CN105911606A - 一种采动覆岩运动规律原位观测钻孔布置方法 - Google Patents

一种采动覆岩运动规律原位观测钻孔布置方法 Download PDF

Info

Publication number
CN105911606A
CN105911606A CN201610322601.3A CN201610322601A CN105911606A CN 105911606 A CN105911606 A CN 105911606A CN 201610322601 A CN201610322601 A CN 201610322601A CN 105911606 A CN105911606 A CN 105911606A
Authority
CN
China
Prior art keywords
phase
boring
observation
rock
strata
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610322601.3A
Other languages
English (en)
Other versions
CN105911606B (zh
Inventor
朱卫兵
李竹
鞠金峰
许家林
徐敬民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201610322601.3A priority Critical patent/CN105911606B/zh
Publication of CN105911606A publication Critical patent/CN105911606A/zh
Application granted granted Critical
Publication of CN105911606B publication Critical patent/CN105911606B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/02Prospecting

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

一种采动覆岩运动规律原位观测钻孔布置方法,适用于采矿工程领域使用。利用关键层理论确定覆岩各关键层破断范围垂向重叠区域,进而确定工作面初采期、工作面覆岩周期破断期原位观测钻孔布设位置及各钻孔间距,即可以最少的地面钻孔数目观测到覆岩多层乃至全部关键层的破断运动,据此提出采动覆岩运动规律原位观测钻孔布置方案。避免传统方法中钻孔位置确定的盲目性、随意性,同时由于单个钻孔即可实现覆岩多层关键层破断运动的实时监测,因而极大地提高了地面钻孔观测采动覆岩运动规律的可靠性及其利用率,以最少的地面钻孔数目达成研究目标,确保了经济利益最大化的实现。

Description

一种采动覆岩运动规律原位观测钻孔布置方法
技术领域
本发明涉及一种观测钻孔布置方法,尤其适用于一种采矿工程领域使用的采动覆岩运动规律原位观测钻孔布置方法。
背景技术
伴随着地下煤炭资源的采出,采动空间围岩同时产生一定程度的变形及破坏,采动岩体损害突出变现为诱发部分矿井灾害事故及对环境的影响。如:①危及井下工作人员的安全及设备的正常运行,如顶板冒落,矿井突水;②采动裂隙引发地下水资源流失,在干旱地区更为显著,加剧土体沙化;③开采沉陷破坏地表建(构)筑物。上述所有的下自采场矿压、中至裂隙发育、上到地表沉陷的危害均与采动覆岩运动紧密相关,因此,掌握整个采动覆岩的运动规律是解决采动岩体损害问题的关键所在,对于实现科学采矿具有重要意义。
现有的关于采动覆岩运动规律的实测研究多采用在地面钻孔内布置岩层测点方法,测点固定于某一岩层,当该岩层发生运动时,固定于此的测点发生同步运动,同时地面固定装置感知测点相对位置的变化,借此实现岩层运动的实时监测。然而传统方法中地面钻孔的布置存在一定的盲目性和随意性,且钻孔施工数量多,同时周期长,费用高昂,孔内还会出现多个测点相互影响,严重时甚至造成钻孔报废的现象,严重浪费工程时间和工程经费。
发明内容
技术问题:针对上述技术问题,提供一种步骤简单,施工量小,钻孔数需要少,效果好的采动覆岩运动规律原位观测钻孔布置方法。
技术方案:本发明的采动覆岩运动规律原位观测钻孔布置方法,步骤如下:
a.收集开采区域地质信息,获取该区域地层全柱状,利用岩层运动的关键层理论,获取覆岩全柱状中覆岩关键层位置和相关参数,计算获得覆岩关键层极限跨距li、初次破断距Li、周期破断距Li';
b.在开采区工作面初采期布置初采期观测钻孔:沿工作面倾向的中部依次布置多组初采期观测钻孔组,每组初采期观测钻孔组间距应小于覆岩主关键层破断距的一半;所述初采期观测钻孔组包括初采期岩层运动原位观测钻孔Ⅰ、初采期岩层运动原位观测钻孔Ⅱ和1个初采期钻孔电视观测钻孔,根据覆岩各关键层初次破断距Li,布置的初采期岩层运动原位观测钻孔Ⅰ、初采期岩层运动原位观测钻孔Ⅱ与工作面切眼间距分别为a、b,初采期钻孔电视观测钻孔与工作面切眼间距分别为b;初采期岩层运动原位观测钻孔Ⅱ与初采期钻孔电视观测钻孔的倾向间距为c;
c.在开采区工作面覆岩周期破断期布置破断期观测钻孔;沿工作面倾向的中部依次布置破断期观测钻孔组,每组破断期观测钻孔组间距大于覆岩主关键层周期破断距;所述破断期钻孔组包括破断期岩层运动原位观测钻孔Ⅰ、破断期岩层运动原位观测钻孔Ⅱ和1个破断期钻孔电视观测钻孔,通过覆岩各关键层周期破断距Li',布置的破断期岩层运动原位观测钻孔Ⅰ、破断期岩层运动原位观测钻孔Ⅱ与工作面切眼距离分别为d,e,破断期钻孔电视观测钻孔与工作面切眼间距分别为e,破断期岩层运动原位观测钻孔与破断期钻孔电视观测钻孔倾向间距为f。
所述初采期岩层运动原位观测钻孔Ⅰ、初采期岩层运动原位观测钻孔Ⅱ、初采期钻孔电视观测钻孔、破断期岩层运动原位观测钻孔Ⅰ、破断期岩层运动原位观测钻孔Ⅱ和破断期钻孔电视观测钻孔的钻孔深度均以覆岩第1层亚关键层为准,直至钻进覆岩第1层亚关键层底界面为止;
为避免所有钻孔受到工作面回采的超前影响而出现孔内错断、孔壁坍塌进而造成堵孔的现象,所有钻孔施工工作应超前工作面200m左右完成,并保证所有钻孔在岩层移动监测设备安装之前完好;
利用公式:计算覆岩关键层极限跨距li;利用公式:计算覆岩关键层初次破断距Li;利用公式计算覆岩关键层周期破断距Li′;式中:i取值为i=1、2、3、4,即分别表示亚关键层1、亚关键层2、亚关键层3、主关键层MKS,Rt为覆岩关键层岩性抗拉强度,qi为覆岩关键层载荷量,hi为覆岩关键层厚度,Σhi为覆岩关键层距煤层顶板距离;
所述工作面覆岩初采期布置的初采期观测钻孔与工作面切眼距离a满足L1<a<L2;初采期观测钻孔与切眼距离为b,b满足L3<b<L4,且初采期观测钻孔与初采期观测钻孔的钻孔间距为Δ,Δ=b-a<L4/2;初采期钻孔电视观测钻孔与初采期观测钻孔间距c=10m~20m;
所述工作面覆岩周期破断期,布置的破断期岩层运动原位观测钻孔与工作面切眼距离为d满足:L4+(n-1)L4'<d<L4+nL4';破断期岩层运动原位观测钻孔与工作面切眼距离为e满足:e>d+L4',即破断期岩层运动原位观测钻孔和破断期岩层运动原位观测钻孔钻孔间距Δ满足Δ>L4';同时破断期钻孔电视观测钻孔与破断期岩层运动原位观测钻孔间距为f=10m~20m;式中n标示覆岩关键层主关键层已经历的周期破断数目。
有益效果:在达成研究目标的前提下,由于采用采动覆岩运动规律原位观测钻孔布置方案,不需要额外添加过多的钻孔,最大限度地利用原位钻孔,减少钻孔数量,使得前期投入大幅减小,充分观测采动覆岩各岩层在初期和破断期的不同开采阶段的运动规律,并可以实现长期观测,避免传统布置方法中钻孔位置确定的盲目性、随意性,降低前期工程投入。
附图说明
图1是本发明的覆岩关键层极限跨距图。
图2是本发明的工作面覆岩初采期岩层移动观测孔布置位置图。
图3是本发明的工作面覆岩周期破断期岩层移动观测孔布置图。
图中:1-初采期岩层移动观测孔Ⅰ,2-初采期岩层移动观测孔Ⅱ,3-初采期钻孔电视观测孔,4-破断期岩层移动观测孔Ⅰ,5-破断期岩层移动观测孔Ⅱ,6-破断期钻孔电视观测孔,7-工作面切眼,8-工作面运输巷,9-工作面回风巷,10-切眼后方实体煤,11-工作面后方采空区。
具体实施方式
下面结合附图,对本发明的实施案例做进一步描述:
如图1、图2和图3所示,本发明的采动覆岩运动规律原位观测钻孔布置方法,其步骤如下:
a.收集开采区域地质信息,获取该区域地层全柱状,利用岩层运动的关键层理论,获取覆岩全柱状中覆岩关键层位置和相关参数,利用公式:计算覆岩关键层极限跨距li;利用公式:计算覆岩关键层初次破断距Li;利用公式计算覆岩关键层周期破断距Li′;式中:i取值为i=1、2、3、4,即分别表示亚关键层1(KS1)、亚关键层2(KS2)、亚关键层3(KS3)、主关键层(MKS),Rt为覆岩关键层岩性抗拉强度,qi为覆岩关键层载荷量,hi为覆岩关键层厚度,Σhi为覆岩关键层距煤层顶板距离;
b.在开采区工作面初采期布置初采期观测钻孔:沿工作面倾向的中部依次布置多组初采期观测钻孔组,每组初采期观测钻孔组间距应小于覆岩主关键层破断距的一半;所述初采期观测钻孔组包括初采期岩层运动原位观测钻孔Ⅰ1、初采期岩层运动原位观测钻孔Ⅱ2和1个初采期钻孔电视观测钻孔3,根据覆岩各关键层初次破断距Li,布置的初采期岩层运动原位观测钻孔Ⅰ1、初采期岩层运动原位观测钻孔Ⅱ2与工作面切眼7间距分别为a、b,初采期钻孔电视观测钻孔3与工作面切眼7间距分别为b;初采期岩层运动原位观测钻孔Ⅱ2与初采期钻孔电视观测钻孔3的倾向间距为c,所述工作面覆岩初采期布置的初采期观测钻孔1与工作面切眼距离a满足L1<a<L2;初采期观测钻孔2与切眼距离为b,b满足L3<b<L4,且初采期观测钻孔1与初采期观测钻孔2的钻孔间距为Δ,Δ=b-a<L4/2;初采期钻孔电视观测钻孔3与初采期观测钻孔2间距c=10m~20m;
c.在开采区工作面覆岩周期破断期布置破断期观测钻孔;沿工作面倾向的中部依次布置破断期观测钻孔组,每组破断期观测钻孔组间距大于覆岩主关键层周期破断距;所述破断期钻孔组包括破断期岩层运动原位观测钻孔Ⅰ4、破断期岩层运动原位观测钻孔Ⅱ5和1个破断期钻孔电视观测钻孔6,通过覆岩各关键层周期破断距Li',布置的破断期岩层运动原位观测钻孔Ⅰ4、破断期岩层运动原位观测钻孔Ⅱ5与工作面切眼7距离分别为d,e,破断期钻孔电视观测钻孔6与工作面切眼7间距分别为e,破断期岩层运动原位观测钻孔5与破断期钻孔电视观测钻孔6倾向间距为f,所述工作面覆岩周期破断期,布置的破断期岩层运动原位观测钻孔4与工作面切眼距离为d满足:L4+(n-1)L4'<d<L4+nL4';破断期岩层运动原位观测钻孔5与工作面切眼距离为e满足:e>d+L4',即破断期岩层运动原位观测钻孔4和破断期岩层运动原位观测钻孔5钻孔间距Δ满足Δ>L4';同时破断期钻孔电视观测钻孔6与破断期岩层运动原位观测钻孔5间距为f=10m~20m;式中n标示覆岩关键层主关键层已经历的周期破断数目。
所述初采期岩层运动原位观测钻孔Ⅰ1、初采期岩层运动原位观测钻孔Ⅱ2、初采期钻孔电视观测钻孔3、破断期岩层运动原位观测钻孔Ⅰ4、破断期岩层运动原位观测钻孔Ⅱ5和破断期钻孔电视观测钻孔6的钻孔深度均以覆岩第1层亚关键层为准,直至钻进覆岩第1层亚关键层底界面为止;为避免所有钻孔受到工作面回采的超前影响而出现孔内错断、孔壁坍塌进而造成堵孔的现象,所有钻孔施工工作应超前工作面200m左右完成,并保证所有钻孔在岩层移动监测设备安装之前完好。
以某矿8203工作面为实施例:
如图1所示:图中Li为关键层初次破断距;li为关键层极限跨距;Σhi为关键层与煤层顶板距离;θ为采动覆岩岩层破断角;
a.根据开采区域地质信息,获取该区域地层全柱状,基于“岩层控制的关键层”理论,对覆岩全柱状加以判别,确定关键层位置;
判别结果如下表1所示:
表1
b.覆岩关键层距煤层顶板距离Σhi、岩层破断角θ、关键层载荷量Qi、关键层厚度hi、关键层岩性物理力学力学参数(抗拉强度Rt)如表2所示,覆岩关键层极限跨距li、初次破断距Li、周期破断距Li';
计算结果如表2所示:
表2 8203工作面覆岩关键层参数
c.确定覆岩各层关键层极限跨距垂向重合区域,借此确定开采区域初采期、周期破短期原位钻孔布置位置。
(1)工作面初采期:沿工作面推进方向布置2个岩层移动观测钻孔,记为1#、2#钻孔,1#钻孔与切眼距离为a,a满足如下关系:L1<a<L2,取a=60m;2#钻孔与切眼距离为b,b满足如下关系:L3<b<L4,且1#、2#钻孔间距为Δ,Δ=b-a<L4/2,取b=60m,同时钻孔电视观测孔3#与2#钻孔间距为c=15m,辅助观测岩层运动、裂隙发育等,工作面初采期采动覆岩运动原位观测钻孔如图3所示。
(2)工作面覆岩周期破断期:沿工作面推进方向布置2个岩层移动观测钻孔,记为4#、5#钻孔,4#钻孔与工作面切眼距离为d且L4+(n-1)L4'<d<L4+nL4',取d=1190m;5#钻孔与切眼距离为e且e>d+L4',取e=1230m,同时钻孔电视观测孔6#与5#钻孔间距为f,取f=15m,辅助观测岩层运动、裂隙发育等。
d.原位观测钻孔深度要求至覆岩第1层亚关键层底界面,钻孔深度为460m。
e.初采期覆岩运动原位观测钻孔应于工作面回采之前施工完毕;周期破断期覆岩运动原位观测钻孔应于工作面推进至900m前施工完毕,同时留下一定的孔内设备布置时间。
采用上述采动覆岩运动规律原位观测的钻孔布置方法,即可观测采动覆岩关键层初次破断、周期破断运动特征,同时结合钻孔电视观测钻孔,掌握覆岩关键层初次破断、周期破断运动规律及其对采场矿压的影响特征、工作面回采过程中采动覆岩两带(垮落带、裂隙带)动态发育规律等。

Claims (6)

1.一种采动覆岩运动规律原位观测钻孔布置方法,其特征在于步骤如下:
a.收集开采区域地质信息,获取该区域地层全柱状,利用岩层运动的关键层理论,获取覆岩全柱状中覆岩关键层位置和相关参数,计算获得覆岩关键层极限跨距li、初次破断距Li、周期破断距Li';
b.在开采区工作面初采期布置初采期观测钻孔:沿工作面倾向的中部依次布置多组初采期观测钻孔组,每组初采期观测钻孔组间距应小于覆岩主关键层破断距的一半;所述初采期观测钻孔组包括初采期岩层运动原位观测钻孔Ⅰ(1)、初采期岩层运动原位观测钻孔Ⅱ(2)和1个初采期钻孔电视观测钻孔(3),根据覆岩各关键层初次破断距Li,布置的初采期岩层运动原位观测钻孔Ⅰ(1)、初采期岩层运动原位观测钻孔Ⅱ(2)与工作面切眼(7)间距分别为a、b,初采期钻孔电视观测钻孔(3)与工作面切眼(7)间距分别为b;初采期岩层运动原位观测钻孔Ⅱ(2)与初采期钻孔电视观测钻孔(3)的倾向间距为c;
c.在开采区工作面覆岩周期破断期布置破断期观测钻孔;沿工作面倾向的中部依次布置破断期观测钻孔组,每组破断期观测钻孔组间距大于覆岩主关键层周期破断距;所述破断期钻孔组包括破断期岩层运动原位观测钻孔Ⅰ(4)、破断期岩层运动原位观测钻孔Ⅱ(5)和1个破断期钻孔电视观测钻孔(6),通过覆岩各关键层周期破断距Li',布置的破断期岩层运动原位观测钻孔Ⅰ(4)、破断期岩层运动原位观测钻孔Ⅱ(5)与工作面切眼(7)距离分别为d,e,破断期钻孔电视观测钻孔(6)与工作面切眼(7)间距分别为e,破断期岩层运动原位观测钻孔(5)与破断期钻孔电视观测钻孔(6)倾向间距为f。
2.根据权利要求1所述的采动覆岩运动规律原位观测钻孔布置方法,其特征在于:所述初采期岩层运动原位观测钻孔Ⅰ(1)、初采期岩层运动原位观测钻孔Ⅱ(2)、初采期钻孔电视观测钻孔(3)、破断期岩层运动原位观测钻孔Ⅰ(4)、破断期岩层运动原位观测钻孔Ⅱ(5)和破断期钻孔电视观测钻孔(6)的钻孔深度均以覆岩第1层亚关键层为准,直至钻进覆岩第1层亚关键层底界面为止。
3.根据权利要求1或2所述的采动覆岩运动规律原位观测钻孔布置方法,其特征在于:为避免所有钻孔受到工作面回采的超前影响而出现孔内错断、孔壁坍塌进而造成堵孔的现象,所有钻孔施工工作应超前工作面200m左右完成,并保证所有钻孔在岩层移动监测设备安装之前完好。
4.根据权利要求1所述的采动覆岩运动规律原位观测钻孔布置方法,其特征在于:利用公式:计算覆岩关键层极限跨距li;利用公式:计算覆岩关键层初次破断距Li;利用公式计算覆岩关键层周期破断距Li′;式中:i取值为i=1、2、3、4,即分别表示亚关键层1(KS1)、亚关键层2(KS2)、亚关键层3(KS3)、主关键层(MKS),Rt为覆岩关键层岩性抗拉强度,qi为覆岩关键层载荷量,hi为覆岩关键层厚度,Σhi为覆岩关键层距煤层顶板距离。
5.根据权利要求1或4所述的采动覆岩运动规律原位观测钻孔布置方法,其特征在于:所述工作面覆岩初采期布置的初采期观测钻孔(1)与工作面切眼距离a满足L1<a<L2;初采期观测钻孔(2)与切眼距离为b,b满足L3<b<L4,且初采期观测钻孔(1)与初采期观测钻孔(2)的钻孔间距为Δ,Δ=b-a<L4/2;初采期钻孔电视观测钻孔(3)与初采期观测钻孔(2)间距c=10m~20m。
6.根据权利要求1或4所述的采动覆岩运动规律原位观测钻孔布置方法,其特征在于:所述工作面覆岩周期破断期,布置的破断期岩层运动原位观测钻孔(4)与工作面切眼距离为d满足:L4+(n-1)L4'<d<L4+nL4';破断期岩层运动原位观测钻孔(5)与工作面切眼距离为e满足:e>d+L4',即破断期岩层运动原位观测钻孔(4)和破断期岩层运动原位观测钻孔(5)钻孔间距Δ满足Δ>L4';同时破断期钻孔电视观测钻孔(6)与破断期岩层运动原位观测钻孔(5)间距为f=10m~20m;式中n标示覆岩关键层主关键层已经历的周期破断数目。
CN201610322601.3A 2016-05-16 2016-05-16 一种采动覆岩运动规律原位观测钻孔布置方法 Active CN105911606B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610322601.3A CN105911606B (zh) 2016-05-16 2016-05-16 一种采动覆岩运动规律原位观测钻孔布置方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610322601.3A CN105911606B (zh) 2016-05-16 2016-05-16 一种采动覆岩运动规律原位观测钻孔布置方法

Publications (2)

Publication Number Publication Date
CN105911606A true CN105911606A (zh) 2016-08-31
CN105911606B CN105911606B (zh) 2018-02-23

Family

ID=56748107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610322601.3A Active CN105911606B (zh) 2016-05-16 2016-05-16 一种采动覆岩运动规律原位观测钻孔布置方法

Country Status (1)

Country Link
CN (1) CN105911606B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165676A (zh) * 2017-06-26 2017-09-15 中国矿业大学 岩层控制的三位一体监测方法
CN109162712A (zh) * 2018-08-30 2019-01-08 北京矿冶科技集团有限公司 一种控制崩落采空区上覆围岩不均匀沉降的方法
CN110836125A (zh) * 2019-11-19 2020-02-25 大同煤矿集团有限责任公司 多层位关键层渐次破断超前作用范围测定方法
CN112344926A (zh) * 2020-10-15 2021-02-09 青岛本末岩控技术有限公司 一种基于6轴惯性测量单元监测采动覆岩运动的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043620A1 (en) * 1998-04-23 2002-04-18 Tchakarov Borislav J. Down hole gas analyzer method and apparatus
CN101109283A (zh) * 2007-08-20 2008-01-23 太原理工大学 一种蹬空开采可行性的定量判定方法
CN102928144A (zh) * 2012-10-14 2013-02-13 中国矿业大学 一种采空区应力实时监测系统及覆岩破断判断方法
CN104074520A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种浅埋近距离一侧采空煤柱下切眼位置的确定方法
CN104251139A (zh) * 2013-06-26 2014-12-31 河南理工大学 采煤工作面冒落区充填开采方法
CN104462659A (zh) * 2014-11-13 2015-03-25 辽宁工程技术大学 一种坚硬覆岩复合矿压显现分析方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020043620A1 (en) * 1998-04-23 2002-04-18 Tchakarov Borislav J. Down hole gas analyzer method and apparatus
CN101109283A (zh) * 2007-08-20 2008-01-23 太原理工大学 一种蹬空开采可行性的定量判定方法
CN102928144A (zh) * 2012-10-14 2013-02-13 中国矿业大学 一种采空区应力实时监测系统及覆岩破断判断方法
CN104251139A (zh) * 2013-06-26 2014-12-31 河南理工大学 采煤工作面冒落区充填开采方法
CN104074520A (zh) * 2014-06-25 2014-10-01 中国矿业大学 一种浅埋近距离一侧采空煤柱下切眼位置的确定方法
CN104462659A (zh) * 2014-11-13 2015-03-25 辽宁工程技术大学 一种坚硬覆岩复合矿压显现分析方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王路军,等: "浅埋深极近距离煤层工作面矿压显现规律研究", 《煤炭科学技术》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107165676A (zh) * 2017-06-26 2017-09-15 中国矿业大学 岩层控制的三位一体监测方法
WO2019000839A1 (zh) * 2017-06-26 2019-01-03 中国矿业大学 岩层控制的三位一体监测方法
CN109162712A (zh) * 2018-08-30 2019-01-08 北京矿冶科技集团有限公司 一种控制崩落采空区上覆围岩不均匀沉降的方法
CN110836125A (zh) * 2019-11-19 2020-02-25 大同煤矿集团有限责任公司 多层位关键层渐次破断超前作用范围测定方法
CN110836125B (zh) * 2019-11-19 2021-07-13 晋能控股煤业集团有限公司 多层位关键层渐次破断超前作用范围测定方法
CN112344926A (zh) * 2020-10-15 2021-02-09 青岛本末岩控技术有限公司 一种基于6轴惯性测量单元监测采动覆岩运动的方法

Also Published As

Publication number Publication date
CN105911606B (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN109611143B (zh) 顶板水压致裂多参量综合监测系统及致裂效果判别方法
CN107165676B (zh) 岩层控制的三位一体监测方法
CN209761499U (zh) 顶板水压致裂多参量综合监测系统
CN103742145B (zh) 煤矿富水异常区域防治水方法
CN106089296B (zh) 一种煤层顶板离层水的防治办法
CN105911606A (zh) 一种采动覆岩运动规律原位观测钻孔布置方法
CN102383779B (zh) 双层采空区钻孔探测方法
CN103147737A (zh) 一种上行开采覆岩破坏规律的钻孔探测方法
CN103993878A (zh) 一种导水断裂带高度预计方法
CN107044280A (zh) 一种采动覆岩离层分布特征的钻孔注浆探测方法
CN102080518A (zh) 煤层顶板复杂分支井抽采瓦斯方法
CN112879011B (zh) 一种含水层下坚硬覆岩预裂弱化控制导水裂缝带高度方法
Liu et al. Analysis of overburden structure and pressure‐relief effect of hard roof blasting and cutting
CN107816366B (zh) 一种多层采空区充填井成井工法
US11732548B2 (en) Ground double-hole combined water inrush prevention method for overlying strata movement monitoring and bed separation water drainage
AU2021106168A4 (en) High-gas Coal Seam Group Pressure Relief Mining Method Based on Gob-side Entry Retaining in the First Mining Whole Rock Pressure Relief Working Face
CN101270666A (zh) 隧道掌子面前方地质情况扩大断面水平钻孔预测预报法
CN109519149A (zh) 一种煤层气穿越采空区井全井固井方法
CN110671093A (zh) 一种基于钻孔摄像的覆岩活动规律综合探测方法
CN103216264A (zh) 预裂爆破回采巷道基本顶岩层控制围岩变形的方法
Shang et al. The drainage horizon determination of high directional long borehole and gas control effect analysis
Meng et al. In situ investigation and numerical simulation of the failure depth of an inclined coal seam floor: a case study
CN109098711A (zh) 一种利用卸压槽阻断矿体上部高应力的方法
CN109779634B (zh) 煤矿地面垂直井压裂坚硬顶板位置确定方法
CN110778317A (zh) 一种采动过程中垮落带内地面注浆充填钻孔结构施工方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant