CN105909536B - 一种离心泵气液两相流性能测试系统及其测试方法 - Google Patents

一种离心泵气液两相流性能测试系统及其测试方法 Download PDF

Info

Publication number
CN105909536B
CN105909536B CN201610304930.5A CN201610304930A CN105909536B CN 105909536 B CN105909536 B CN 105909536B CN 201610304930 A CN201610304930 A CN 201610304930A CN 105909536 B CN105909536 B CN 105909536B
Authority
CN
China
Prior art keywords
gas
pump
inlet
centrifugal pump
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610304930.5A
Other languages
English (en)
Other versions
CN105909536A (zh
Inventor
崔宝玲
陈杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sci Tech University ZSTU
Original Assignee
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sci Tech University ZSTU filed Critical Zhejiang Sci Tech University ZSTU
Priority to CN201610304930.5A priority Critical patent/CN105909536B/zh
Publication of CN105909536A publication Critical patent/CN105909536A/zh
Application granted granted Critical
Publication of CN105909536B publication Critical patent/CN105909536B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines

Abstract

本发明公开了一种离心泵气液两相流性能测试系统及其测试方法。主要由储液罐、进口管路、进气管支路、变频泵机组和出口管路组成,储液罐中部的进口经出口管路连接到变频泵机组的出口端,变频泵机组的进口端经进口管路连接到储液罐底部的出口,进口管路上还连接有进气管支路;采集压力传感器信号和变频泵机组扭矩仪得到不同含气量的气液两相流下扬程和效率曲线;通过分析振动加速度传感器的信号得到流量振动曲线;采集入口压力和压力传感器信号得到离心泵在不同含气量的气液两相流汽蚀性能曲线。本发明形成了一个闭式循环回路,可实现离心泵气液两相流性能测试、振动测试、汽蚀性能测试等。系统结构简单、测试效率高且测试精度高。

Description

一种离心泵气液两相流性能测试系统及其测试方法
技术领域
本发明涉及一种泵性能测试领域,特别是涉及了一种离心泵气液两相流性能测试系统及其测试方法。
背景技术
气液两相流广泛存在于各种不同的流体传输领域,尤其在石油天然气、医疗和化工等行业得到广泛应用,而作为流体传输技术核心的离心泵已成为目前研究的热点。
离心泵作为输送流体的主要设备,属于叶片式泵,具有扬程高、效率高等特点。然而离心泵一般输送单相流体。气液两相流输送下,离心泵的性能将会发生显著改变。
目前国内对于离心泵气液两相流性能试验研究很少,原因有两点:一是在于试验中模拟气液两相流测试泵测试系统很难建立;二是离心泵在含气量较高的时候会发生堵塞流道现象,导致离心泵无法工作。正是因为我们对气液两相流输送下离心泵性能的了解需求如此迫切,所以有必要对于离心泵气液两相流性能测试系统的建立。
发明内容
为了解决背景技术中存在的问题,本发明提供了一种离心泵气液两相流性能测试系统及其测试方法,具有结构简单,安装方便,能有效地测试离心泵气液两相流性能的优点。
本发明采用以下技术方案来实现:
一、一种离心泵气液两相流性能测试系统:
所述的泵测试系统为主要由储液罐、进口管路、进气管支路、变频泵机组和出口管路组成的一个闭式循环回路,储液罐中部的进口经出口管路连接到变频泵机组的出口端,变频泵机组的进口端经进口管路连接到储液罐底部的出口,进口管路上还连接有进气管支路。
所述的储液罐顶部连接有排气阀和真空泵。
所述的进口管路包括进水截止阀、第一电磁流量计、进水调节阀、气液混合装置和进口测压管,变频泵机组的进口端经进口测压管连接到气液混合装置的输出口,气液混合装置气相输入口连接进气管支路,气液混合装置的输入口依次经进水调节阀、第一电磁流量计、进水截止阀连接到储液罐罐底部的出口。
所述的进气管支路包括空气压缩机、储气罐、进气调节阀、转子流量计和进气截止阀,空气压缩机连接储气罐,储气罐依次经进气调节阀、转子流量计和进气截止阀后连接到气液混合装置的气相输入口;进气管支路通过进气调节阀和转子流量计之间形成反馈对进气量进行控制。
所述的出口管路包括出口测压管、测温管、出口调节阀、气液分离罐、第二电磁流量计和出口截止阀,储液罐罐中部的进口依次经出口截止阀、第二电磁流量计连接到气液分离罐,气液分离罐经出口调节阀与测温管的一端连接,测温管另一端经出口测压管与变频泵机组的出口端相连。
所述变频泵机组的离心泵在转速运行时,液体从储液罐流出,通过出口调节阀调节流量,然后通过进气管支路的进气调节阀调节进气量,使气体和液体在气液混合装置中均匀混合,混合后的气液两相流体经过离心泵,在出口管路中的气液分离罐中分离,气体充分排出,液体经过出口管路回到储液罐。
所述的进水调节阀和进气调节阀均为手动控制。
二、一种离心泵气液两相流性能测试方法:采用上述测试系统,采用以下方式分别测量获得扬程和效率关系数据、流量振动数据和气液两相流汽蚀性能数据:
A)对进口测压管和出口测压管的压力传感器信号和变频泵机组扭矩仪的信号进行采集,通过以下公式得到离心泵在不同含气量的气液两相流下的扬程和效率;
B)在变频泵机组的离心泵蜗壳上安装振动加速度传感器,通过调节不同的流量,采集不同流量下振动加速度传感器的信号,经分析处理得到该流量的振动幅值曲线;
C)通过储液罐上的真空泵调节变频泵机组的离心泵的入口压力,然后对离心泵进出口的进口测压管和出口测压管上的压力传感器信号进行采集,通过以下公式得到对应的泵的汽蚀余量以及扬程,进而得到离心泵在不同含气量的气液两相流汽蚀性能曲线。
所述步骤A)中在不同含气量的气液两相流下的扬程和效率采用以下方式计算得到:
A.1)由进水流量和进气流量采用以下公式计算获得气液两相流总流量Qm
Qm=qw+qg
式中,qw——进水流量;qg——进气流量;
A.2)由气液两相流总流量Qm采用以下公式计算获得混合后的密度ρm
ρm=ρwqw/Qmgqg/Qm
式中,ρw——水密度,ρg——空气密度;
A.3)由混合后的密度ρm采用以下公式计算获得泵的扬程H:
H=(Pout-Pin)/ρmg+Δh
式中,Pin——进口压力,Pout——出口压力,Δh——进出口压力传感器的高度位置差,g——重力加速度;
A.4)由泵的扬程H采用以下公式计算获得泵的水力效率ηh
ηh=ρmgQmH/(Mω)
式中,M——轴扭矩,ω——角速度;
A.5)由泵的水力效率ηh采用以下公式计算获得泵的总效率η:
ΔPd=0.35×10-2×kρω3R5,k=0.8~1
式中:ΔPd——叶轮圆盘摩擦损失功率,ηv——容积损失,ηh——水力损失,ns——比转速,Q——流量,n——转速,ρ——流体密度,R——叶轮半径;
所述步骤A)中泵的汽蚀余量NPSH采用以下公式计算获得:
NPSH=(Pin-Pv)/ρmg+Δh-Hf
式中,Hf——泵吸入口侧全管阻力损失,Pin——进口压力,Pv——液体饱和蒸汽压,ρm——混合后的密度,g——重力加速度,Δh——进出口压力传感器的高度位置差。
本发明中,电磁流量计安装要求需要满足前后预留十倍管径的直管段。
本发明中,进出口都安装了流量计,是为了测试进出口流量进行对比,并进行校准和检查气液分离罐的分离效果。
本发明中,可以通过进气管支路的进气调节阀和转子流量计之间形成反馈,对进气量进行控制,从而进一步控制气液两相流中含气率。
本发明中,进口管径宽于出口管径,出口管径宽于进气管支路管径。
本发明的优点是:
本发明所述的一种离心泵气液两相流性能测试系统,结构简单,易于拆卸,可以对离心泵、轴流泵、混流泵等多种泵进行气液两相流性能测试。
附图说明
图1是本发明测试系统的结构示意图。
图中:1—储液罐,2—进水截止阀,3—第一电磁流量计,4—进水调节阀,5—气液混合装置,6—进口测压管,7—变频泵机组,8—出口测压管,9—进气截止阀,10—转子流量计,11—进气调节阀,12—储气罐,13—空气压缩机,14—测温管,15—出口调节阀,16—气液分离罐,17—第二电磁流量计,18—出口截止阀,19—排气阀,20—真空泵。
具体实施方式
下面结合附图和具体实施例对本发明作进一步描述。
如图1所示,本发明的泵测试系统为主要由储液罐1、进口管路、进气管支路、变频泵机组7和出口管路组成的一个闭式循环回路,储液罐1中部的进口经出口管路连接到变频泵机组7的出口端,变频泵机组7的进口端经进口管路连接到储液罐1底部的出口,进口管路上还连接有进气管支路。
储液罐1上面连接两个管,一个与有排气阀19连接,可以排出多余的罐内空气;另一个与真空泵20连接,用于对罐内液体抽真空。整个储液罐1与外界空气隔绝。
储液罐1通过进口管路顺序连接进水截止阀2、第一电磁流量计3、手动进水调节阀4、气液混合装置5,与变频泵机组7中的离心泵进口相连,其中进口测压管6连接在气液混合装置5与离心泵进口之间,用于测试泵进口压力。整个进口管路高度要求在储液罐1水位以下。
进气管支路从空气压缩机13出口,通过管路顺序连接储气罐12,进气调节阀11、转子流量计10、进气截止阀9,最后和气液混合装置5的气相进口相连,可通过进气调节阀11控制进气量。
变频泵机组7的离心泵出口通过出口管路顺序连接出口调节阀15,气液分离罐16,第二电磁流量计17、出口截止阀18,然后与储液罐1相连。其中测压管和测温管连接在离心泵出口和出口调节阀15之间,用于测试泵出口压力和温度。
变频泵机组7包括离心泵、扭矩仪、高速变频电机,中间用膜片联轴器相连接,整个机组都安装在一块底座上,保证设备的中心高在同一条水平线上。
本发明的具体实施工作过程如下:
先关闭进气调节阀11和出口调节阀15,全开进水截止阀2和出口截止阀18。再运行空气压缩机13,将进气管路的压力调节到设定要求,并保持稳定。启动离心泵,开始手动调节出口调节阀15,将流量调节到设定流量。再手动调节进气调节阀11,让气体通入进口管路。
调节进气调节阀11,通入不同含气量。此时,离心泵的进出口压力会出现明显的变化,待稳定后,对进口测压管6和出口测压管8的压力传感器和变频泵机组7扭矩仪的信号进行采集,根据公式得到离心泵在不同含气量的气液两相流下扬程和效率曲线;
在离心泵蜗壳上安装振动加速度传感器,对蜗壳上进行振动信号采集,即可得到不同含气量下的离心泵振动曲线。
在每次调节到不同含气量下,控制出口流量不变,启动与储液罐相连的真空泵20,降低罐内的真空度,从而泵入口的压力降低,直到泵入口压力下降到临界压力,并保持稳定。重复上述试验,得到不同含气量下的离心泵汽蚀性能曲线。
具体实施的测试对象采用离心泵,但不限于此,本发明可应用于轴流泵、混输泵等多种泵体的测试。

Claims (5)

1.一种离心泵气液两相流性能测试系统,其特征在于:所述的泵测试系统为主要由储液罐(1)、进口管路、进气管支路、变频泵机组(7)和出口管路组成的一个闭式循环回路,储液罐(1)中部的进口经出口管路连接到变频泵机组(7)的出口端,变频泵机组(7)的进口端经进口管路连接到储液罐(1)底部的出口,进口管路上还连接有进气管支路;
所述的进口管路包括进水截止阀(2)、第一电磁流量计(3)、进水调节阀(4)、气液混合装置(5)和进口测压管(6),变频泵机组(7)的进口端经进口测压管(6)连接到气液混合装置(5)的输出口,气液混合装置(5)气相输入口连接进气管支路,气液混合装置(5)的输入口依次经进水调节阀(4)、第一电磁流量计(3)、进水截止阀(2)连接到储液罐(1)罐底部的出口;
所述的进气管支路包括空气压缩机(13)、储气罐(12)、进气调节阀(11)、转子流量计(10)和进气截止阀(9),空气压缩机(13)连接储气罐(12),储气罐(12)依次经进气调节阀(11)、转子流量计(10)和进气截止阀(9)后连接到气液混合装置(5)的气相输入口;进气管支路通过进气调节阀(11)和转子流量计(10)之间形成反馈对进气量进行控制;
所述的出口管路包括出口测压管(8)、测温管(14)、出口调节阀(15)、气液分离罐(16)、第二电磁流量计(17)和出口截止阀(18),储液罐(1)罐中部的进口依次经出口截止阀(18)、第二电磁流量计(17)连接到气液分离罐(16),气液分离罐(16)经出口调节阀(15)与测温管(14)的一端连接,测温管(14)另一端经出口测压管(8)与变频泵机组(7)的出口端相连。
2.根据权利要求1所述的一种离心泵气液两相流性能测试系统,其特征在于:所述的储液罐(1)顶部连接有排气阀(19)和真空泵(20)。
3.根据权利要求1所述的一种离心泵气液两相流性能测试系统,其特征在于:所述变频泵机组(7)的离心泵在转速运行时,液体从储液罐(1)流出,通过出口调节阀(15)调节流量,然后通过进气管支路的进气调节阀(11)调节进气量,使气体和液体在气液混合装置(5)中均匀混合,混合后的气液两相流体经过离心泵,在出口管路中的气液分离罐(16)中分离,气体充分排出,液体经过出口管路回到储液罐(1)。
4.根据权利要求1所述的一种离心泵气液两相流性能测试系统,其特征在于:所述的进水调节阀(4)和进气调节阀(11)均为手动控制。
5.一种离心泵气液两相流性能测试方法,其特征在于:采用权利要求1~4 任一所述的测试系统,采用以下方式进行性能测试:
A)对进口测压管(6)和出口测压管(8)的压力传感器信号和变频泵机组(7)扭矩仪的信号进行采集,处理得到离心泵在不同含气量的气液两相流下的扬程和效率;
所述步骤A)中在不同含气量的气液两相流下的扬程和效率采用以下方式计算得到:
A.1)由进水流量和进气流量采用以下公式计算获得气液两相流总流量Qm
Qm=qw+qg
式中,qw——进水流量;qg——进气流量;
A.2)由气液两相流总流量Qm采用以下公式计算获得混合后的密度ρm
ρm=ρwqw/Qmgqg/Qm
式中,ρw——水密度,ρg——空气密度;
A.3)由混合后的密度ρm采用以下公式计算获得泵的扬程H:
H=(Pout-Pin)/ρmg+Δh
式中,Pin——进口压力,Pout——出口压力,Δh——进出口压力传感器的高度位置差,g——重力加速度;
A.4)由泵的扬程H采用以下公式计算获得泵的水力效率ηh
ηh=ρmgQmH/(Mω)
式中,M——轴扭矩,ω——角速度;
A.5)由泵的水力效率ηh采用以下公式计算获得泵的总效率η:
ΔPd=0.35×10-2×kρω3R5,k=0.8~1
式中:ΔPd——叶轮圆盘摩擦损失功率,ηv——容积损失,ηh——水力损失,ns——比转速,Q——流量,n——转速,ρ——流体密度,R——叶轮半径;
B)在变频泵机组(7)的离心泵蜗壳上安装振动加速度传感器,通过调节不同的流量,采集不同流量下振动加速度传感器的信号,经分析处理得到该流量的振动幅值曲线;
C)通过储液罐(1)上的真空泵(20)调节变频泵机组(7)的离心泵的入口压力,然后对离心泵进出口的进口测压管(6)和出口测压管(8)上的压力传感器信号进行采集,处理得到对应的泵的汽蚀余量以及扬程,进而得到离心 泵在不同含气量的气液两相流汽蚀性能曲线。
CN201610304930.5A 2016-05-10 2016-05-10 一种离心泵气液两相流性能测试系统及其测试方法 Active CN105909536B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610304930.5A CN105909536B (zh) 2016-05-10 2016-05-10 一种离心泵气液两相流性能测试系统及其测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610304930.5A CN105909536B (zh) 2016-05-10 2016-05-10 一种离心泵气液两相流性能测试系统及其测试方法

Publications (2)

Publication Number Publication Date
CN105909536A CN105909536A (zh) 2016-08-31
CN105909536B true CN105909536B (zh) 2018-04-03

Family

ID=56747967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610304930.5A Active CN105909536B (zh) 2016-05-10 2016-05-10 一种离心泵气液两相流性能测试系统及其测试方法

Country Status (1)

Country Link
CN (1) CN105909536B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106823476B (zh) * 2016-12-27 2019-07-12 兰州空间技术物理研究所 一种离心式气液分离器及其试验装置
CN106968934B (zh) * 2017-04-26 2018-12-18 广东肯富来泵业股份有限公司 水泵汽蚀余量自动测试系统及其方法
CN107050700A (zh) * 2017-05-12 2017-08-18 广州三业科技有限公司 数字定比大流量混合装置及其测试系统和调试方法
CN107035726A (zh) * 2017-06-22 2017-08-11 哈尔滨广瀚新能动力有限公司 一种防止orc发电系统泵汽蚀的防护装置及其使用方法
CN107035727A (zh) * 2017-06-22 2017-08-11 哈尔滨广瀚新能动力有限公司 一种防止orc发电系统泵汽蚀的储液装置及其使用方法
CN107356365A (zh) * 2017-07-10 2017-11-17 中国矿业大学 水环真空泵内减阻剂减阻效应实验装置及方法
CN107607320B (zh) * 2017-08-30 2023-08-01 浙江理工大学 用于测试平衡鼓转子涡动特性的实验台装置及方法
CN108050109A (zh) * 2018-01-08 2018-05-18 浙江理工大学 一种抑制汽蚀的离心泵及其工作方法
CN108444718B (zh) * 2018-01-30 2019-06-04 清华大学 泵与透平两用多相特性测试台及其测试方法
CN109026651A (zh) * 2018-08-30 2018-12-18 莱茵技术(上海)有限公司 一种室内水泵性能测试系统
CN111122110B (zh) * 2018-11-01 2022-05-03 中国石油化工股份有限公司 可调节角度的自适应调流控水装置两相流测试方法及系统
FR3096092B1 (fr) * 2019-05-16 2021-04-30 Safran Aircraft Engines Dispositif et procédé d’essais améliorés de pièce hydraulique de turbomachine
CN111646890A (zh) * 2019-09-10 2020-09-11 上海浦景化工技术股份有限公司 反应器与精馏塔热耦合的甲醇羰基化制醋酸的工艺方法
CN111695311B (zh) * 2020-06-15 2023-12-05 哈尔滨电气动力装备有限公司 两相工况下核主泵随空泡份额的降级函数分析方法
CN113027800A (zh) * 2021-03-19 2021-06-25 浙江尔格科技股份有限公司 一种采用sf6气体介质的气泵叶轮超速试验平台及试验方法
FR3121186B1 (fr) * 2021-03-23 2023-03-24 Commissariat Energie Atomique Dispositif de caractérisation d’un système hydraulique et procédé de caractérisation mettant en œuvre un tel dispositif
CN113898595A (zh) * 2021-10-27 2022-01-07 山东省农业机械科学研究院 一种闭式回路离心泵汽蚀余量自动测试系统及方法
CN114562466B (zh) * 2022-02-28 2023-06-16 江苏大学镇江流体工程装备技术研究院 一种叶片泵来流含气的空化性能测试系统
CN114876822A (zh) * 2022-06-01 2022-08-09 江苏大学 一种可实现均匀加气的离心泵注气汽蚀性能测试系统及测试方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102507423A (zh) * 2011-10-14 2012-06-20 崔铭伟 循环多相流起伏管路内腐蚀实验装置
CN103674822B (zh) * 2013-11-29 2016-04-20 陕西延长石油(集团)有限责任公司研究院 气液两相流环路腐蚀实验装置
CN204492810U (zh) * 2014-12-12 2015-07-22 长江大学 一种气液两相流动变质量实验装置
CN104897386B (zh) * 2015-06-09 2017-11-21 哈尔滨工程大学 油气混输泵性能测试系统
CN205154670U (zh) * 2015-12-07 2016-04-13 榆林学院 一种离心泵汽蚀试验用综合实验系统
CN105403396B (zh) * 2015-12-16 2017-10-20 江苏大学 一种泵自吸过程内外特性协同测试系统

Also Published As

Publication number Publication date
CN105909536A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
CN105909536B (zh) 一种离心泵气液两相流性能测试系统及其测试方法
CN105699062B (zh) 一种阀门流量流阻测试系统及其进行小微流量测试的方法
Kan et al. Numerical study on the internal flow characteristics of an axial-flow pump under stall conditions
CN105067049B (zh) 一种基于旋流原理的差压式流量测量装置及方法
CN108506223B (zh) 基于弱可压流动分析的大功率离心泵水力性能预测方法
CN105156360B (zh) 一种多级离心泵流道式导叶多工况水力优化方法
CN108871988A (zh) 一种研究压力对弯管磨损影响的实验装置
CN107478278B (zh) 一种基于管内相分隔技术的差压式两相流测量方法
CN103821710A (zh) 潜水泵汽蚀余量闭式试验装置
CN104776971A (zh) 一种气流携液携砂可视化实验装置
CN107014449B (zh) 修正泵站流量测量结果的方法
CN102539284B (zh) 板翅式换热器气液两相流分布特性测试方法和装置
CN108917861A (zh) 大口径调速运行泵的旁路管流量测量装置及测量方法
CN102705263B (zh) 一种离心泵变螺距诱导轮的优化设计方法
CN106768844A (zh) 一种海洋油气输送过程中弯管砂堵和立管携砂的实验装置
CN204025064U (zh) 带前导叶测流的新型高效立式轴流泵装置
CN110005620B (zh) 一种电潜泵综合性能测试平台及其测试方法
CN202402266U (zh) 一种开闭式泵试验控制系统
CN204666329U (zh) 一种气流携液携砂可视化实验装置
CN203532331U (zh) 一种错列式离心泵空间导叶体
CN203116939U (zh) 模拟煤层气集输管道流动特性的实验装置
CN107829975B (zh) 一种侧流道泵水力性能快速优化设计方法
CN201607331U (zh) 潜油电泵油气分离器测试装置
Quan et al. Research on bubble trajectory and flow structure in helical-axial multiphase pump
CN204631661U (zh) 一种用于气液分离器的液位-压力联动控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant