法只能用连接纤维片段之间的线性平滑约束。In order to establish an accurate method for fiber orientation estimation and resolve the region of complex fibers in the neural structure, it is necessary to use the novel high angular resolution diffusion imaging (HARDI) technique; the spherical convolution method is an effective fiber orientation (FOD) estimation method, the The model is the convolution of the fiber orientation distribution response function; however, most of these methods estimate the FOD in a voxel-based manner, ignoring the spatial prior information related to the domain voxel; the FOD estimation error of the domain voxel may be due to the fiber Accumulated errors in tracking cause the reconstructed fibers to deviate from the actual fibers; to overcome the limitations, spatial HARDI or global reconstruction methods have been used to reconstruct the spatial constraints as parameters of the spatial signal and try to better describe the Fiber bundles are reconstructed while measuring data. The goal of global reconstruction is to provide a consistent view of the fiber architecture in the ensemble; however, these methods can only be constrained by linear smoothness between connected fiber segments.
发明内容Contents of the invention
为了克服已有纤维重构方法的准确性较低的不足,本发明提供一种准确性较高的基于全局稀疏正则化模型的纤维重构方法。In order to overcome the disadvantage of low accuracy of existing fiber reconstruction methods, the present invention provides a fiber reconstruction method based on a global sparse regularization model with high accuracy.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
一种基于全局稀疏正则化模型的纤维重构方法,包括如下步骤:A fiber reconstruction method based on a global sparse regularization model, comprising the following steps:
1)建立基于字典基重构方法的局部稀疏模型1) Establish a local sparse model based on the dictionary base reconstruction method
扩散信号s(g|u)在无扩散加权下在位置v上和梯度方向g的测量标准化,其被表示为一个单一的纤维响应函数r(g,v)和纤维取向分布(FOD)f(v|u)的卷积:Diffusion signal s(g|u) normalized to measurements at position v and gradient direction g without diffusion weighting, which is expressed as a single fiber response function r(g,v) and fiber orientation distribution (FOD) f( Convolution of v|u):
其中,u∈S2是在采样单元半球得到的中心向量组,μ(v)是哈尔测度,定义这些向量组中的一个组为纤维取向分布函数,应用于多壳方法中,单个纤维响应函数被定义为在这里表示表征扩散敏感系数bi和各向异性相互作用影响程度的信号衰减,gi表示第i个扩散梯度;球面去卷积方法是假设所有的纤维有相同的扩散性,因此在交叉构型以不同的形状轮廓描述纤维的条件下,最后的FOD描述为基函数混合的总和;近似的FOD模型表示为函数di中的线性加权组合:Among them, u∈S 2 is the center vector group obtained in the sampling unit hemisphere, μ(v) is the Haar measure, and one of these vector groups is defined as the fiber orientation distribution function, which is applied to the multi-shell method, and the single fiber response function is defined as it's here Represents the signal attenuation that characterizes the diffusion sensitivity coefficient b i and the degree of anisotropic interaction, g i represents the i-th diffusion gradient; the spherical deconvolution method assumes that all fibers have the same diffusivity, so in the cross configuration as Under the condition that different shape profiles describe the fibers, the final FOD is described as the sum of the mixture of basis functions; the approximate FOD model is expressed as a linear weighted combination in the function d i :
其中,m为基函数字典(d1,d2,...,dm)的基数,W=[ω1,ω2,...,ωm]T是系数向量,ωi是第i个系数i=1...q,i,q都是系数;正标量Wi表示基函数的分布di(v,u),采用球面双叶的基函数来表示FOD,如下所示:Among them, m is the cardinality of the basis function dictionary (d 1 ,d 2 ,...,d m ), W=[ω 1 ,ω 2 ,...,ω m ] T is the coefficient vector, ω i is the i-th Coefficients i=1...q, i and q are all coefficients; the positive scalar W i represents the distribution d i (v, u) of the basis function, and the spherical bilobal basis function is used to represent the FOD, as shown below:
其中,标准化参数κ1>0,κ2∈(0,1)是调节峰值的参数,θ(u,v)=|vTu,v∈S2是在单位球面上进行分割获得的旋转向量组,τ是指在径向分布的指数d(θ,τ)的增强数;字典基重构方法旨在恢复系数ωi,标准化扩散信号S和观测矩阵Φ;似然分布表达的能量是指重构信号和所述FOD正表示数据的L2范数差,并通过非负最小二乘解决:Among them, the normalization parameter κ 1 >0, κ 2 ∈ (0,1) is the parameter to adjust the peak value, θ(u,v)=|v T u,v∈S 2 is the rotation vector obtained by dividing on the unit sphere group, τ refers to the augmented number of exponent d(θ,τ) in the radial distribution; the dictionary basis reconstruction method aims to recover the coefficient ω i , normalize the diffusion signal S and the observation matrix Φ; the energy expressed by the likelihood distribution is Reconstruct the L2-norm difference between the signal and the FOD positive representation data, and solve by non-negative least squares:
基数m大于样本大小n,默认f(v|u)的估计是稀疏的;假定一个体素内不超过三个纤维束;为了从多壳重构扩散FOD数据,公式(4)在q壳中扩展为如下:The base m is larger than the sample size n, and the estimation of f(v|u) is sparse by default; no more than three fiber bundles are assumed in a voxel; in order to reconstruct diffuse FOD data from multi-shell, formula (4) in q-shell expands as follows:
其中,是扩散信号强度的一个矩阵,是观测信号的矩阵,Si,i=1,2,...,q为扩散信号强度对第i个壳中的q空间测得的向量,Φi为第i个观测矩阵,是通过对Q空间第i个壳中测得的扩散信号强度系数;in, is a matrix of diffuse signal strengths, is the matrix of the observation signal, S i ,i=1,2,...,q is the vector measured by the diffusion signal intensity to the q space in the i-th shell, Φ i is the i-th observation matrix, which is obtained by The measured diffusion signal intensity coefficient in the ith shell of Q space;
2)建立全局模型2) Build a global model
全局模型合并空间信息转换成每个体素的方位分布估计,对于测量信号Se和纤维模型的预测信号Xe,全局优化过程如下所示:The global model incorporates spatial information and converts it into an orientation distribution estimate for each voxel. For the measured signal Se and the predicted signal X e of the fiber model , the global optimization process is as follows:
通过从后验概率候选中检查可能的分布和采样获得的最优解P(Xe|Se),对于感兴趣区域ROI,ROI∈Zρ,ρ=Nx×Ny×Nz,Zρ表示ROI区域内的体素,而Nx,Ny,Nz表示其x,y,z轴上的范围,内能UIn控制各体素的内部结构,表示为:The optimal solution P(X e |S e ) obtained by examining possible distributions and sampling from the posterior probability candidates, for a region of interest ROI, ROI∈Z ρ , ρ=N x ×N y ×N z , Z ρ represents the voxel in the ROI area, and N x , N y , N z represent the range on the x, y, and z axes, and the internal energy U In controls the internal structure of each voxel, expressed as:
其中,S和Φ是先前描述的多壳参数的积分,表示如下:where S and Φ are integrals of the previously described multi-shell parameters expressed as follows:
而外部能量UExt表示一个特定信号和领域体素信号之间空间可能性关系,使得FOD的一致性为连接纤维取向的路径:While the external energy U Ext represents the spatial possibility relationship between a specific signal and field voxel signals such that the consistency of FOD is the path connecting the fiber orientation:
其中, 表示系数H的平均扩散系数,是周围系数;Wk代表系数向量W第k个系数代表白质区域基函数的径向和;W≥0是为了消除负的系数;in, Denotes the mean diffusion coefficient with coefficient H, is the surrounding coefficient; W k represents the kth coefficient of the coefficient vector W Represents the radial sum of the basis functions of the white matter region; W≥0 is to eliminate negative coefficients;
3)全局优化算法的价值函数3) The value function of the global optimization algorithm
公式(6)中得到后验概率的最大化转化为内部和外部约束函数所组成的总能量函数的最小化,表示为:The maximization of the posterior probability obtained in formula (6) is transformed into the minimization of the total energy function composed of internal and external constraint functions, which is expressed as:
其中,βi>0,i=1,2...是一个权重因子,是第i个外部能量,全局优化的成本函数被表示为:Among them, β i >0, i=1,2...is a weight factor, is the i-th external energy, and the cost function for global optimization is expressed as:
定义一个局部优化问题:Define a local optimization problem:
其中,是周围系数的平均值,通过使用增广拉格朗日方法解决,每个体素在最小化之后,所有的体素系数逐步更新;最终精确的FOD被表示为新的基函数加权和,如下所示:in, is the average value of the surrounding coefficients, which is solved by using the augmented Lagrangian method. After each voxel is minimized, all voxel coefficients are gradually updated; the final accurate FOD is expressed as a weighted sum of new basis functions, as follows Show:
其中,W*代表新的平均扩散系数,公式(5)选定ROI的每个体素和所有取得的W被存储为一个参考库,然后通过公式(13)获得的W*值逐步替代初始值的参考库W;而库的更新是动态的,所以采集的W*值会越来越准确。Among them, W * represents the new average diffusion coefficient, and each voxel of the selected ROI by formula (5) and all obtained W are stored as a reference library, and then the W * value obtained by formula (13) gradually replaces the initial value of Refer to the library W; and the update of the library is dynamic, so the collected W * value will become more and more accurate.
本发明的技术构思为:灵活性高的球面双叶基函数,它能够形成一个完备的库,来保证FOD的局部稀疏,同时建立一个全局模型。The technical idea of the present invention is: a highly flexible spherical double-leaf basis function, which can form a complete library to ensure the local sparseness of FOD and establish a global model at the same time.
在全局模型的基础上,提出优化成本函数,将体素系数逐步更新,最后得到一个相对准确的数据库。On the basis of the global model, an optimization cost function is proposed to update the voxel coefficients step by step, and finally a relatively accurate database is obtained.
本发明的有益效果主要表现在:准确性较高。The beneficial effects of the present invention are mainly manifested in: higher accuracy.
具体实施方式detailed description
下面对本发明作进一步描述。The present invention will be further described below.
一种基于全局稀疏正则化模型的纤维重构方法,包括如下步骤:A fiber reconstruction method based on a global sparse regularization model, comprising the following steps:
1)建立基于字典基重构方法的局部稀疏模型:1) Establish a local sparse model based on the dictionary base reconstruction method:
扩散信号s(g|u)在无扩散加权下在位置v上和梯度方向g的测量标准化,其被表示为一个单一的纤维响应函数r(g,v)和纤维取向分布(FOD)f(v|u)的卷积:Diffusion signal s(g|u) normalized to measurements at position v and gradient direction g without diffusion weighting, which is expressed as a single fiber response function r(g,v) and fiber orientation distribution (FOD) f( Convolution of v|u):
其中u∈S2是在采样单元半球得到的中心向量组,μ(v)是哈尔测度,定义这些向量组中的一个组为纤维取向分布函数,应用于多壳方法中,单个纤维响应函数被定义为在这里表示表征扩散敏感系数bi和各向异性相互作用影响程度的信号衰减,gi表示第i个扩散梯度;球面去卷积方法是假设所有的纤维有相同的扩散性,因此在交叉构型以不同的形状轮廓描述纤维的条件下,最后的FOD可描述为基函数混合的总和;近似的FOD模型表示为函数di中的线性加权组合:where u∈S 2 is the central vector group obtained in the sampling unit hemisphere, μ(v) is the Haar measure, and one of these vector groups is defined as the fiber orientation distribution function, which is applied to the multi-shell method, and the single fiber response function is defined as it's here Represents the signal attenuation that characterizes the diffusion sensitivity coefficient b i and the degree of anisotropic interaction, g i represents the i-th diffusion gradient; the spherical deconvolution method assumes that all fibers have the same diffusivity, so in the cross configuration as Under the condition that different shape profiles describe fibers, the final FOD can be described as the sum of the mixture of basis functions; the approximate FOD model is expressed as a linear weighted combination in the function d i :
其中m为基函数字典(d1,d2,...,dm)的基数,W=[ω1,ω2,...,ωm]T是系数向量,ωi是第i个系数i=1...q,i,q都是系数;正标量Wi表示基函数的分布di(v,u),本文提出了一种叫做球面双叶的基函数来表示FOD,如下所示:Where m is the cardinality of the basis function dictionary (d 1 ,d 2 ,...,d m ), W=[ω 1 ,ω 2 ,...,ω m ] T is the coefficient vector, ω i is the ith The coefficient i=1...q, i, q are coefficients; the positive scalar W i represents the distribution d i (v,u) of the basis function, this paper proposes a basis function called spherical bilobal to represent FOD, as follows Shown:
其中标准化参数κ1>0,κ2∈(0,1)是调节峰值的参数,θ(u,v)=|vTu|,v∈S2是在单位球面上进行分割获得的旋转向量组,τ是指在径向分布的指数d(θ,τ)的增强数;字典基重构方法旨在恢复系数ωi,标准化扩散信号S和观测矩阵Φ;似然分布表达的能量是指重构信号和所述FOD正表示数据的L2范数差,并通过非负最小二乘(NNLS)解决:Among them, the standardized parameter κ 1 >0, κ 2 ∈ (0,1) is the parameter for adjusting the peak value, θ(u,v)=|v T u|, v∈S 2 is the rotation vector obtained by dividing on the unit sphere group, τ refers to the augmented number of exponent d(θ,τ) in the radial distribution; the dictionary basis reconstruction method aims to recover the coefficient ω i , normalize the diffusion signal S and the observation matrix Φ; the energy expressed by the likelihood distribution is The L2 norm difference between the reconstructed signal and the FOD positive representation data is solved by non-negative least squares (NNLS):
基数m可以大于样本大小n,我们默认f(v|u)的估计是稀疏的;我们假定一个体素内不超过三个纤维束,所以W坐标几乎是大于等于零的;为了从多壳重构扩散FOD数据,公式(4)可以在q壳中扩展为如下:The cardinality m can be larger than the sample size n, and we assume that the estimation of f(v|u) is sparse by default; we assume that there are no more than three fiber bundles in a voxel, so the W coordinate is almost greater than or equal to zero; in order to reconstruct from multi-shell Diffusion FOD data, formula (4) can be expanded in the q-shell as follows:
其中是扩散信号强度的一个矩阵,是观测信号的矩阵,Si,i=1,2,...,q为扩散信号强度对第i个壳中的q空间测得的向量,Φi为第i个观测矩阵,是通过对Q空间第i个壳中测得的扩散信号强度系数。in is a matrix of diffuse signal strengths, is the matrix of the observation signal, S i ,i=1,2,...,q is the vector measured by the diffusion signal intensity to the q space in the i-th shell, Φ i is the i-th observation matrix, which is obtained by The intensity coefficient of the diffusion signal measured in the i-th shell of Q-space.
2)建立全局模型2) Build a global model
从非负最小二乘法衍生的稀疏系数易受到稳定性影响,而逆问题被设置在单独的体素中,纤维跟踪的累积误差或意外信号的丢失可能导致实际纤维和重构纤维的偏差,这就是建立全局模型的目的;首先大多数全局重构方法通过线性平滑来实现,然而这种方法忽略了FOD的空间一致性;本文的全局模型合并空间信息转换成每个体素的方位分布估计,对于测量信号Se和纤维模型的预测信号Xe,全局优化过程如下所示:Sparse coefficients derived from non-negative least squares are susceptible to stability, and while the inverse problem is set in individual voxels, cumulative errors in fiber tracking or loss of unexpected signals can lead to deviations in actual and reconstructed fibers, which It is the purpose of establishing a global model; first, most global reconstruction methods are implemented by linear smoothing, but this method ignores the spatial consistency of FOD; the global model in this paper combines spatial information and converts it into an orientation distribution estimate for each voxel, for The measurement signal Se and the predicted signal X e of the fiber model , the global optimization process is as follows:
本文的目的是探索模型的不同状态来确定最合适的数据纤维组合;具体而言,该模型是一个组合优化问题;通过从后验概率候选中检查可能的分布和采样获得的最优解P(Xe|Se),对于感兴趣区域(ROI),ROI∈Zρ,ρ=Nx×Ny×Nz,Zρ表示ROI区域内的体素,而Nx,Ny,Nz表示其x,y,z轴上的范围,内能UIn控制各体素的内部结构,可以表示为:The purpose of this paper is to explore different states of the model to determine the most suitable combination of data fibers; specifically, the model is a combinatorial optimization problem; the optimal solution P obtained by examining possible distributions and sampling from the posterior probability candidates ( X e |S e ), for the region of interest (ROI), ROI∈Z ρ , ρ=N x ×N y ×N z , Z ρ represents the voxel in the ROI area, and N x , N y , N z Indicates the range on the x, y, and z axes, and the internal energy U In controls the internal structure of each voxel, which can be expressed as:
其中S和Φ是先前描述的多壳参数的积分,表示如下:where S and Φ are integrals of the previously described multi-shell parameters expressed as follows:
而外部能量UExt表示一个特定信号和领域体素信号之间空间可能性关系,使得FOD的一致性为连接纤维取向的路径:While the external energy U Ext represents the spatial possibility relationship between a specific signal and field voxel signals such that the consistency of FOD is the path connecting the fiber orientation:
表示系数H(这里H=26)的平均扩散系数,是周围系数;Wk代表系数向量W第k个系数代表白质区域基函数的径向和;W≥0是为了消除负的系数。 Represents the mean diffusion coefficient of coefficient H (here H=26), is the surrounding coefficient; W k represents the kth coefficient of the coefficient vector W Represents the radial sum of basis functions of white matter regions; W ≥ 0 is to eliminate negative coefficients.
3)全局优化算法的价值函数3) The value function of the global optimization algorithm
公式(6)中可以得到后验概率的最大化可转化为内部和外部约束函数所组成的总能量函数的最小化,表示为:In formula (6), it can be obtained that the maximization of the posterior probability can be transformed into the minimization of the total energy function composed of internal and external constraint functions, expressed as:
其中βi>0,i=1,2...是一个权重因子,是第i个外部能量,我们设定为1,全局优化的成本函数被表示为:Where β i >0, i=1,2... is a weighting factor, is the i-th external energy, we set it to 1, and the cost function of global optimization is expressed as:
定义一个局部优化问题:Define a local optimization problem:
是周围系数的平均值,通过使用增广拉格朗日方法解决,每个体素在最小化之后,所有的体素系数逐步更新;最终精确的FOD被表示为新的基函数加权和,如下所示: is the average value of the surrounding coefficients, which is solved by using the augmented Lagrangian method. After each voxel is minimized, all voxel coefficients are gradually updated; the final accurate FOD is expressed as a weighted sum of new basis functions, as follows Show:
W*代表新的平均扩散系数,公式(5)选定ROI的每个体素和所有取得的W被存储为一个参考库,然后通过公式(13)获得的W*值逐步替代初始值的参考库W;而库的更新是动态的,所以采集的W*值将会越来越准确。W * represents the new average diffusion coefficient, each voxel of the selected ROI and all obtained W in formula (5) are stored as a reference library, and then the W * value obtained by formula (13) gradually replaces the initial value of the reference library W; and the update of the library is dynamic, so the collected W * value will become more and more accurate.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610216710.7A CN105913465A (en) | 2016-04-07 | 2016-04-07 | Overall sparsity regularization model-based fiber reconstructing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610216710.7A CN105913465A (en) | 2016-04-07 | 2016-04-07 | Overall sparsity regularization model-based fiber reconstructing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105913465A true CN105913465A (en) | 2016-08-31 |
Family
ID=56745637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610216710.7A Pending CN105913465A (en) | 2016-04-07 | 2016-04-07 | Overall sparsity regularization model-based fiber reconstructing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105913465A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108197320A (en) * | 2018-02-02 | 2018-06-22 | 北方工业大学 | Multi-view image automatic labeling method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064302A2 (en) * | 2005-11-30 | 2007-06-07 | Bracco Imaging S.P.A. | Method and system for diffusion tensor imaging |
CN103445780A (en) * | 2013-07-26 | 2013-12-18 | 浙江工业大学 | Diffusion-weighted magnetic resonance imaging multi-fiber reconstruction method |
-
2016
- 2016-04-07 CN CN201610216710.7A patent/CN105913465A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007064302A2 (en) * | 2005-11-30 | 2007-06-07 | Bracco Imaging S.P.A. | Method and system for diffusion tensor imaging |
CN103445780A (en) * | 2013-07-26 | 2013-12-18 | 浙江工业大学 | Diffusion-weighted magnetic resonance imaging multi-fiber reconstruction method |
Non-Patent Citations (3)
Title |
---|
WU YE ET AL: "A new model-based spherical deconvolution method for multi-fiber reconstruction", 《2014 IEEE 9TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS》 * |
YE WU ET AL: "Global consistency spatial model for fiber orientation distribution estimation", 《2015 IEEE 12TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI)》 * |
李志娟 等: "基于离散球面反卷积的白质纤维重构算法", 《浙江大学学报(工学版)》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108197320A (en) * | 2018-02-02 | 2018-06-22 | 北方工业大学 | Multi-view image automatic labeling method |
CN108197320B (en) * | 2018-02-02 | 2019-07-30 | 北方工业大学 | An automatic labeling method for multi-view images |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114450599B (en) | Maxwell Wei Binghang imaging | |
US11354586B2 (en) | Model parameter determination using a predictive model | |
US20210350179A1 (en) | Method for detecting adverse cardiac events | |
CN104933683B (en) | A kind of non-convex low-rank method for reconstructing for magnetic resonance fast imaging | |
CN109584323B (en) | Abdominal lesion electrical impedance image reconstruction method based on ultrasonic reflection information constraint | |
CN104392019B (en) | High-order diffusion tensor mixed sparse imaging method for brain white matter fiber tracking | |
Clayden et al. | A probabilistic model-based approach to consistent white matter tract segmentation | |
CN104881873B (en) | A kind of multistage adjustment sparse imaging method of mixed weighting for complicated fibre bundle Accurate Reconstruction | |
CN109509193A (en) | A kind of Hepatic CT map dividing method and system based on high registration accuracy | |
CN112581385A (en) | Diffusion kurtosis imaging tensor estimation method, medium and equipment based on multiple prior constraints | |
Attyé et al. | TractLearn: A geodesic learning framework for quantitative analysis of brain bundles | |
CN112991483B (en) | Non-local low-rank constraint self-calibration parallel magnetic resonance imaging reconstruction method | |
Chen et al. | Deep unrolling for magnetic resonance fingerprinting | |
CN107103293A (en) | It is a kind of that the point estimation method is watched attentively based on joint entropy | |
US9274198B2 (en) | Method of reconstructing a signal in medical imaging on the basis of perturbed experimental measurements, and medical imaging device implementing this method | |
US11614509B2 (en) | Maxwell parallel imaging | |
CN105913465A (en) | Overall sparsity regularization model-based fiber reconstructing method | |
CN114913149A (en) | Head deformable statistical map construction method based on CT (computed tomography) images | |
CN112001981B (en) | Compressed sampling MR image reconstruction method based on generalized Fresnel-fast-gradient acceleration conjugate gradient algorithm | |
CN105488757A (en) | Brain fiber sparse reconstruction method | |
CN107194911B (en) | Minimum nuclear error analysis method based on diffusion MRI microstructure imaging | |
CN113628298B (en) | Feature vector based self-consistency and non-local low-rank parallel MRI reconstruction method | |
CN108171690B (en) | Estimation of left ventricular diffusion tensor in human heart based on structural prior information | |
CN114693753B (en) | Three-dimensional ultrasound elastic registration method and device based on texture preservation constraint | |
CN114298180B (en) | A multimodal brain image feature learning method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20160831 |
|
WD01 | Invention patent application deemed withdrawn after publication |