CN105911792A - Nonlinear optical imaging device based on multiple phase matching processes - Google Patents
Nonlinear optical imaging device based on multiple phase matching processes Download PDFInfo
- Publication number
- CN105911792A CN105911792A CN201610531795.8A CN201610531795A CN105911792A CN 105911792 A CN105911792 A CN 105911792A CN 201610531795 A CN201610531795 A CN 201610531795A CN 105911792 A CN105911792 A CN 105911792A
- Authority
- CN
- China
- Prior art keywords
- image
- target object
- module
- nonlinear optical
- spatial frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000008569 process Effects 0.000 title claims abstract description 27
- 238000012634 optical imaging Methods 0.000 title claims abstract description 23
- 230000003287 optical effect Effects 0.000 claims abstract description 60
- 238000005286 illumination Methods 0.000 claims abstract description 41
- 238000003384 imaging method Methods 0.000 claims abstract description 40
- 230000004927 fusion Effects 0.000 claims abstract description 35
- 230000008878 coupling Effects 0.000 claims description 18
- 238000010168 coupling process Methods 0.000 claims description 18
- 238000005859 coupling reaction Methods 0.000 claims description 18
- 238000007493 shaping process Methods 0.000 claims description 18
- 238000005086 pumping Methods 0.000 claims description 11
- 238000000513 principal component analysis Methods 0.000 claims description 7
- 230000001360 synchronised effect Effects 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 claims description 2
- 239000013078 crystal Substances 0.000 description 17
- 238000010586 diagram Methods 0.000 description 12
- 102000005869 Activating Transcription Factors Human genes 0.000 description 10
- 230000003321 amplification Effects 0.000 description 6
- 238000003199 nucleic acid amplification method Methods 0.000 description 6
- 238000007500 overflow downdraw method Methods 0.000 description 5
- 108010005254 Activating Transcription Factors Proteins 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010291 electrical method Methods 0.000 description 3
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 101000694017 Homo sapiens Sodium channel protein type 5 subunit alpha Proteins 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/35—Non-linear optics
- G02F1/353—Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
- G02F1/3544—Particular phase matching techniques
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/10—Image enhancement or restoration using non-spatial domain filtering
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T5/00—Image enhancement or restoration
- G06T5/50—Image enhancement or restoration using two or more images, e.g. averaging or subtraction
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20212—Image combination
- G06T2207/20221—Image fusion; Image merging
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Abstract
本发明提供一种基于多次相位匹配过程的非线性光学成像装置,包括:照明激光模块、图像接收模块、空间频率选择模块、参量匹配成像模块和图像处理模块;照明激光模块发出照明光照射目标物体;图像接收模块接收照明光被目标物体反射的光,形成目标物体图像后进入到参量匹配成像模块;空间频率选择模块调整相位匹配参数;参量匹配成像模块获得目标物体在不同空间频率处的增强图像;图像处理模块根据预设的空间频率传递函数对参量匹配成像模块获得的多个增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。本装置能克服由单次非线性光学过程频域带宽有限所引起的图像分辨率较差的问题,获得对图像增强后的高保真融合图像。
The invention provides a nonlinear optical imaging device based on multiple phase matching processes, including: an illumination laser module, an image receiving module, a spatial frequency selection module, a parameter matching imaging module, and an image processing module; the illumination laser module emits illumination light to irradiate the target Object; the image receiving module receives the light reflected by the target object from the illumination light, and enters the parameter matching imaging module after forming an image of the target object; the spatial frequency selection module adjusts the phase matching parameters; the parameter matching imaging module obtains the enhancement of the target object at different spatial frequencies Image; the image processing module performs frequency-domain operations on multiple enhanced images obtained by the parameter matching imaging module according to the preset spatial frequency transfer function to realize image fusion and obtain a high-fidelity fusion image after the image of the target object is enhanced. The device can overcome the problem of poor image resolution caused by the limited frequency domain bandwidth of a single nonlinear optical process, and obtain a high-fidelity fusion image after image enhancement.
Description
技术领域technical field
本发明涉及非线性光学及成像光学技术领域,尤其涉及一种基于多次相位匹配过程的非线性光学成像装置。The invention relates to the technical field of nonlinear optics and imaging optics, in particular to a nonlinear optical imaging device based on multiple phase matching processes.
背景技术Background technique
目前,图像增强手段主要分为电学方式和光学方式。电学方式主要使用的有电子倍增电荷耦合器件(EMCCD)以及增强电荷耦合器件(ICCD),这些器件使用比较广泛。光学方式的主要技术有受激拉曼散射、受激布里渊散射、光参量过程等。相对于电学方式,光学方式的优点主要在于,可以实现频率转换,从而使得整体的量子效率得到提升,并获得高增益,降低噪声,因此在生物医学领域具有较好的应用前景。At present, image enhancement methods are mainly divided into electrical methods and optical methods. Electron multiplier charge-coupled devices (EMCCD) and enhanced charge-coupled devices (ICCD) are mainly used in electrical methods, and these devices are widely used. The main techniques of optical methods include stimulated Raman scattering, stimulated Brillouin scattering, and optical parametric processes. Compared with the electrical method, the main advantage of the optical method is that it can realize frequency conversion, thereby improving the overall quantum efficiency, obtaining high gain, and reducing noise, so it has a good application prospect in the biomedical field.
但是,目前使用的光学方式,例如光参量放大(OPA)、和频(SFG)等方式仅能够提供有限的空间频域带宽,而这些带宽的增益传递函数(ATF)曲线半高全宽要小于光学系统的调制传递函数(MTF)曲线的半高全宽,只能在某些空间频率处对图像进行增强,因此效果不太理想;如图1所示,图1A为输入的信号图像,图1B为现有技术中利用光参量放大的方式对图1A的图像在某一空间频率处进行增强的结果,可以看到,增强后的单幅图像并不理想。其根本原因在于由单次非线性光学成像,单一的相位匹配条件对应的空间频域带宽有限,无法同时对低频和高频分量进行传递并成像,从而导致图像分辨率较差、难以高保真成像。However, currently used optical methods, such as optical parametric amplification (OPA), sum frequency (SFG) and other methods can only provide limited spatial frequency domain bandwidth, and the full width at half maximum of the gain transfer function (ATF) curve of these bandwidths is smaller than that of the optical system The full width at half maximum of the Modulation Transfer Function (MTF) curve can only enhance the image at certain spatial frequencies, so the effect is not ideal; as shown in Figure 1, Figure 1A is the input signal image, and Figure 1B is the existing As a result of enhancing the image in Figure 1A at a certain spatial frequency by means of optical parametric amplification in the technology, it can be seen that the enhanced single image is not ideal. The root cause is that single nonlinear optical imaging and a single phase matching condition correspond to a limited bandwidth in the spatial frequency domain, which cannot transmit and image low-frequency and high-frequency components at the same time, resulting in poor image resolution and difficult high-fidelity imaging .
鉴于此,如何克服现有技术的图像增强手段中由单次非线性光学过程频域带宽有限所引起的图像分辨率较差、难以高保真成像的问题,获得高保真图像成为目前需要解决的技术问题。In view of this, how to overcome the problems of poor image resolution and difficulty in high-fidelity imaging caused by the limited frequency-domain bandwidth of a single nonlinear optical process in the existing image enhancement methods, and obtaining high-fidelity images has become a technology that needs to be solved at present. question.
发明内容Contents of the invention
为解决上述的技术问题,本发明提供一种基于多次相位匹配过程的非线性光学成像装置,能够实现对图像在不同空间频率的增强,并将不同空间频率传递函数下的图像进行信息融合,从而获得高保真的图像。In order to solve the above technical problems, the present invention provides a nonlinear optical imaging device based on multiple phase matching processes, which can enhance images at different spatial frequencies and perform information fusion on images under different spatial frequency transfer functions. Thus obtaining high-fidelity images.
第一方面,本发明提供一种基于多次相位匹配过程的非线性光学成像装置,包括:照明激光模块、图像接收模块、空间频率选择模块、参量匹配成像模块和图像处理模块;其中:In the first aspect, the present invention provides a nonlinear optical imaging device based on multiple phase matching processes, including: an illumination laser module, an image receiving module, a spatial frequency selection module, a parameter matching imaging module, and an image processing module; wherein:
所述照明激光模块发出照明光照射目标物体;所述图像接收模块接收所述照明光被目标物体反射的光,形成目标物体图像后进入到所述参量匹配成像模块;所述空间频率选择模块调整相位匹配参数;所述参量匹配成像模块根据所述空间频率选择模块调整的相位匹配参数对所述目标物体图像在不同空间频率处进行图像增强,获得目标物体在不同空间频率处的增强图像;所述图像处理模块根据预设的空间频率传递函数对所述参量匹配成像模块获得的目标物体在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像;The illumination laser module emits illumination light to irradiate the target object; the image receiving module receives the light reflected by the illumination light by the target object, forms an image of the target object and then enters the parameter matching imaging module; the spatial frequency selection module adjusts Phase matching parameters; the parameter matching imaging module performs image enhancement on the target object image at different spatial frequencies according to the phase matching parameters adjusted by the spatial frequency selection module, and obtains enhanced images of the target object at different spatial frequencies; The image processing module performs frequency-domain operations on the enhanced images of the target object at different spatial frequencies obtained by the parameter matching imaging module according to the preset spatial frequency transfer function to realize image fusion and obtain high-fidelity fusion of the enhanced image of the target object image;
其中,所述相位匹配参数是根据非线性光学过程中相位匹配参数与空间频率传递函数的一一对应关系预先设置好的。Wherein, the phase matching parameter is preset according to the one-to-one correspondence between the phase matching parameter and the spatial frequency transfer function in the nonlinear optical process.
可选地,所述图像接收模块为成像镜组。Optionally, the image receiving module is an imaging lens group.
可选地,所述照明激光模块,包括:照明激光器、整形及发射光学元件;Optionally, the illumination laser module includes: an illumination laser, shaping and emitting optical elements;
所述照明激光器发射的激光经过所述整形及发射光学元件整形后照射到目标物体。The laser light emitted by the illumination laser is irradiated to the target object after being shaped by the shaping and emitting optical element.
可选地,所述空间频率选择模块,包括:泵浦激光器、泵浦激光整形光学元件、输入耦合镜和相位匹配控制器;Optionally, the spatial frequency selection module includes: a pump laser, a pump laser shaping optical element, an input coupling mirror and a phase matching controller;
所述泵浦激光器发出的泵浦激光经过所述泵浦激光整形光学元件的整形后,与所述图像接收模块形成的目标物体图像的激光同时经过所述输入耦合镜入射到所述参量匹配成像模块中的非线性光学元件;所述相位匹配控制器通过调节所述非线性光学元件的角度或温度,实现对相位失配量的控制,从而实现不同的空间频率选择。After the pumping laser light emitted by the pumping laser is shaped by the pumping laser shaping optical element, it enters the parameter matching imaging through the input coupling mirror at the same time as the laser light of the target object image formed by the image receiving module The nonlinear optical element in the module; the phase matching controller controls the amount of phase mismatch by adjusting the angle or temperature of the nonlinear optical element, thereby realizing different spatial frequency selections.
可选地,所述相位匹配控制器为角度控制器,包括:旋转平台或者镜架,用于调节所述非线性光学元件的角度,实现对相位失配量的控制,从而实现不同的空间频率选择。Optionally, the phase matching controller is an angle controller, including: a rotating platform or a mirror frame, which is used to adjust the angle of the nonlinear optical element, so as to control the amount of phase mismatch, thereby achieving different spatial frequencies choose.
可选地,所述相位匹配控制器为温度调节器,用于监测并调节所述非线性光学元件的温度,实现对相位失配量的控制,从而实现不同的空间频率选择。Optionally, the phase matching controller is a temperature regulator, which is used to monitor and adjust the temperature of the nonlinear optical element, so as to control the amount of phase mismatch, thereby realizing different spatial frequency selections.
可选地,所述空间频率选择模块,还包括:同步控制模块,用于对所述照明激光器和所述泵浦激光器进行延时控制,实现距离选通,通过改变时间延迟得到不同纵深位置的目标物体图像。Optionally, the spatial frequency selection module further includes: a synchronous control module, configured to perform delay control on the illumination laser and the pump laser to realize distance gating, and to obtain different depth positions by changing the time delay. image of the target object.
可选地,所述参量匹配成像模块,包括:非线性光学元件、输出耦合镜、光束收集器、像传递镜组和线阵电荷耦合元件CCD;Optionally, the parameter matching imaging module includes: a nonlinear optical element, an output coupling mirror, a beam collector, an image transfer lens group, and a linear charge-coupled device CCD;
通过所述非线性光学元件的光经所述输出耦合镜后通过所述像传递镜组入射到所述线阵电荷耦合元件CCD上成像,将获得的目标物体在不同空间频率处的增强图像发送至所述图像处理模块;所述光束收集器收集通过所述非线性光学元件后的杂散光。The light passing through the nonlinear optical element is incident on the linear charge-coupled element CCD through the image transfer mirror group after the output coupling mirror, and the obtained enhanced image of the target object at different spatial frequencies is sent to to the image processing module; the beam collector collects stray light passing through the nonlinear optical element.
可选地,所述图像处理模块,包括:图像采集卡和处理器;Optionally, the image processing module includes: an image acquisition card and a processor;
所述图像采集卡接收所述线阵电荷耦合元件CCD形成的目标物体在不同空间频率处的增强图像,所述处理器根据预设的空间频率传递函数对所述目标物体在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。The image acquisition card receives the enhanced image of the target object at different spatial frequencies formed by the linear array charge-coupled device CCD, and the processor performs an analysis of the target object at different spatial frequencies according to a preset spatial frequency transfer function. The enhanced image is operated in the frequency domain to achieve image fusion and obtain a high-fidelity fusion image of the target object image after enhancement.
可选地,所述处理器对所述目标物体在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保融合真图像的算法,包括:基于小波变换、傅立叶变换、主成分分析PCA或强度色调饱和度IHS变换的算法。Optionally, the processor performs frequency-domain operations on the enhanced images of the target object at different spatial frequencies to achieve image fusion, and the algorithm for obtaining a high-fidelity fusion image after the image of the target object is enhanced includes: based on wavelet transform, Algorithms for Fourier Transform, Principal Component Analysis PCA or Intensity Hue Saturation IHS Transform.
由上述技术方案可知,本发明的基于多次相位匹配过程的非线性光学成像装置,能够克服由单次非线性光学过程频域带块有限所引起的图像分辨率较差的困难,实现对图像在不同空间频率的增强,并将不同空间频率传递函数下的图像进行信息融合,从而获得高保真的融合图像。It can be seen from the above technical solution that the nonlinear optical imaging device based on multiple phase matching processes of the present invention can overcome the difficulty of poor image resolution caused by the limited frequency domain band block of a single nonlinear optical process, and realize image Enhancement at different spatial frequencies, and information fusion of images under different spatial frequency transfer functions, so as to obtain high-fidelity fusion images.
附图说明Description of drawings
图1为现有技术中利用光参量放大的方式对图像在某一空间频率处进行增强的示意图,其中,图1A为输入的信号图像,图1B为现有技术中利用光参量放大的方式对图1A的图像在某一空间频率处进行增强的结果示意图;Fig. 1 is a schematic diagram of using optical parametric amplification to enhance an image at a certain spatial frequency in the prior art, wherein Fig. 1A is an input signal image, and Fig. 1B is a schematic diagram of using optical parametric amplification in the prior art to enhance The schematic diagram of the result of enhancing the image at a certain spatial frequency in Fig. 1A;
图2为本发明第一实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图;FIG. 2 is a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the first embodiment of the present invention;
图3为本发明第二实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图;3 is a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the second embodiment of the present invention;
图4为本发明第二实施例在不同相位失配量时的ATF曲线;Fig. 4 is the ATF curve of the second embodiment of the present invention at different phase mismatch amounts;
图5为本发明第二实施例提供的相位失配量Δk与非线性晶体的角度Δθ的关系示意图;5 is a schematic diagram of the relationship between the phase mismatch Δk and the angle Δθ of the nonlinear crystal provided by the second embodiment of the present invention;
图6为本发明第二实施例提供的A、B、C、D对应相位失配量分别为1.7cm-1、-3.7cm-1、-6.3cm-1、-8.3cm-1时不同空间频率处增强后的图像;Figure 6 shows the different spaces when the phase mismatches corresponding to A, B, C, and D provided by the second embodiment of the present invention are 1.7cm -1 , -3.7cm -1 , -6.3cm -1 , -8.3cm -1 respectively Enhanced image at frequency;
图7为本发明第二实施例采用基于傅立叶变换的直接图像融合法对图6中的四幅图像各自的较佳部分进行融合的示意图,图7A为第二实施例采用基于傅立叶变换的直接图像融合法对图6中的四幅图像各自的较佳部分进行融合后获得的高保真图像,图7B为输入的信号图像;Fig. 7 is a schematic diagram of the second embodiment of the present invention adopting the direct image fusion method based on Fourier transform to fuse the respective preferred parts of the four images in Fig. 6, and Fig. 7A is the second embodiment adopting the direct image fusion method based on Fourier transform The high-fidelity image obtained after fusion of the respective preferred parts of the four images in Fig. 6 by the method, and Fig. 7B is the input signal image;
图8为本发明第三实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图。FIG. 8 is a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the third embodiment of the present invention.
具体实施方式detailed description
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他的实施例,都属于本发明保护的范围。In order to make the purpose, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments It is only some embodiments of the present invention, but not all embodiments. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without creative efforts fall within the protection scope of the present invention.
第一实施例first embodiment
图2示出了本发明第一实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图,如图2所示,本实施例的基于多次相位匹配过程的非线性光学成像装置,包括:照明激光模块1、图像接收模块2、空间频率选择模块3、参量匹配成像模块4和图像处理模块5;其中:Fig. 2 shows a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the first embodiment of the present invention. As shown in Fig. 2, the nonlinear optical imaging device based on multiple phase matching processes in this embodiment Optical imaging device, including: illumination laser module 1, image receiving module 2, spatial frequency selection module 3, parameter matching imaging module 4 and image processing module 5; wherein:
所述照明激光模块1发出照明光照射目标物体0;所述图像接收模块2接收所述照明光被目标物体0反射的光,形成目标物体图像后进入到所述参量匹配成像模块4;所述空间频率选择模块3调整相位匹配参数;所述参量匹配成像模块4根据所述空间频率选择模块3调整的相位匹配参数对所述目标物体图像在不同空间频率处进行图像增强,获得目标物体0在不同空间频率处的增强图像;所述图像处理模块5根据预设的空间频率传递函数对所述参量匹配成像模块4获得的目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像;The illumination laser module 1 emits illumination light to illuminate the target object 0; the image receiving module 2 receives the light reflected by the illumination light by the target object 0, forms an image of the target object and then enters the parameter matching imaging module 4; The spatial frequency selection module 3 adjusts the phase matching parameters; the parameter matching imaging module 4 performs image enhancement on the target object image at different spatial frequencies according to the phase matching parameters adjusted by the spatial frequency selection module 3, and obtains the target object 0 at Enhanced images at different spatial frequencies; the image processing module 5 performs frequency-domain operations on the enhanced images of the target object 0 obtained by the parameter matching imaging module 4 at different spatial frequencies according to a preset spatial frequency transfer function to realize image Fusion, to obtain a high-fidelity fusion image after the image of the target object is enhanced;
其中,所述相位匹配参数是根据非线性光学过程中相位匹配参数与空间频率传递函数的一一对应关系预先设置好的。Wherein, the phase matching parameter is preset according to the one-to-one correspondence between the phase matching parameter and the spatial frequency transfer function in the nonlinear optical process.
具体地,所述相位匹配参数为增益传递函数AFT,可根据增益传递函数ATF与相位失配量Δk,预先设置不同的ATF。Specifically, the phase matching parameter is a gain transfer function AFT, and different ATFs can be preset according to the gain transfer function ATF and the phase mismatch amount Δk.
在具体应用中,所述图像接收模块2可以优选为成像镜组。In a specific application, the image receiving module 2 may preferably be an imaging lens group.
在具体应用中,所述照明激光模块可包括:照明激光器、整形及发射光学元件;In a specific application, the illumination laser module may include: an illumination laser, shaping and emitting optical elements;
所述照明激光器发射的激光经过所述整形及发射光学元件整形后照射到目标物体。The laser light emitted by the illumination laser is irradiated to the target object after being shaped by the shaping and emitting optical element.
在具体应用中,所述空间频率选择模块3,可包括:泵浦激光器、泵浦激光整形光学元件、输入耦合镜和相位匹配控制器;In a specific application, the spatial frequency selection module 3 may include: a pump laser, a pump laser shaping optical element, an input coupling mirror and a phase matching controller;
所述泵浦激光器发出的泵浦激光经过所述泵浦激光整形光学元件的整形后,与所述图像接收模块形成的目标物体图像的激光同时经过所述输入耦合镜入射到所述参量匹配成像模块4中的非线性光学元件;所述相位匹配控制器通过调节所述非线性光学元件的角度或温度,实现对相位失配量的控制,从而实现不同的空间频率选择。After the pumping laser light emitted by the pumping laser is shaped by the pumping laser shaping optical element, it enters the parameter matching imaging through the input coupling mirror at the same time as the laser light of the target object image formed by the image receiving module The nonlinear optical element in module 4; the phase matching controller controls the amount of phase mismatch by adjusting the angle or temperature of the nonlinear optical element, thereby realizing different spatial frequency selections.
进一步地,所述相位匹配控制器可以为角度控制器,包括:旋转平台或者镜架,用于调节所述非线性光学元件的角度,实现对相位失配量的控制,从而实现不同的空间频率选择;具体地,可根据增益传递函数ATF与相位失配量Δk,以及相位失配量Δk与所述非线性光学元件的角度Δθ的关系,预设不同的ATF,通过调节旋转平台或者镜架改变所述非线性光学元件的角度Δθ,从而获得不同的相位失配量Δk,进而使目标物体图像在不同的空间频率处得到增强。Further, the phase matching controller can be an angle controller, including: a rotating platform or a mirror frame, which is used to adjust the angle of the nonlinear optical element to realize the control of the phase mismatch amount, thereby realizing different spatial frequency Selection; specifically, according to the relationship between the gain transfer function ATF and the phase mismatch Δk, and the relationship between the phase mismatch Δk and the angle Δθ of the nonlinear optical element, different ATFs can be preset, by adjusting the rotating platform or the mirror frame By changing the angle Δθ of the nonlinear optical element, different phase mismatch amounts Δk are obtained, so that the image of the target object is enhanced at different spatial frequencies.
进一步地,所述相位匹配控制器也可以为温度调节器,用于监测并调节所述非线性光学元件的温度,实现对相位失配量的控制,从而实现不同的空间频率选择。Further, the phase matching controller can also be a temperature regulator, which is used to monitor and adjust the temperature of the nonlinear optical element, so as to control the amount of phase mismatch, thereby realizing different spatial frequency selections.
在具体应用中,所述空间频率选择模块3,还可以包括:同步控制模块(图中未示出),用于对所述照明激光器和所述泵浦激光器进行延时控制,实现距离选通,通过改变时间延迟得到不同纵深位置的目标物体图像。In a specific application, the spatial frequency selection module 3 may also include: a synchronous control module (not shown in the figure), which is used to perform delay control on the illumination laser and the pump laser to realize distance gating , by changing the time delay to obtain target object images at different depth positions.
在具体应用中,所述照明激光模块1中的照明激光器和所述空间频率选择模块3中的泵浦激光器的运转模式可以是连续运转或者脉冲运转,对脉冲运转而言,脉宽可以是纳秒、皮秒或飞秒中的一种。In a specific application, the operation mode of the illumination laser in the illumination laser module 1 and the pump laser in the spatial frequency selection module 3 can be continuous operation or pulse operation, and for pulse operation, the pulse width can be nanometers. One of seconds, picoseconds, or femtoseconds.
在具体应用中,所述参量匹配成像模块4,包括:非线性光学元件、输出耦合镜、光束收集器、像传递镜组和线阵电荷耦合元件CCD;In a specific application, the parameter matching imaging module 4 includes: a nonlinear optical element, an output coupling mirror, a beam collector, an image transfer mirror group, and a linear charge-coupled device CCD;
通过所述非线性光学元件的光经所述输出耦合镜后通过所述像传递镜组入射到所述线阵电荷耦合元件CCD上成像,将获得的目标物体0在不同空间频率处的增强图像发送至所述图像处理模块5;所述光束收集器收集通过所述非线性光学元件后的杂散光。The light passing through the nonlinear optical element is incident on the linear charge-coupled element CCD through the image transfer mirror group after the output coupling mirror, and the obtained enhanced image of the target object O at different spatial frequencies Send to the image processing module 5; the beam collector collects the stray light passing through the nonlinear optical element.
具体地,所述非线性光学元件可优选为非线性晶体。Specifically, the nonlinear optical element may preferably be a nonlinear crystal.
在具体应用中,所述图像处理模块5,可包括:图像采集卡和处理器;In a specific application, the image processing module 5 may include: an image acquisition card and a processor;
所述图像采集卡接收所述线阵电荷耦合元件CCD形成的目标物体0在不同空间频率处的增强图像,所述处理器根据预设的空间频率传递函数对所述目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。The image acquisition card receives the enhanced image of the target object 0 at different spatial frequencies formed by the linear array charge-coupled device CCD, and the processor performs the processing of the target object 0 at different spatial frequencies according to a preset spatial frequency transfer function. The frequency-domain operation is performed on the enhanced image at the location to realize image fusion, and a high-fidelity fusion image after the target object image is enhanced is obtained.
具体地,所述处理器可以采用基于小波变换、傅立叶变换、主成分分析PCA或强度色调饱和度IHS变换等算法对所述目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。Specifically, the processor may use algorithms based on wavelet transform, Fourier transform, principal component analysis (PCA) or intensity-hue-saturation-saturation (IHS) transform to perform frequency-domain operations on the enhanced images of the target object 0 at different spatial frequencies to realize image Fusion to obtain a high-fidelity fusion image of the target object image after enhancement.
本实施例的基于多次相位匹配过程的非线性光学成像装置,利用光参量放大过程,将目标物体图像在不同的空间频率处增强,或者利用和频上转换的方式,对目标物体图像信号进行频率的转换,提高整体的效率,然后再采用融合算法来获得高保真的图像。本发明的装置,尤其对于弱的图像信号作用更加明显,这对于远程探测及弱光探测具有极其重要的意义In the nonlinear optical imaging device based on multiple phase matching processes in this embodiment, the image of the target object is enhanced at different spatial frequencies by using the optical parametric amplification process, or the image signal of the target object is processed by using the method of sum-frequency up-conversion Frequency conversion, improve the overall efficiency, and then use the fusion algorithm to obtain high-fidelity images. The device of the present invention is especially effective for weak image signals, which is extremely important for remote detection and weak light detection
第二实施例second embodiment
图3示出了本发明第二实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图,如图3所示,本实施例的基于多次相位匹配过程的非线性光学成像装置,包括:照明激光模块1、图像接收模块2、空间频率选择模块3、参量匹配成像模块4和图像处理模块5;Fig. 3 shows a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the second embodiment of the present invention. As shown in Fig. 3, the nonlinear optical imaging device based on multiple phase matching processes in this embodiment An optical imaging device, comprising: an illumination laser module 1, an image receiving module 2, a spatial frequency selection module 3, a parameter matching imaging module 4 and an image processing module 5;
所述图像接收模块2为成像镜组;所述照明激光模块包括:照明激光器101、整形及发射光学元件102;所述空间频率选择模块3包括:泵浦激光器303、泵浦激光整形光学元件304、输入耦合镜302和旋转平台301;所述参量匹配成像模块4包括:非线性晶体401、输出耦合镜402、光束收集器403、像传递镜组404和线阵电荷耦合元件CCD405;The image receiving module 2 is an imaging lens group; the illumination laser module includes: an illumination laser 101, a shaping and emitting optical element 102; the spatial frequency selection module 3 includes: a pumping laser 303, a pumping laser shaping optical element 304 , an input coupling mirror 302 and a rotating platform 301; the parameter matching imaging module 4 includes: a nonlinear crystal 401, an output coupling mirror 402, a beam collector 403, an image transfer mirror group 404 and a linear charge-coupled element CCD405;
其中,所述照明激光器101发射的照明激光经过所述整形及发射光学元件102整形后照射到目标物体0;成像镜组2接收所述照明激光被目标物体反射的光,形成目标物体图像;所述泵浦激光器303发出的泵浦激光经过所述泵浦激光整形光学元件304的整形后,与成像镜组2形成的目标物体图像的激光同时经过所述输入耦合镜302入射到非线性晶体401;根据增益传递函数ATF与相位失配量Δk,以及相位失配量Δk与非线性晶体401的角度Δθ的关系(参见图5),预设不同的ATF,通过所述旋转平台301调节非线性晶体401的角度Δθ,从而获得不同的相位失配量Δk,进而使目标物体图像在不同的空间频率处得到增强;通过非线性晶体401的光经所述输出耦合镜402后通过所述像传递镜组404入射到所述线阵电荷耦合元件CCD405上成像,将获得的目标物体0在不同空间频率处的增强图像发送至所述图像处理模块5;光束收集器403收集通过非线性晶体401后的杂散光;所述图像处理模块5根据预设的空间频率传递函数对所述参量匹配成像模块4获得的目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。Wherein, the illumination laser emitted by the illumination laser 101 is irradiated to the target object 0 after being shaped by the shaping and emitting optical element 102; the imaging mirror group 2 receives the light reflected by the illumination laser by the target object to form an image of the target object; After the pump laser light emitted by the pump laser 303 is shaped by the pump laser shaping optical element 304, the laser light of the target object image formed by the imaging mirror group 2 enters the nonlinear crystal 401 through the input coupling mirror 302 at the same time. ; According to the gain transfer function ATF and the phase mismatch Δk, and the relationship between the phase mismatch Δk and the angle Δθ of the nonlinear crystal 401 (see Figure 5), different ATFs are preset, and the nonlinearity is adjusted by the rotating platform 301 The angle Δθ of the crystal 401, so as to obtain different phase mismatches Δk, so that the image of the target object is enhanced at different spatial frequencies; the light passing through the nonlinear crystal 401 passes through the output coupling mirror 402 and then passes through the image The mirror group 404 is incident on the linear charge-coupled element CCD405 for imaging, and the obtained enhanced images of the target object 0 at different spatial frequencies are sent to the image processing module 5; stray light; the image processing module 5 performs frequency-domain operations on the enhanced images of the target object 0 obtained by the parameter matching imaging module 4 at different spatial frequencies according to the preset spatial frequency transfer function to realize image fusion and obtain the target High-fidelity fusion image after object image enhancement.
在具体应用中,所述图像处理模块5,可包括:图像采集卡和处理器;In a specific application, the image processing module 5 may include: an image acquisition card and a processor;
所述图像采集卡接收所述线阵电荷耦合元件CCD405形成的目标物体0在不同空间频率处的增强图像,所述处理器根据预设的空间频率传递函数对所述目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。The image acquisition card receives the enhanced images of the target object 0 at different spatial frequencies formed by the linear array charge-coupled element CCD405, and the processor performs the processing of the target object 0 at different spatial frequencies according to a preset spatial frequency transfer function. The frequency-domain operation is performed on the enhanced image at the location to realize image fusion, and a high-fidelity fusion image after the target object image is enhanced is obtained.
具体地,所述处理器可以采用基于小波变换、傅立叶变换、主成分分析PCA或强度色调饱和度IHS变换等算法对所述目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。Specifically, the processor may use algorithms based on wavelet transform, Fourier transform, principal component analysis (PCA) or intensity-hue-saturation-saturation (IHS) transform to perform frequency-domain operations on the enhanced images of the target object 0 at different spatial frequencies to realize image Fusion to obtain a high-fidelity fusion image of the target object image after enhancement.
在本实施例中,本实施例的照明激光模块1发射的激光波长可优选为1064nm,泵浦激光器303输出波长可优选为532nm激光,泵浦光功率密度可优选为1GW/cm2,参量匹配成像模块4可以将目标物体0的微弱反射光进行光参量放大,增加光能量,其中非线性晶体401为BBO晶体,长度为12.5mm,再采用基于傅立叶变换的直接图像融合法,获得高保真的图像;图4为第二实施例在不同相位失配量时的ATF曲线,图中包括相位失配量分别为1.7cm-1、-3.7cm-1、-6.3cm-1、-8.3cm-1时的ATF曲线;图6为第二实施例提供的A、B、C、D对应相位失配量分别为1.7cm-1、-3.7cm-1、-6.3cm-1、-8.3cm-1时不同空间频率处增强后的图像;图7为第二实施例采用基于傅立叶变换的直接图像融合法对图6中的四幅图像各自的较佳部分进行融合的示意图,图7A为第二实施例采用基于傅立叶变换的直接图像融合法对图6中的四幅图像各自的较佳部分进行融合后获得的高保真图像,图7B为输入的信号图像。In this embodiment, the laser wavelength emitted by the illumination laser module 1 of this embodiment may preferably be 1064nm, the output wavelength of the pump laser 303 may preferably be 532nm laser, the pump light power density may preferably be 1GW/cm 2 , and the parameters match The imaging module 4 can perform optical parametric amplification on the weak reflected light of the target object 0 to increase the light energy, wherein the nonlinear crystal 401 is a BBO crystal with a length of 12.5mm, and then adopts the direct image fusion method based on Fourier transform to obtain high-fidelity Image; Figure 4 is the ATF curves of the second embodiment at different phase mismatches, including phase mismatches of 1.7cm -1 , -3.7cm -1 , -6.3cm -1 , -8.3cm -1 ATF curve at time 1 ; Figure 6 shows that the phase mismatches corresponding to A, B, C, and D provided by the second embodiment are 1.7cm -1 , -3.7cm -1 , -6.3cm -1 , -8.3cm - 1. Images after enhancement at different spatial frequencies; FIG. 7 is a schematic diagram of the second embodiment adopting the direct image fusion method based on Fourier transform to fuse the respective preferred parts of the four images in FIG. 6, and FIG. 7A is the second implementation For example, a high-fidelity image is obtained by fusing the best parts of each of the four images in Figure 6 by using the direct image fusion method based on Fourier transform, and Figure 7B is the input signal image.
本实施例的基于多次相位匹配过程的非线性光学成像装置,能够实现对图像在不同空间频率的增强,并将不同空间频率传递函数下的图像进行信息融合,从而获得高保真的图像。The nonlinear optical imaging device based on multiple phase matching processes in this embodiment can enhance images at different spatial frequencies and perform information fusion of images under different spatial frequency transfer functions, thereby obtaining high-fidelity images.
第三实施例third embodiment
图8示出了本发明第三实施例提供的一种基于多次相位匹配过程的非线性光学成像装置的结构示意图,如图8所示,本实施例的基于多次相位匹配过程的非线性光学成像装置与第二实施例的区别是:用温度调节器301’代替旋转平台301;Fig. 8 shows a schematic structural diagram of a nonlinear optical imaging device based on multiple phase matching processes provided by the third embodiment of the present invention. As shown in Fig. 8, the nonlinear optical imaging device based on multiple phase matching processes in this embodiment The difference between the optical imaging device and the second embodiment is: the rotating platform 301 is replaced by a temperature regulator 301';
其中,所述照明激光器101发射的照明激光经过所述整形及发射光学元件102整形后照射到目标物体0;成像镜组2接收所述照明激光被目标物体反射的光,形成目标物体图像;所述泵浦激光器303发出的泵浦激光经过所述泵浦激光整形光学元件304的整形后,与成像镜组2形成的目标物体图像的激光同时经过所述输入耦合镜302入射到非线性晶体401;所述温度调节器301’通过调节非线性晶体401的温度,实现对相位失配量的控制,从而实现不同的空间频率选择;通过非线性晶体401的光经所述输出耦合镜402后通过所述像传递镜组404入射到所述线阵电荷耦合元件CCD405上成像,将获得的目标物体0在不同空间频率处的增强图像发送至所述图像处理模块5;光束收集器403收集通过非线性晶体401后的杂散光;所述图像处理模块5根据预设的空间频率传递函数对所述参量匹配成像模块4获得的目标物体0在不同空间频率处的增强图像进行频域操作,实现图像融合,获得目标物体图像增强后的高保真融合图像。Wherein, the illumination laser emitted by the illumination laser 101 is irradiated to the target object 0 after being shaped by the shaping and emitting optical element 102; the imaging mirror group 2 receives the light reflected by the illumination laser by the target object to form an image of the target object; After the pump laser light emitted by the pump laser 303 is shaped by the pump laser shaping optical element 304, the laser light of the target object image formed by the imaging mirror group 2 enters the nonlinear crystal 401 through the input coupling mirror 302 at the same time. ; The temperature regulator 301' realizes the control of the phase mismatch by adjusting the temperature of the nonlinear crystal 401, thereby realizing different spatial frequency selections; the light passing through the nonlinear crystal 401 passes through the output coupling mirror 402 The image transmission lens group 404 is incident on the linear charge-coupled element CCD405 for imaging, and the obtained enhanced images of the target object 0 at different spatial frequencies are sent to the image processing module 5; Stray light behind the linear crystal 401; the image processing module 5 performs frequency-domain operations on the enhanced images of the target object 0 obtained by the parameter matching imaging module 4 at different spatial frequencies according to the preset spatial frequency transfer function to realize image Fusion to obtain a high-fidelity fusion image of the target object image after enhancement.
在本实施例中,本实施例中的照明激光器101发射的激光波长可优选为1.55μm,属于大气窗口,大气损耗较低。泵浦激光器303输出波长可优选为1064nm,在非线性晶体401中和频后产生631nm激光,将红外激光转换至可见光波段,从而将探测的激光信号范围由探测器量子效率较低的波段转换至量子效率高的波段,其中泵浦光功率密度为1GW/cm2,非线性晶体401为PPLN晶体。通过温度调节器301调节晶体的温度来改变相位失配量Δk。In this embodiment, the wavelength of the laser light emitted by the illumination laser 101 in this embodiment may preferably be 1.55 μm, which belongs to the atmospheric window and has low atmospheric loss. The output wavelength of the pump laser 303 can preferably be 1064nm, and the 631nm laser is generated after the neutralization frequency of the nonlinear crystal 401, and the infrared laser is converted to the visible light band, thereby converting the range of the detected laser signal from the wavelength band with low quantum efficiency of the detector to In the wavelength band with high quantum efficiency, the pump light power density is 1GW/cm 2 , and the nonlinear crystal 401 is a PPLN crystal. The temperature of the crystal is adjusted by the temperature regulator 301 to change the phase mismatch amount Δk.
本实施例的基于多次相位匹配过程的非线性光学成像装置,能够实现对图像在不同空间频率的增强,并将不同空间频率传递函数下的图像进行信息融合,从而获得高保真的图像。The nonlinear optical imaging device based on multiple phase matching processes in this embodiment can enhance images at different spatial frequencies and perform information fusion of images under different spatial frequency transfer functions, thereby obtaining high-fidelity images.
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。Finally, it should be noted that: the above embodiments are only used to illustrate the technical solutions of the present invention, rather than limiting them; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: It is still possible to modify the technical solutions described in the foregoing embodiments, or perform equivalent replacements for some or all of the technical features; and these modifications or replacements do not make the essence of the corresponding technical solutions deviate from the technical solutions of the various embodiments of the present invention. scope.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610531795.8A CN105911792A (en) | 2016-07-04 | 2016-07-04 | Nonlinear optical imaging device based on multiple phase matching processes |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610531795.8A CN105911792A (en) | 2016-07-04 | 2016-07-04 | Nonlinear optical imaging device based on multiple phase matching processes |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105911792A true CN105911792A (en) | 2016-08-31 |
Family
ID=56754439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610531795.8A Pending CN105911792A (en) | 2016-07-04 | 2016-07-04 | Nonlinear optical imaging device based on multiple phase matching processes |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105911792A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107085342A (en) * | 2017-06-22 | 2017-08-22 | 哈尔滨理工大学 | Imaging system with increased optical nonlinear efficiency based on 4f principle |
CN109445227A (en) * | 2018-11-28 | 2019-03-08 | 安徽理工大学 | A kind of nonlinear optics imaging system of multiple phase matched |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060118765A (en) * | 2005-05-17 | 2006-11-24 | 학교법인단국대학 | Second harmonic generation system achieves fast phase-matching temperature balance of nonlinear optical crystals |
CN101191970A (en) * | 2006-11-20 | 2008-06-04 | 中国科学院西安光学精密机械研究所 | Ultrafast Optical Parametric Image Enlargement Method and Device |
CN102316282A (en) * | 2011-09-20 | 2012-01-11 | 中国科学院理化技术研究所 | Image noise reduction device based on optics dolby |
CN104076574A (en) * | 2013-03-29 | 2014-10-01 | 中国科学院理化技术研究所 | Optical image enhancement device and method |
CN104730800A (en) * | 2013-12-24 | 2015-06-24 | 中国科学院理化技术研究所 | Optical image enhancement method and device |
-
2016
- 2016-07-04 CN CN201610531795.8A patent/CN105911792A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20060118765A (en) * | 2005-05-17 | 2006-11-24 | 학교법인단국대학 | Second harmonic generation system achieves fast phase-matching temperature balance of nonlinear optical crystals |
CN101191970A (en) * | 2006-11-20 | 2008-06-04 | 中国科学院西安光学精密机械研究所 | Ultrafast Optical Parametric Image Enlargement Method and Device |
CN102316282A (en) * | 2011-09-20 | 2012-01-11 | 中国科学院理化技术研究所 | Image noise reduction device based on optics dolby |
CN104076574A (en) * | 2013-03-29 | 2014-10-01 | 中国科学院理化技术研究所 | Optical image enhancement device and method |
CN104730800A (en) * | 2013-12-24 | 2015-06-24 | 中国科学院理化技术研究所 | Optical image enhancement method and device |
Non-Patent Citations (3)
Title |
---|
张腾飞等: "基于光参量变频与放大的高灵敏红外成像技术", 《物理学报》 * |
文侨等: "用于荧光显微镜的正交偏振滤波图像增强技术", 《中国激光》 * |
王伟伟: "4光参量微弱图像增强技术的实用化探索", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107085342A (en) * | 2017-06-22 | 2017-08-22 | 哈尔滨理工大学 | Imaging system with increased optical nonlinear efficiency based on 4f principle |
CN109445227A (en) * | 2018-11-28 | 2019-03-08 | 安徽理工大学 | A kind of nonlinear optics imaging system of multiple phase matched |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gorodetsky et al. | Physics of the conical broadband terahertz emission from two-color laser-induced plasma filaments | |
US20230099476A1 (en) | Mid-infrared upconversion imaging method and device | |
CN102629066B (en) | Laser source device of coherent anti-Stokes Raman scattering microscopic system and production method thereof | |
JP6946282B2 (en) | Sub-nanosecond wide spectrum generation laser system | |
JP2019518193A (en) | System and method for high contrast / quasi real time acquisition of terahertz images | |
CN108873558A (en) | A kind of chirp compensation optically erasing method and device of Broadband pump | |
Lassonde et al. | High gain frequency domain optical parametric amplification | |
CN101191970B (en) | Ultrafast Optical Parametric Image Enlargement Method and Device | |
CN105911792A (en) | Nonlinear optical imaging device based on multiple phase matching processes | |
Yang et al. | Frequency up-conversion of an infrared image via a flat-top pump beam | |
CN107505797A (en) | High-energy terahertz pulse generation device | |
He et al. | 520-µJ mid-infrared femtosecond laser at 2.8 µm by 1-kHz KTA optical parametric amplifier | |
Maestre et al. | IR image upconversion under dual-wavelength laser illumination | |
CN109959630B (en) | Lens-free terahertz wave imaging system and method | |
CN110954498A (en) | A Frequency Conversion Based Terahertz Wave Hyperspectral Imaging System | |
US11009772B2 (en) | Multi-frequency infrared imaging based on frequency conversion | |
Shang et al. | Frequency down-conversion of a dual-wavelength fiber laser | |
CN117713940A (en) | A method and system for preparing and characterizing position-momentum entanglement sources | |
CN105305214A (en) | Method for acquiring high repetition frequency and large energy ultraviolet tunable laser pulses | |
CN211528873U (en) | Device for generating terahertz waves by collinear circular polarization long-wave bicolor field | |
Olafsen et al. | Time-dependent spatial intensity profiles of near-infrared idler pulses from nanosecond optical parametric oscillators | |
Xu et al. | Generation of terahertz radiation by optical rectification using femtosecond Bessel beam | |
Nemoto et al. | Single-shot ultrafast burst imaging by spectrally sweeping pulse train with 100-ps interval | |
Allevi et al. | Spatio-spectral characterization of twin-beam states of light for quantum state engineering | |
CN111045272A (en) | Device and method for generating terahertz waves by collinear circular polarization long-wave bicolor field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160831 |