CN105913427A - Machine learning-based noise image saliency detecting method - Google Patents

Machine learning-based noise image saliency detecting method Download PDF

Info

Publication number
CN105913427A
CN105913427A CN201610222900.XA CN201610222900A CN105913427A CN 105913427 A CN105913427 A CN 105913427A CN 201610222900 A CN201610222900 A CN 201610222900A CN 105913427 A CN105913427 A CN 105913427A
Authority
CN
China
Prior art keywords
noise
image
amplitude
value
denoising
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610222900.XA
Other languages
Chinese (zh)
Other versions
CN105913427B (en
Inventor
牛玉贞
林乐凝
陈羽中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201610222900.XA priority Critical patent/CN105913427B/en
Publication of CN105913427A publication Critical patent/CN105913427A/en
Application granted granted Critical
Publication of CN105913427B publication Critical patent/CN105913427B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20028Bilateral filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)

Abstract

本发明涉及一种基于机器学习的噪声图像显著性检测方法,包括以下步骤:1、对每个幅度的噪声图像分别采用多种去噪参数,获得每个幅度的最佳去噪参数;2、对每幅噪声图像使用噪声评估算法进行特征提取,获得噪声值特征,组成噪声值特征集;3、将噪声值特征集作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声幅度预测模型;4、采用噪声幅度预测模型对相应的噪声图像进行预测,获得预测噪声幅度值;5、采用每幅噪声图像的预测噪声幅度值和对应的最佳去噪参数进行去噪处理,获得去噪图像集;6、对去噪图像集中的图像使用显著性检测方法,获得最终的显著性图。该方法可提高显著性检测方法在噪声图像中的检测性能。

The present invention relates to a noise image saliency detection method based on machine learning, comprising the following steps: 1. Using multiple denoising parameters for noise images of each amplitude respectively to obtain the best denoising parameters for each amplitude; 2. Use the noise evaluation algorithm for each noise image to extract features, obtain the noise value features, and form the noise value feature set; 3. Use the noise value feature set as the feature set of the machine learning algorithm, and pass the machine learning algorithm and quintile cross-validation 4. Use the noise amplitude prediction model to predict the corresponding noise image to obtain the predicted noise amplitude value; 5. Use the predicted noise amplitude value of each noise image and the corresponding best denoising parameters to perform Denoising processing to obtain a denoising image set; 6. Using a saliency detection method on the images in the denoising image set to obtain a final saliency map. This method can improve the detection performance of saliency detection methods in noisy images.

Description

一种基于机器学习的噪声图像显著性检测方法A Noise Image Saliency Detection Method Based on Machine Learning

技术领域technical field

本发明涉及图像和视频处理以及计算机视觉技术领域,特别是一种基于机器学习的噪声图像显著性检测方法。The invention relates to the technical fields of image and video processing and computer vision, in particular to a noise image saliency detection method based on machine learning.

背景技术Background technique

人类感官主要包括视觉、嗅觉、味觉、听觉和触觉。人类依赖感官来接受外界传递的信息。视觉感官在人类的感官中占了很重要的地位。人类的视觉系统能够在短时间内将注意力关注在图像中最为重要的部分,也就是人眼最为感兴趣的部分。随着多媒体时代的到来,各种数码产品的普及和网络时代数字化图像的传播,每天都产生和传递着大量的图像资源。海量的图像数据虽然丰富了生活,但也带来了不少挑战。Human senses mainly include sight, smell, taste, hearing and touch. Humans rely on their senses to receive information from the outside world. Vision plays an important role in human senses. The human visual system can focus on the most important part of the image in a short time, that is, the part that the human eye is most interested in. With the advent of the multimedia era, the popularization of various digital products and the dissemination of digital images in the Internet age, a large number of image resources are generated and transmitted every day. Although massive image data enriches life, it also brings many challenges.

如何能够高效且准确的处理这些图像资源是一个很关键的问题。研究人员发现了人类视觉系统的选择性注意机制后,试图让计算机模拟人类视觉系统,从而提出了显著性检测方法。显著性检测已经应用到图像压缩与编码、图像检索、图像分割、目标识别和内容感知图像缩放等。如在图像压缩与编码中,首先检测出显著区域,然后对显著区域保留更多的细节,这样既压缩了图像,又能保留更多重要的细节。How to efficiently and accurately process these image resources is a key issue. After discovering the selective attention mechanism of the human visual system, researchers tried to simulate the human visual system by computer, thus proposing a saliency detection method. Saliency detection has been applied to image compression and coding, image retrieval, image segmentation, object recognition and content-aware image scaling, etc. For example, in image compression and coding, the salient area is detected first, and then more details are reserved for the salient area, which not only compresses the image, but also retains more important details.

视觉显著性检测已经得到了比较好的研究,然而大多数显著性检测模型是针对无失真图像提出的,并且实验数据是无失真图像集合。少数论文注意到了失真图像对显著性检测的影响。Zhang等人发现噪声、模糊和压缩改变了图像低层特征,提出了基于图像低层特征的自底向上的显著性检测模型。同时,Zhang等人发现图像质量失真会引起显著性图的变化,并且显著性图的改变和主观的图像质量评估之间存在一定的联系。Gide和 Karam在图像质量评估的眼动数据集上评估了5种显著性检测模型,被评估的失真类型包含模糊、噪声和JPEG压缩失真。Mittal等人对图像亮度和对比度等低层特征进行提取,并基于这些特征采用机器学习框架预测JPEG失真图像的显著性区域。Kim和 Milanfar针对噪声图像提出了基于非参数回归框架的显著性检测模型。Visual saliency detection has been relatively well studied, however most saliency detection models are proposed for undistorted images, and the experimental data is a collection of undistorted images. Few papers have noticed the impact of distorted images on saliency detection. Zhang et al. found that noise, blur and compression changed the low-level features of images, and proposed a bottom-up saliency detection model based on low-level features of images. At the same time, Zhang et al. found that image quality distortion will cause changes in the saliency map, and there is a certain relationship between the change of the saliency map and the subjective image quality assessment. Gide and Karam evaluated five saliency detection models on the eye-tracking dataset for image quality assessment. The types of artifacts evaluated included blur, noise, and JPEG compression artifacts. Mittal et al. extracted low-level features such as image brightness and contrast, and based on these features, used a machine learning framework to predict the salient regions of JPEG distorted images. Kim and Milanfar proposed a saliency detection model based on a nonparametric regression framework for noisy images.

实际生活中的图像大多是带有失真的,如由相机传感器、图像处理器等外设造成的失真、拍照设备抖动造成的抖动失真和图像压缩失真等。为了提高显著性检测方法在噪声图像上的应用,本发明提出一种基于机器学习的噪声图像显著性检测方法。Most images in real life are distorted, such as distortion caused by peripherals such as camera sensors and image processors, jitter distortion caused by camera shakes, and image compression distortion. In order to improve the application of the saliency detection method on the noise image, the present invention proposes a noise image saliency detection method based on machine learning.

发明内容Contents of the invention

本发明的目的在于提供一种基于机器学习的噪声图像显著性检测方法,该方法可以提高显著性检测方法在噪声图像中的检测性能。The object of the present invention is to provide a noise image saliency detection method based on machine learning, which can improve the detection performance of the saliency detection method in noise images.

为实现上述目的,本发明的技术方案是:一种基于机器学习的噪声图像显著性检测方法,包括以下步骤:In order to achieve the above object, the technical solution of the present invention is: a noise image saliency detection method based on machine learning, comprising the following steps:

步骤S1:对每个幅度的噪声图像分别采用多种去噪参数进行去噪处理,获得每个幅度相应的最佳去噪参数;Step S1: denoising the noise image of each amplitude using multiple denoising parameters to obtain the best denoising parameters corresponding to each amplitude;

步骤S2:对每幅噪声图像使用噪声评估算法进行特征提取,获得每幅噪声图像的噪声值特征,以此组成噪声值特征集PStep S2: use the noise evaluation algorithm for feature extraction for each noise image, and obtain the noise value feature of each noise image, so as to form the noise value feature set P ;

步骤S3:将噪声值特征集P作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声图像的噪声幅度预测模型;Step S3: use the noise value feature set P as the feature set of the machine learning algorithm, and obtain the noise amplitude prediction model of the noise image through the machine learning algorithm and the quintile cross-validation method;

步骤S4:采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值;Step S4: Using the noise amplitude prediction model to predict the corresponding noise image, and obtain the predicted noise amplitude value of each noise image;

步骤S5:采用每幅噪声图像的预测噪声幅度值和该幅度对应的最佳去噪参数进行去噪处理,获得去噪图像集;Step S5: Perform denoising processing using the predicted noise amplitude value of each noise image and the best denoising parameters corresponding to the amplitude, to obtain a denoising image set;

步骤S6:对去噪图像集中的图像使用显著性检测方法进行检测,获得最终的显著性图。Step S6: Use a saliency detection method to detect the images in the denoised image set to obtain a final saliency map.

进一步地,所述步骤S1中,对每个幅度的噪声图像分别采用多种去噪参数进行去噪处理,获得每个幅度相应的最佳去噪参数,具体包括以下步骤:Further, in the step S1, multiple denoising parameters are used to perform denoising processing on the noise image of each amplitude, and the best denoising parameters corresponding to each amplitude are obtained, which specifically includes the following steps:

步骤S11:使用n种高斯低通滤波去噪参数对每个幅度的噪声图像进行去噪处理,获得每个幅度含n种去噪参数的去噪后图像集合S;Step S11: Denoise the noise image of each amplitude by using n kinds of denoising parameters of Gaussian low-pass filter, and obtain a set S of denoised images containing n kinds of denoising parameters for each amplitude;

步骤S12:对去噪后图像集合S使用显著性检测方法VA计算显著性图,获得去噪后图像的显著性图集合T;Step S12: use the saliency detection method VA to calculate the saliency map on the denoised image set S, and obtain the saliency map set T of the denoised image;

步骤S13:使用评价指标PR-AUC对去噪后图像的显著性图集合T进行评估,针对每个幅度找出平均PR-AUC最高值时使用的去噪参数,得到每个幅度的最佳去噪参数。Step S13: Use the evaluation index PR-AUC to evaluate the saliency map set T of the denoised image, find the denoising parameters used when the average PR-AUC is the highest value for each amplitude, and obtain the best denoising parameters for each amplitude. Noise parameter.

进一步地,所述步骤S2中,对每幅噪声图像使用噪声评估算法进行特征提取,获得每幅噪声图像的噪声值特征,以此组成噪声值特征集P,具体包括以下步骤:Further, in the step S2, feature extraction is performed on each noise image using a noise evaluation algorithm to obtain the noise value feature of each noise image, so as to form a noise value feature set P , which specifically includes the following steps:

步骤S21:对噪声图像进行灰度化处理,得到灰度图像IStep S21: grayscale processing is carried out to noise image, obtains grayscale image I ;

步骤S22:使用双边滤波处理灰度图像I,得到双边滤波结果图Step S22: Use bilateral filtering to process the grayscale image I to obtain a bilateral filtering result map ;

步骤S23:计算灰度图像I和双边滤波结果图的差值,得到差值图像DStep S23: Calculating the grayscale image I and the bilateral filtering result map The difference, get the difference image D ;

步骤S24:对灰度图像I使用Canny边缘检测方法得到边缘图像E,对边缘图像E使用膨胀算子扩大边缘区域,得到扩大的边缘图像Step S24: Use the Canny edge detection method on the grayscale image I to obtain the edge image E , use the dilation operator on the edge image E to expand the edge area, and obtain the enlarged edge image ;

步骤S25:计算噪声大小评估值图像M,计算公式为:Step S25: Calculate the noise size evaluation value image M , the calculation formula is:

,其中 ,in

其中,D v 表示灰度图像中像素v的值,t表示像素点,表示扩大的边缘图像,N表示扩大的边缘图像中像素点t的值为0的集合;Among them, D v represents the value of pixel v in the grayscale image, t represents the pixel point, Indicates the enlarged edge image, N indicates the enlarged edge image The set of pixel point t whose value is 0;

步骤S26:将噪声大小评估值图像M均匀划分为3×3的网格区域,分别计算噪声大小评估值图像M全图及每个网格区域噪声大小评估值,计算公式为:Step S26: Divide the noise size evaluation value image M evenly into 3×3 grid areas, respectively calculate the noise size evaluation value image M full image and the noise size evaluation value of each grid area, the calculation formula is:

其中,M r 表示相对应的区域,r=1, 2, …, 10分别表示全图和9个网格区域,M r,v 表示在区域r中像素v的值;计算得到噪声值特征集P={P 1, P 2, …, P 10}。Among them, M r represents the corresponding area, r =1, 2, ..., 10 represent the whole image and 9 grid areas respectively, M r , v represent the value of pixel v in the area r ; the noise value feature set is obtained by calculation P = { P 1 , P 2 , ..., P 10 }.

进一步地,所述步骤S3中,将噪声值特征集P作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声图像的噪声幅度预测模型,具体包括以下步骤:Further, in the step S3, the noise value feature set P is used as the feature set of the machine learning algorithm, and the noise amplitude prediction model of the noise image is obtained through the machine learning algorithm and the quintile cross-validation method, which specifically includes the following steps:

步骤S31:将噪声值特征集P中特征值P 1, P 2, …, P 10按从小到大顺序排列后,作为机器学习算法的特征集F,并将特征集F随机五等分为:F1、F2、F3、F4和F5;Step S31: Arrange the feature values P 1 , P 2 , ..., P 10 in the noise value feature set P in ascending order, and use it as the feature set F of the machine learning algorithm, and randomly divide the feature set F into five equal parts: F1, F2, F3, F4, and F5;

步骤S32:将F2、F3、F4和F5作为机器学习的训练数据集,将其对应在图像质量评估数据库的图像失真幅度作为机器学习的训练标签,学习得到噪声幅度预测模型M1;Step S32: using F2, F3, F4 and F5 as training data sets for machine learning, using their corresponding image distortion magnitudes in the image quality assessment database as training labels for machine learning, and learning to obtain a noise magnitude prediction model M1;

步骤S33:重复步骤S32,分别求出F1、F3、F4和F5作为训练数据集时的噪声幅度预测模型M2,F1、F2、F4和F5作为训练数据集时的噪声幅度预测模型M3,F1、F2、F3和F5作为训练数据集时的噪声幅度预测模型M4,F1、F2、F3和F4 作为训练数据集时的噪声幅度预测模型M5。Step S33: Repeat step S32 to obtain the noise magnitude prediction model M2 when F1, F3, F4 and F5 are used as training data sets, and the noise magnitude prediction models M3, F1, F5 when F1, F2, F4 and F5 are used as training data sets, respectively. F2, F3, and F5 are used as the noise amplitude prediction model M4 when the training data set is used, and the noise amplitude prediction model M5 is used when F1, F2, F3, and F4 are used as the training data set.

进一步地,所述步骤S4中,采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值,具体包括以下步骤:Further, in the step S4, the noise amplitude prediction model is used to predict the corresponding noise image, and the predicted noise amplitude value of each noise image is obtained, which specifically includes the following steps:

步骤S41:采用噪声幅度预测模型M1对特征集F1对应的图像集进行预测,求出噪声幅度值预测集合V1;Step S41: Use the noise amplitude prediction model M1 to predict the image set corresponding to the feature set F1, and obtain the noise amplitude value prediction set V1;

步骤S42:重复步骤S41的方法,分别采用噪声幅度预测模型M2、M3、M4、M5对特征集F2、F3、F4和F5对应的图像集预测,得到噪声幅度值预测集合V2、V3、V4、V5;Step S42: Repeat the method of step S41, respectively use the noise amplitude prediction models M2, M3, M4, M5 to predict the image sets corresponding to the feature sets F2, F3, F4, and F5, and obtain noise amplitude value prediction sets V2, V3, V4, V5;

步骤S43:综合噪声幅度值预测集合V={V1、V2、V3、V4、V5},得到完整的图像集的噪声幅度值预测集合V。Step S43: Synthesize the noise magnitude prediction set V={V1, V2, V3, V4, V5} to obtain the noise magnitude prediction set V of the complete image set.

进一步地,所述步骤S5中,采用每幅噪声图像的预测噪声幅度值和该幅度对应的最佳去噪参数进行去噪处理,获得去噪图像集,具体包括以下步骤:Further, in the step S5, the predicted noise amplitude value of each noise image and the optimal denoising parameter corresponding to the amplitude are used for denoising processing to obtain a denoising image set, which specifically includes the following steps:

步骤S51:针对每幅噪声图像,从噪声幅度值预测集合V中找到该噪声图像对应的噪声幅度值;Step S51: For each noise image, find the noise amplitude value corresponding to the noise image from the noise amplitude value prediction set V;

步骤S52:根据噪声幅度值,采用相对应的最佳去噪参数对噪声图像使用高斯低通滤波处理,获得去噪图像集FI。Step S52: According to the noise amplitude value, the noise image is processed by Gaussian low-pass filter using the corresponding optimal denoising parameters to obtain the denoising image set FI.

相较于现有技术,本发明的有益效果是:首先利用机器学习预测噪声图像的噪声幅度,然后使用适合该幅度的最佳去噪参数进行去噪处理,最后采用显著性检测方法计算去噪后图像的显著性图,由于本发明考虑到噪声图像对显著性检测方法的影响,因此能够有效的提高显著性检测方法在噪声图像上的检测性能,可应用于图像和视频处理、计算机视觉等诸多领域。Compared with the prior art, the beneficial effects of the present invention are as follows: firstly, machine learning is used to predict the noise amplitude of the noise image, then the optimal denoising parameters suitable for the amplitude are used for denoising processing, and finally the denoising is calculated by using the saliency detection method The saliency map of the post image, because the present invention takes into account the influence of the noise image on the saliency detection method, it can effectively improve the detection performance of the saliency detection method on the noise image, and can be applied to image and video processing, computer vision, etc. Many fields.

附图说明Description of drawings

图1是本发明方法的流程框图。Fig. 1 is a block flow diagram of the method of the present invention.

图2是本发明一实施例的步骤S2中的示例图片(为更好的显示效果,图2中的(d)、(g)和(h)的像素值被映射到[0,1])。Fig. 2 is an example picture in step S2 of an embodiment of the present invention (for better display effect, the pixel values of (d), (g) and (h) in Fig. 2 are mapped to [0,1]) .

图3是本发明一实施例的整体方法的实现流程图。Fig. 3 is an implementation flow chart of an overall method according to an embodiment of the present invention.

图4是本发明一实施例中原噪声图像和经过步骤S5和S6的最终效果示例图片。Fig. 4 is an example picture of the original noise image and the final effect after steps S5 and S6 in an embodiment of the present invention.

具体实施方式detailed description

下面结合附图及具体实施例对本发明作进一步的详细说明。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

本发明提供一种基于机器学习的噪声图像显著性检测方法,如图1和图3所示,包括以下步骤:The present invention provides a noise image saliency detection method based on machine learning, as shown in Figure 1 and Figure 3, comprising the following steps:

步骤S1:对每个幅度的噪声图像分别采用多种去噪参数进行去噪处理,获得每个幅度相应的最佳去噪参数。在本实施例中,步骤S1具体包括以下步骤:Step S1: Perform denoising processing on the noise image of each amplitude using various denoising parameters, and obtain the best denoising parameters corresponding to each amplitude. In this embodiment, step S1 specifically includes the following steps:

步骤S11:使用9种高斯低通滤波去噪参数(模板尺寸分别为{3×3, 5×5, 7×7},标准差分别为{0.5, 0.7, 0.9})对每个幅度的噪声图像进行去噪处理,获得每个幅度含9种去噪参数的去噪后图像集合S;Step S11: Use 9 Gaussian low-pass filter denoising parameters (template sizes are {3×3, 5×5, 7×7}, standard deviations are {0.5, 0.7, 0.9}) for each amplitude noise The image is denoised to obtain a denoised image set S containing 9 denoising parameters for each amplitude;

步骤S12:对去噪后图像集合S使用显著性检测方法VA(Saliency detection viaabsorbing markov chain)计算显著性图,获得去噪后图像的显著性图集合T;Step S12: Use the saliency detection method VA (Saliency detection via absorbing markov chain) to calculate the saliency map on the denoised image set S, and obtain the saliency map set T of the denoised image;

步骤S13:使用评价指标PR-AUC(the area under precision-recall curve)对去噪后图像的显著性图集合T进行评估,针对每个幅度找出平均PR-AUC最高值时使用的去噪参数,得到每个幅度的最佳去噪参数。Step S13: Use the evaluation index PR-AUC (the area under precision-recall curve) to evaluate the saliency map set T of the denoised image, and find the denoising parameters used when finding the highest average PR-AUC value for each amplitude , to get the optimal denoising parameters for each magnitude.

步骤S2:对每幅噪声图像使用噪声评估算法进行特征提取,获得每幅噪声图像的噪声值特征,以此组成噪声值特征集P。在本实施例中,如图2所示,步骤S2具体包括以下步骤:Step S2: Use the noise evaluation algorithm to perform feature extraction on each noise image, and obtain the noise value characteristics of each noise image, so as to form the noise value feature set P. In this embodiment, as shown in FIG. 2, step S2 specifically includes the following steps:

步骤S21:对噪声图像进行灰度化处理,得到灰度图像I(如图2(b));Step S21: Perform grayscale processing on the noise image to obtain a grayscale image I (as shown in Figure 2(b));

步骤S22:使用双边滤波处理灰度图像I,得到双边滤波结果图(如图2(c));Step S22: Use bilateral filtering to process the grayscale image I to obtain a bilateral filtering result map (as shown in Figure 2(c));

步骤S23:计算灰度图像I和双边滤波结果图的差值,得到差值图像D(如图2(d));Step S23: Calculating the grayscale image I and the bilateral filtering result map The difference, get the difference image D (as shown in Figure 2(d));

步骤S24:对灰度图像I使用Canny边缘检测方法得到边缘图像E(如图2(e)),对边缘图像E使用膨胀算子扩大边缘区域,得到扩大的边缘图像(如图2(f));Step S24: Use the Canny edge detection method on the grayscale image I to obtain the edge image E (as shown in Figure 2(e)), and use the expansion operator to expand the edge area on the edge image E to obtain the enlarged edge image (as shown in Figure 2(f));

步骤S25:计算噪声大小评估值图像M,计算公式为:Step S25: Calculate the noise size evaluation value image M , the calculation formula is:

,其中 ,in

其中,D v 表示灰度图像中像素v的值,t表示像素点,表示扩大的边缘图像,N表示扩大的边缘图像中像素点t的值为0的集合;Among them, D v represents the value of pixel v in the grayscale image, t represents the pixel point, Indicates the enlarged edge image, N indicates the enlarged edge image The set of pixel point t whose value is 0;

步骤S26:将噪声大小评估值图像M(如图2(g))均匀划分为3×3的网格区域(如图2(h)),分别计算噪声大小评估值图像M全图及每个网格区域噪声大小评估值,计算公式为:Step S26: Divide the noise size evaluation value image M (as shown in Figure 2(g)) evenly into 3×3 grid areas (as shown in Figure 2(h)), and calculate the noise size evaluation value image M full image and each The evaluation value of the noise size in the grid area, the calculation formula is:

其中,M r 表示相对应的区域,r=1, 2, …, 10分别表示全图和9个网格区域,M r,v 表示在区域r中像素v的值;计算得到噪声值特征集P={P 1, P 2, …, P 10}。Among them, M r represents the corresponding area, r =1, 2, ..., 10 represent the whole image and 9 grid areas respectively, M r , v represent the value of pixel v in the area r ; the noise value feature set is obtained by calculation P = { P 1 , P 2 , ..., P 10 }.

步骤S3:将噪声值特征集P作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声图像的噪声幅度预测模型。在本实施例中,步骤S3具体包括以下步骤:Step S3: The noise value feature set P is used as the feature set of the machine learning algorithm, and the noise amplitude prediction model of the noise image is obtained through the machine learning algorithm and the quintile cross-validation method. In this embodiment, step S3 specifically includes the following steps:

步骤S31:将噪声值特征集P中特征值P 1, P 2, …, P 10按从小到大顺序排列后,作为机器学习算法的特征集F,并将特征集F随机五等分为:F1、F2、F3、F4和F5;Step S31: Arrange the feature values P 1 , P 2 , ..., P 10 in the noise value feature set P in ascending order, and use it as the feature set F of the machine learning algorithm, and randomly divide the feature set F into five equal parts: F1, F2, F3, F4, and F5;

步骤S32:将F2、F3、F4和F5作为机器学习的训练数据集,将其对应在图像质量评估数据库TID2013的图像失真幅度作为机器学习的训练标签,学习得到噪声幅度预测模型M1;Step S32: using F2, F3, F4 and F5 as training data sets for machine learning, using their corresponding image distortion magnitudes in the image quality assessment database TID2013 as training labels for machine learning, and learning to obtain noise magnitude prediction model M1;

步骤S33:重复步骤S32,分别求出F1、F3、F4和F5作为训练数据集时的噪声幅度预测模型M2,F1、F2、F4和F5作为训练数据集时的噪声幅度预测模型M3,F1、F2、F3和F5作为训练数据集时的噪声幅度预测模型M4,F1、F2、F3和F4 作为训练数据集时的噪声幅度预测模型M5。Step S33: Repeat step S32 to obtain the noise magnitude prediction model M2 when F1, F3, F4 and F5 are used as training data sets, and the noise magnitude prediction models M3, F1, F5 when F1, F2, F4 and F5 are used as training data sets, respectively. F2, F3, and F5 are used as the noise amplitude prediction model M4 when the training data set is used, and the noise amplitude prediction model M5 is used when F1, F2, F3, and F4 are used as the training data set.

步骤S4:采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值。在本实施例中,步骤S4具体包括以下步骤:Step S4: Using the noise amplitude prediction model to predict the corresponding noise image, and obtain the predicted noise amplitude value of each noise image. In this embodiment, step S4 specifically includes the following steps:

步骤S41:采用噪声幅度预测模型M1对特征集F1对应的图像集进行预测,求出噪声幅度值预测集合V1;Step S41: Use the noise amplitude prediction model M1 to predict the image set corresponding to the feature set F1, and obtain the noise amplitude value prediction set V1;

步骤S42:重复步骤S41的方法,分别采用噪声幅度预测模型M2、M3、M4、M5对特征集F2、F3、F4和F5对应的图像集预测,得到噪声幅度值预测集合V2、V3、V4、V5;Step S42: Repeat the method of step S41, respectively use the noise amplitude prediction models M2, M3, M4, M5 to predict the image sets corresponding to the feature sets F2, F3, F4, and F5, and obtain noise amplitude value prediction sets V2, V3, V4, V5;

步骤S43:综合噪声幅度值预测集合V={V1、V2、V3、V4、V5},得到完整的图像集的噪声幅度值预测集合V。Step S43: Synthesize the noise magnitude prediction set V={V1, V2, V3, V4, V5} to obtain the noise magnitude prediction set V of the complete image set.

步骤S4:采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值。具体包括以下步骤:Step S4: Using the noise amplitude prediction model to predict the corresponding noise image, and obtain the predicted noise amplitude value of each noise image. Specifically include the following steps:

步骤S41:采用噪声幅度预测模型M1对特征集F1对应的图像集进行预测,求出噪声幅度值预测集合V1;Step S41: Use the noise amplitude prediction model M1 to predict the image set corresponding to the feature set F1, and obtain the noise amplitude value prediction set V1;

步骤S42:重复步骤S41的方法,分别采用噪声幅度预测模型M2、M3、M4、M5对特征集F2、F3、F4和F5对应的图像集预测,得到噪声幅度值预测集合V2、V3、V4、V5;Step S42: Repeat the method of step S41, respectively use the noise amplitude prediction models M2, M3, M4, M5 to predict the image sets corresponding to the feature sets F2, F3, F4, and F5, and obtain noise amplitude value prediction sets V2, V3, V4, V5;

步骤S43:综合噪声幅度值预测集合V={V1、V2、V3、V4、V5},得到完整的图像集的噪声幅度值预测集合V。Step S43: Synthesize the noise magnitude prediction set V={V1, V2, V3, V4, V5} to obtain the noise magnitude prediction set V of the complete image set.

步骤S5:采用每幅噪声图像的预测噪声幅度值和该幅度对应的最佳去噪参数进行去噪处理,获得去噪图像集。在本实施例中,如图4所示,步骤S5具体包括以下步骤:Step S5: Perform denoising processing using the predicted noise amplitude value of each noise image and the best denoising parameters corresponding to the amplitude, to obtain a denoising image set. In this embodiment, as shown in FIG. 4, step S5 specifically includes the following steps:

步骤S51:针对每幅噪声图像,从噪声幅度值预测集合V中找到该噪声图像对应的噪声幅度值;Step S51: For each noise image, find the noise amplitude value corresponding to the noise image from the noise amplitude value prediction set V;

步骤S52:根据噪声幅度值,采用相对应的最佳去噪参数对噪声图像使用高斯低通滤波处理,获得去噪图像集FI。Step S52: According to the noise amplitude value, the noise image is processed by Gaussian low-pass filter using the corresponding optimal denoising parameters to obtain the denoising image set FI.

步骤S6:对去噪图像集FI中的图像使用显著性检测方法VA进行检测,获得最终的显著性图。Step S6: Use the saliency detection method VA to detect the images in the denoised image set FI to obtain the final saliency map.

本发明提供的基于机器学习的噪声图像显著性检测方法,考虑到噪声图像对显著性检测方法的影响,挖掘噪声大小评估值特征与图像质量评估数据库TID2013中的噪声幅度的关联,设计得到机器学习噪声预测模型,并结合去噪方法和为该幅度设置的参数对图像进行去噪处理,最后采用显著性检测方法VA计算去噪后图像的显著性图。该方法能够有效的提高显著性检测方法在噪声图像上的检测性能,可应用于图像和视频处理、计算机视觉等领域。The noise image saliency detection method based on machine learning provided by the present invention takes into account the influence of the noise image on the saliency detection method, excavates the correlation between the noise size evaluation value feature and the noise amplitude in the image quality evaluation database TID2013, and designs the machine learning The noise prediction model is combined with the denoising method and the parameters set for the amplitude to denoise the image, and finally the saliency detection method VA is used to calculate the saliency map of the denoised image. This method can effectively improve the detection performance of the saliency detection method on noisy images, and can be applied to image and video processing, computer vision and other fields.

以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。The above are the preferred embodiments of the present invention, and all changes made according to the technical solution of the present invention, when the functional effect produced does not exceed the scope of the technical solution of the present invention, all belong to the protection scope of the present invention.

Claims (6)

1.一种基于机器学习的噪声图像显著性检测方法,其特征在于,包括以下步骤:1. a noise image saliency detection method based on machine learning, is characterized in that, comprises the following steps: 步骤S1:对每个幅度的噪声图像分别采用多种去噪参数进行去噪处理,获得每个幅度相应的最佳去噪参数;Step S1: denoising the noise image of each amplitude using multiple denoising parameters to obtain the best denoising parameters corresponding to each amplitude; 步骤S2:对每幅噪声图像使用噪声评估算法进行特征提取,获得每幅噪声图像的噪声值特征,以此组成噪声值特征集PStep S2: use the noise evaluation algorithm for feature extraction for each noise image, and obtain the noise value feature of each noise image, so as to form the noise value feature set P ; 步骤S3:将噪声值特征集P作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声图像的噪声幅度预测模型;Step S3: use the noise value feature set P as the feature set of the machine learning algorithm, and obtain the noise amplitude prediction model of the noise image through the machine learning algorithm and the quintile cross-validation method; 步骤S4:采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值;Step S4: Using the noise amplitude prediction model to predict the corresponding noise image, and obtain the predicted noise amplitude value of each noise image; 步骤S5:采用每幅噪声图像的预测噪声幅度值和该幅度对应的最佳去噪参数进行去噪处理,获得去噪图像集;Step S5: Perform denoising processing using the predicted noise amplitude value of each noise image and the best denoising parameters corresponding to the amplitude, to obtain a denoising image set; 步骤S6:对去噪图像集中的图像使用显著性检测方法进行检测,获得最终的显著性图。Step S6: Use a saliency detection method to detect the images in the denoised image set to obtain a final saliency map. 2.根据权利要求1所述的一种基于机器学习的噪声图像显著性检测方法,其特征在于:所述步骤S1中,对每个幅度的噪声图像分别采用多种去噪参数进行去噪处理,获得每个幅度相应的最佳去噪参数,具体包括以下步骤:2. A noise image saliency detection method based on machine learning according to claim 1, characterized in that: in the step S1, the noise image of each amplitude is denoised using multiple denoising parameters , to obtain the optimal denoising parameters corresponding to each amplitude, which specifically includes the following steps: 步骤S11:使用n种高斯低通滤波去噪参数对每个幅度的噪声图像进行去噪处理,获得每个幅度含n种去噪参数的去噪后图像集合S;Step S11: Denoise the noise image of each amplitude by using n kinds of denoising parameters of Gaussian low-pass filter, and obtain a set S of denoised images containing n kinds of denoising parameters for each amplitude; 步骤S12:对去噪后图像集合S使用显著性检测方法VA计算显著性图,获得去噪后图像的显著性图集合T;Step S12: use the saliency detection method VA to calculate the saliency map on the denoised image set S, and obtain the saliency map set T of the denoised image; 步骤S13:使用评价指标PR-AUC对去噪后图像的显著性图集合T进行评估,针对每个幅度找出平均PR-AUC最高值时使用的去噪参数,得到每个幅度的最佳去噪参数。Step S13: Use the evaluation index PR-AUC to evaluate the saliency map set T of the denoised image, find the denoising parameters used when the average PR-AUC is the highest value for each amplitude, and obtain the best denoising parameters for each amplitude. Noise parameter. 3.根据权利要求1所述的一种基于机器学习的噪声图像显著性检测方法,其特征在于:所述步骤S2中,对每幅噪声图像使用噪声评估算法进行特征提取,获得每幅噪声图像的噪声值特征,以此组成噪声值特征集P,具体包括以下步骤:3. A noise image saliency detection method based on machine learning according to claim 1, characterized in that: in the step S2, each noise image is extracted using a noise evaluation algorithm to obtain each noise image The noise value feature, in order to form the noise value feature set P , specifically includes the following steps: 步骤S21:对噪声图像进行灰度化处理,得到灰度图像IStep S21: grayscale processing is carried out to noise image, obtains grayscale image I ; 步骤S22:使用双边滤波处理灰度图像I,得到双边滤波结果图Step S22: Use bilateral filtering to process the grayscale image I to obtain a bilateral filtering result map ; 步骤S23:计算灰度图像I和双边滤波结果图的差值,得到差值图像DStep S23: Calculating the grayscale image I and the bilateral filtering result map The difference, get the difference image D ; 步骤S24:对灰度图像I使用Canny边缘检测方法得到边缘图像E,对边缘图像E使用膨胀算子扩大边缘区域,得到扩大的边缘图像Step S24: Use the Canny edge detection method on the grayscale image I to obtain the edge image E , use the dilation operator on the edge image E to expand the edge area, and obtain the enlarged edge image ; 步骤S25:计算噪声大小评估值图像M,计算公式为:Step S25: Calculate the noise size evaluation value image M , the calculation formula is: ,其中 ,in 其中,D v 表示灰度图像中像素v的值,t表示像素点,表示扩大的边缘图像,N表示扩大的边缘图像中像素点t的值为0的集合;Among them, D v represents the value of pixel v in the grayscale image, t represents the pixel point, Indicates the enlarged edge image, N indicates the enlarged edge image The set of pixel point t whose value is 0; 步骤S26:将噪声大小评估值图像M均匀划分为3×3的网格区域,分别计算噪声大小评估值图像M全图及每个网格区域噪声大小评估值,计算公式为:Step S26: Divide the noise size evaluation value image M evenly into 3×3 grid areas, respectively calculate the noise size evaluation value image M full image and the noise size evaluation value of each grid area, the calculation formula is: 其中,M r 表示相对应的区域,r=1, 2, …, 10分别表示全图和9个网格区域,M r,v 表示在区域r中像素v的值;计算得到噪声值特征集P={P 1, P 2, …, P 10}。Among them, M r represents the corresponding area, r =1, 2, ..., 10 represent the whole image and 9 grid areas respectively, M r , v represent the value of pixel v in the area r ; the noise value feature set is obtained by calculation P = { P 1 , P 2 , ..., P 10 }. 4.根据权利要求3所述的一种基于机器学习的噪声图像显著性检测方法,其特征在于:所述步骤S3中,将噪声值特征集P作为机器学习算法的特征集,并通过机器学习算法和五等分交叉验证方法,获得噪声图像的噪声幅度预测模型,具体包括以下步骤:4. A kind of noise image saliency detection method based on machine learning according to claim 3, is characterized in that: in described step S3, noise value feature set P is used as the feature set of machine learning algorithm, and through machine learning Algorithm and quintile cross-validation method to obtain the noise magnitude prediction model of the noise image, which specifically includes the following steps: 步骤S31:将噪声值特征集P中特征值P 1, P 2, …, P 10按从小到大顺序排列后,作为机器学习算法的特征集F,并将特征集F随机五等分为:F1、F2、F3、F4和F5;Step S31: Arrange the feature values P 1 , P 2 , ..., P 10 in the noise value feature set P in ascending order, and use it as the feature set F of the machine learning algorithm, and randomly divide the feature set F into five equal parts: F1, F2, F3, F4, and F5; 步骤S32:将F2、F3、F4和F5作为机器学习的训练数据集,将其对应在图像质量评估数据库的图像失真幅度作为机器学习的训练标签,学习得到噪声幅度预测模型M1;Step S32: using F2, F3, F4 and F5 as training data sets for machine learning, using their corresponding image distortion magnitudes in the image quality assessment database as training labels for machine learning, and learning to obtain a noise magnitude prediction model M1; 步骤S33:重复步骤S32,分别求出F1、F3、F4和F5作为训练数据集时的噪声幅度预测模型M2,F1、F2、F4和F5作为训练数据集时的噪声幅度预测模型M3,F1、F2、F3和F5作为训练数据集时的噪声幅度预测模型M4,F1、F2、F3和F4 作为训练数据集时的噪声幅度预测模型M5。Step S33: Repeat step S32 to obtain the noise magnitude prediction model M2 when F1, F3, F4 and F5 are used as training data sets, and the noise magnitude prediction models M3, F1, F5 when F1, F2, F4 and F5 are used as training data sets, respectively. F2, F3, and F5 are used as the noise amplitude prediction model M4 when the training data set is used, and the noise amplitude prediction model M5 is used when F1, F2, F3, and F4 are used as the training data set. 5.根据权利要求4所述的一种基于机器学习的噪声图像显著性检测方法,其特征在于:所述步骤S4中,采用噪声幅度预测模型对相应的噪声图像进行预测,获得每幅噪声图像的预测噪声幅度值,具体包括以下步骤:5. A noise image saliency detection method based on machine learning according to claim 4, characterized in that: in the step S4, the noise amplitude prediction model is used to predict the corresponding noise image, and each noise image is obtained The predicted noise amplitude value of , specifically includes the following steps: 步骤S41:采用噪声幅度预测模型M1对特征集F1对应的图像集进行预测,求出噪声幅度值预测集合V1;Step S41: Use the noise amplitude prediction model M1 to predict the image set corresponding to the feature set F1, and obtain the noise amplitude value prediction set V1; 步骤S42:重复步骤S41的方法,分别采用噪声幅度预测模型M2、M3、M4、M5对特征集F2、F3、F4和F5对应的图像集预测,得到噪声幅度值预测集合V2、V3、V4、V5;Step S42: Repeat the method of step S41, respectively use the noise amplitude prediction models M2, M3, M4, M5 to predict the image sets corresponding to the feature sets F2, F3, F4, and F5, and obtain noise amplitude value prediction sets V2, V3, V4, V5; 步骤S43:综合噪声幅度值预测集合V={V1、V2、V3、V4、V5},得到完整的图像集的噪声幅度值预测集合V。Step S43: Synthesize the noise magnitude prediction set V={V1, V2, V3, V4, V5} to obtain the noise magnitude prediction set V of the complete image set. 6.根据权利要求5所述的一种基于机器学习的噪声图像显著性检测方法,其特征在于,所述步骤S5中,采用每幅噪声图像的预测噪声幅度值和该幅度对应的最佳去噪参数进行去噪处理,获得去噪图像集,具体包括以下步骤:6. A noise image saliency detection method based on machine learning according to claim 5, characterized in that, in the step S5, the predicted noise amplitude value of each noise image and the corresponding optimal noise value of the amplitude are used. Noise parameters are used for denoising processing to obtain a denoising image set, which specifically includes the following steps: 步骤S51:针对每幅噪声图像,从噪声幅度值预测集合V中找到该噪声图像对应的噪声幅度值;Step S51: For each noise image, find the noise amplitude value corresponding to the noise image from the noise amplitude value prediction set V; 步骤S52:根据噪声幅度值,采用相对应的最佳去噪参数对噪声图像使用高斯低通滤波处理,获得去噪图像集FI。Step S52: According to the noise amplitude value, the noise image is processed by Gaussian low-pass filter using the corresponding optimal denoising parameters to obtain the denoising image set FI.
CN201610222900.XA 2016-04-12 2016-04-12 A Noise Image Saliency Detection Method Based on Machine Learning Expired - Fee Related CN105913427B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610222900.XA CN105913427B (en) 2016-04-12 2016-04-12 A Noise Image Saliency Detection Method Based on Machine Learning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610222900.XA CN105913427B (en) 2016-04-12 2016-04-12 A Noise Image Saliency Detection Method Based on Machine Learning

Publications (2)

Publication Number Publication Date
CN105913427A true CN105913427A (en) 2016-08-31
CN105913427B CN105913427B (en) 2017-05-10

Family

ID=56744939

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610222900.XA Expired - Fee Related CN105913427B (en) 2016-04-12 2016-04-12 A Noise Image Saliency Detection Method Based on Machine Learning

Country Status (1)

Country Link
CN (1) CN105913427B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108416756A (en) * 2018-03-26 2018-08-17 福州大学 A Region-aware Image Denoising Method Based on Machine Learning
CN111788476A (en) * 2018-02-26 2020-10-16 株式会社高迎科技 Inspection method of component mounting state, printed circuit board inspection apparatus, and computer-readable recording medium
CN111798658A (en) * 2019-11-08 2020-10-20 方勤 Traffic lane passing efficiency detection platform

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193066A1 (en) * 2012-12-10 2014-07-10 Brain Corporation Contrast enhancement spiking neuron network sensory processing apparatus and methods
CN104463870A (en) * 2014-12-05 2015-03-25 中国科学院大学 Image salient region detection method
CN104616259A (en) * 2015-02-04 2015-05-13 西安理工大学 Non-local mean image de-noising method with noise intensity self-adaptation function
CN105376506A (en) * 2014-08-27 2016-03-02 江南大学 Design of image pattern noise relevance predictor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140193066A1 (en) * 2012-12-10 2014-07-10 Brain Corporation Contrast enhancement spiking neuron network sensory processing apparatus and methods
CN105376506A (en) * 2014-08-27 2016-03-02 江南大学 Design of image pattern noise relevance predictor
CN104463870A (en) * 2014-12-05 2015-03-25 中国科学院大学 Image salient region detection method
CN104616259A (en) * 2015-02-04 2015-05-13 西安理工大学 Non-local mean image de-noising method with noise intensity self-adaptation function

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张巧荣 等: "利用多尺度频域分析的图像显著区域检测", 《哈尔滨工程大学学报》 *
钱晓亮 等: "视觉显著性检测:一种融合长期和短期特征的信息论算法", 《电子与信息学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111788476A (en) * 2018-02-26 2020-10-16 株式会社高迎科技 Inspection method of component mounting state, printed circuit board inspection apparatus, and computer-readable recording medium
CN111788476B (en) * 2018-02-26 2023-07-07 株式会社高迎科技 Inspection method of component mounting state, printed circuit board inspection device, and computer-readable recording medium
CN108416756A (en) * 2018-03-26 2018-08-17 福州大学 A Region-aware Image Denoising Method Based on Machine Learning
CN108416756B (en) * 2018-03-26 2021-11-02 福州大学 A region-aware image denoising method based on machine learning
CN111798658A (en) * 2019-11-08 2020-10-20 方勤 Traffic lane passing efficiency detection platform

Also Published As

Publication number Publication date
CN105913427B (en) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2022161286A1 (en) Image detection method, model training method, device, medium, and program product
CN112950581B (en) Quality evaluation method and device and electronic equipment
WO2018157746A1 (en) Recommendation method and apparatus for video data
CN112200081B (en) Abnormal behavior identification method, device, electronic device and storage medium
Richao et al. Detection of object-based manipulation by the statistical features of object contour
WO2014044158A1 (en) Identification method and device for target object in image
CN110688524B (en) Video retrieval method, device, electronic device and storage medium
JP6688277B2 (en) Program, learning processing method, learning model, data structure, learning device, and object recognition device
CN108108731B (en) Text detection method and device based on synthetic data
KR101191516B1 (en) Enhanced image identification
Parde et al. Face and image representation in deep CNN features
TWI803243B (en) Method for expanding images, computer device and storage medium
CN104036280A (en) Video fingerprinting method based on region of interest and cluster combination
CN105913427B (en) A Noise Image Saliency Detection Method Based on Machine Learning
CN104021567B (en) Based on the fuzzy altering detecting method of image Gauss of first numeral law
Sharma et al. Spliced Image Classification and Tampered Region Localization Using Local Directional Pattern.
CN107203764A (en) Long microblog picture recognition methods and device
CN112184580A (en) A face image enhancement method, device, device and storage medium
CN116912184B (en) Weak supervision depth restoration image tampering positioning method and system based on tampering area separation and area constraint loss
CN117745589A (en) Watermark removing method, device and equipment
JP6811965B2 (en) Image processing equipment, image processing methods and programs
CN112580674B (en) Image recognition method, computer device, and storage medium
CN111985423B (en) Liveness detection method, device, equipment and readable storage medium
CN112949631A (en) Pre-training picture synthesis method and device for target detection
Zhu et al. Cross-illumination video anomaly detection benchmark

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170510