CN105892103A - Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法 - Google Patents

Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法 Download PDF

Info

Publication number
CN105892103A
CN105892103A CN201610223600.3A CN201610223600A CN105892103A CN 105892103 A CN105892103 A CN 105892103A CN 201610223600 A CN201610223600 A CN 201610223600A CN 105892103 A CN105892103 A CN 105892103A
Authority
CN
China
Prior art keywords
frequency point
frequency
dual
soi substrate
drain electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610223600.3A
Other languages
English (en)
Other versions
CN105892103B (zh
Inventor
文岐业
沈雁飞
刘朝阳
李加洋
殷亮
刘洋
涂翔宇
文天龙
陈智
杨青慧
张怀武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201610223600.3A priority Critical patent/CN105892103B/zh
Publication of CN105892103A publication Critical patent/CN105892103A/zh
Application granted granted Critical
Publication of CN105892103B publication Critical patent/CN105892103B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/015Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on semiconductor elements having potential barriers, e.g. having a PN or PIN junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1606Graphene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/13Function characteristic involving THZ radiation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明属于太赫兹功能器件技术领域,提供一种SOI衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法。该SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,包括衬底,衬底上表面依次设置的Al2O3栅介质层、石墨烯薄膜,以及源电极、漏电极‑双频点超材料结构谐振单元组、栅电极;所述衬底为SOI衬底;所述源电极、漏电极‑双频点超材料结构谐振单元组设置于石墨烯导电薄膜上,漏电极‑双频点超材料结构谐振单元组用于实现双频点调制;所述栅电极为环形栅电极、设置于衬底上表面。本发明SOI衬底石墨烯晶体管太赫兹波双频点选频调制器能够有效降低调制器损耗,减小调制器工作电压,并且可实现调制器双频点的选频应用。

Description

SOI衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法
技术领域
本发明属于太赫兹功能器件技术领域,具体是指一种SOI衬底石墨烯晶体管的太赫兹波双频点选频调制器及其制备方法。
背景技术
太赫兹(Terahertz,THz)波通常指频率在0.1-10THz(波长在3mm-30μm)范围内的电磁辐射(1THz=1012Hz);一个振荡频率为1THz的电磁波,它的振荡周期为1ps(1ps=10-12s),相应的波长是300μm;它介于技术相对成熟的微波毫米波与红外可见光区域之间,具有独特的电磁特性。太赫兹波在物理、电子信息、化学、生命科学、材料科学、天文学、大气与环境监测、国家安全与反恐、通讯雷达等领域具有极重要的应用,是下一代信息产业的科学技术重要基础之一,对国民经济以及国防建设具有重大意义。太赫兹波调制器作为对太赫兹波进行控制处理的关键器件,在空间通信、短距离通信及安全检测等领域有着重要作用。
石墨烯作为一种碳的同素异形体的二维单原子层的薄膜材料,自2004年被发现以来,以其独特的结构、良好的电学性能、光学性能、良好的机械性能及热稳定性广泛应用于场效应晶体管太赫兹波调制器。
目前,石墨烯场效应晶体管太赫兹波调制器不管采用的是SiO2还是Al2O3作为绝缘介质层,均使用几百微米厚的掺杂Si衬底,导致器件的损耗大、工作电压高、寄生电容大、速度慢。如文献《Qi Mao,Qi-Ye Wen,Wei Tian,Tian-Long Wen,Zhi Chen,Qing-Hui Yang,andHuai-Wu Zhang,High-speed and broadband terahertz wave modulators based on large-areagraphene field-effect transistors,Optics Letter,2014,39:5649-5652》中提出一种石墨烯宽带太赫兹波调制器,包括掺杂半导体衬底、衬底上依次设置的Al2O3介质层、石墨烯薄膜、源漏电极以及设置于半导体衬底背面的栅电极;该调制器采用掺杂半导体衬底为厚度为350um、电阻率为1~10Ω·cm的掺杂半导体Si片,采用THz-TDS测试,其工作条件为源电极接地,漏电极加恒定电压(1~30V),背栅电极接交流或者直流电压(-80~80V),调制器损耗约为54%。另外,上述石墨烯宽带太赫兹波调制器为宽频带调制器,没有选频特性,不能适用于双通道太赫兹通信的网络自由选择和灵活切换;因此,针对上述太赫兹波调制器损耗比较大、工作电压高,选频特性差的问题,本发明提出了一种基于SOI衬底的双频点石墨烯太赫兹波调制器及其制备方法,以显著降低器件损耗,降低工作电压以及双频点的选频特性,实现石墨烯场效应晶体管太赫兹波调制器在太赫兹波通信、太赫兹波成像领域的低损耗选频应用。
发明内容
本发明的目的在于提供一种SOI衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法,本发明太赫兹波调制器的衬底采用SOI(蓝宝石-SiO2-Si)材料;漏电极采用具有双频点选择的超材料结构谐振单元组;能够有效降低调制器损耗,减小调制器工作电压,并且可实现调制器双频点的选频应用。
本发明所采用的技术方案是:SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,包括衬底101,衬底上表面依次设置的Al2O3栅介质层102、石墨烯薄膜103,以及源电极105、漏电极-双频点超材料结构谐振单元组106、栅电极104;其特征在于,所述衬底101为SOI衬底;所述源电极105、漏电极-双频点超材料结构谐振单元组106设置于石墨烯薄膜103上,漏电极-双频点超材料结构谐振单元组106用于实现双频点调制;所述栅电极104为环形栅电极、设置于衬底101上表面且环绕所述Al2O3栅介质层102、石墨烯薄膜103、源电极105、漏电极-双频点超材料结构谐振单元组106。
进一步的,所述漏电极-双频点超材料结构谐振单元组由漏电极、以及连接于漏电极且呈阵列排布的N个重复性谐振单元组成,N≥3,所述谐振单元由人工金属电磁谐振结构组成。
所述SOI衬底为蓝宝石–SiO2–Si结构,其中的Si层的厚度为5~50μm。
所述Al2O3栅介质层的厚度为30nm~60nm。
所述石墨烯薄膜为单层石墨烯,电阻率为40~100Ω·cm,载流子迁移率大于2000cm2/Vs。
所述漏电极-双频点超材料结构谐振单元组是漏电极和超材料结构相连接,同时作为选频组件和晶体管的漏电极。
所述源电极、漏电极-双频点超材料结构谐振单元组、栅电极均采用金属银、金、铜、镍或铝,厚度为50nm~1μm。
所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器的尺寸大于5*5mm。
更进一步的,所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器的制备方法,包括以下步骤:
步骤1.清洗SOI衬底:将SOI衬底依次进行丙酮、酒精和去离子水冲洗后烘干备用;
步骤2.沉积介质层:采用原子层沉积法在衬底正面利用掩膜遮盖沉积Al2O3介质层,将SOI衬底放入原子沉积装置沉积腔中,加热沉积腔至80-120℃,通入氧气与氩气,控制氧气流量为2-5sccm、氩气流量10-20sccm,并保持腔体气压为60-100mTorr,打开射频源开关,设置射频功率为180W,通入三甲基铝,沉积得厚度为30-60nm的Al2O3介质层;
步骤3.转移石墨烯薄膜:首先在生长有石墨烯薄膜的金属基体上旋涂一层PMMA,然后将金属基体放入过硫酸铵溶液中将基体腐蚀干净,再将旋涂有PMMA的石墨烯薄膜用去离子水清洗干净后转移至Al2O3介质层上,最后采用丙酮去除石墨烯薄膜表面的PMMA,即完成石墨烯薄膜的转移;
步骤4.制备源电极、漏电极-双频点超材料结构谐振单元组以及栅电极:在石墨烯薄膜上制备源电极、漏电极-双频点超材料结构谐振单元组,再于SOI衬底表面制备环形金属电极,作为栅电极;
即制备得到SOI衬底石墨烯晶体管太赫兹波双频点选频调制器。
本发明的有益效果在于:
1)本发明提供石墨烯晶体管太赫兹波调制器采用SOI衬底,其中的Si层厚度相较于Si衬底型调制器厚度大大减小,因而损耗更小,工作电压更低,寄生电容更小;能够有效降低调制器损耗和工作电压,提高调制速度;
2)本发明结构中采用漏电极-双频点超材料结构谐振单元组,通过设计超材料结构(谐振单元)的图形和尺寸,能够实现太赫兹通信、成像中双频点的选频应用;
3)本发明提供石墨烯晶体管太赫兹波调制器通过电控进行工作,而非外加激光、温度等激励,有利于器件小型化、实用化与产量化;
4)、本发明提供石墨烯晶体管太赫兹波调制器制备工艺简单,针对空间传输太赫兹电磁波,可工作于常温、常压、非真空条件下,无需加载波导,易于封装、方便使用。
附图说明
图1是本发明SOI衬底石墨烯晶体管太赫兹波双频点选频调制器结构示意图(剖视图),其中,101表示SOI衬底(蓝宝石-SiO2-Si),102表示Al2O3介质层,103表示石墨烯导电薄膜,104表示环形栅电极,105表示源电极,106表示漏电极-双频点超材料结构谐振单元组。
图2是本发明SOI衬底石墨烯晶体管太赫兹波双频点选频调制器中环形栅电极结构示意图。
图3是本发明实施例中谐振单元结构及尺寸示意图,其中黑色填充部分表示金属薄膜。
图4是本发明实施例中漏电极-双频点超材料结构谐振单元组中谐振单元连接示意图,其中黑色填充部分表示金属薄膜。
图5是本发明实施例中谐振单元通过CST电磁仿真得双频点仿真曲线。
图6是本发明实施例中单层石墨烯的Raman光谱图。
图7是本发明实施例中SOI衬底石墨烯晶体管太赫兹波双频点选频调制器与Si衬底调制器的透射率对比图。
图8是本发明实施例中SOI衬底石墨烯晶体管太赫兹波双频点选频调制器调制深度曲线。
具体实施方式
下面结合具体实施方式和说明书附图对本发明做进一步详细说明。
实施例1
本实施例中提供一种SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其结构如图1所示,该太赫兹波调制器尺寸为10mm*10mm;包括SOI衬底101,衬底上表面依次设置的Al2O3栅介质层102、石墨烯薄膜103,以及源电极105、漏电极-双频点超材料结构谐振单元组106、栅电极104;所述SOI衬底的厚度为30μm;所述Al2O3栅介质层102的厚度为45nm,均方根粗糙度(RMS)为0.34nm;所述石墨烯薄膜103为单层石墨烯,电阻率为50Ω·cm;所述源电极105、漏电极-双频点超材料结构谐振单元组106为金属Ti(3nm)/Al(300nm);所述源电极105、漏电极-双频点超材料结构谐振单元组106设置于石墨烯薄膜103上,漏电极-双频点超材料结构谐振单元组106用于实现双频点调制,漏电极-双频点超材料结构谐振单元组由漏电极、以及连接于漏电极且呈阵列排布的重复性谐振单元组成,其排布方式如图4所示,所述谐振单元由人工金属电磁谐振结构组成,具体图形及尺寸如图3所示;,所述栅电极104为环形栅电极、设置于衬底101上表面且环绕所述Al2O3介质层102,如图2所示;栅电极104为导电银胶涂覆而成,电阻为千分之一寸<60毫欧;
上述调制器制备过程包括以下步骤:
步骤1.清洗SOI(蓝宝石-SiO2-Si)衬底:将SOI衬底依次进行丙酮、酒精和去离子水冲洗后烘干备用;
步骤2.沉积介质层:采用原子层沉积法在衬底正面利用掩膜遮盖沉积Al2O3介质层,将SOI衬底放入原子层沉积装置沉积腔中,加热沉积腔至120℃,通入氧气与氩气,控制氧气流量为3sccm、氩气流量15sccm,并保持腔体气压为80mTorr,打开射频源开关,设置射频功率为180W,通入三甲基铝,沉积得到厚度为45nm的Al2O3介质层;
步骤3.转移石墨烯薄膜:首先在生长有石墨烯薄膜的金属Cu基体上旋涂一层PMMA,然后将金属Cu基体放入过硫酸铵溶液中将基体腐蚀干净,再将旋涂有PMMA的石墨烯薄膜用去离子水清洗干净后转移至Al2O3介质层上,最后采用丙酮去除石墨烯薄膜表面的PMMA,即完成石墨烯薄膜的转移;
步骤4.制备源电极、漏电极-双频点超材料结构谐振单元组以及栅电极:在石墨烯薄膜上用电子束蒸发设备制备一对金属电极Ti(3nm)/Al(300nm),分别作为源电极和漏电极,其中漏电极由双频点的超材料结构谐振单元组构成;再在SOI衬底上表面环绕Al2O3介质层薄膜用导电银胶涂覆法制备一方框环形金属电极,作为栅电极;
即制备得到SOI衬底石墨烯晶体管太赫兹波双频点选频调制器。
通过CST电磁仿真软件对上述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器中的漏电极-双频点超材料结构谐振单元组进行仿真测试,得到仿真曲线如图5所示,该漏电极-双频点超材料结构谐振单元组双频点位置大约在0.4THz和0.9THz附近。
如图6所示为本实施例中石墨烯导电薄膜的Raman光谱图,分别在1582cm-1和2700cm-1附近出现的G峰和2D峰,有明显的2D峰,且2D/G值大于2,说明该石墨烯薄膜为单层石墨烯,且该单层石墨烯缺陷很小。
如图7所示为本实施例制备得SOI衬底石墨烯晶体管太赫兹波双频点选频调制器与Si衬底调制器的透射率对比图,可见透射率提高了约47%,损耗减小了约40%。
采用透射式太赫兹时域光谱系统(THz-TDS),太赫兹波由飞秒激光泵浦光电导天线产生,以90°角入射到样品表面,透射波由光电导天线接收。上述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器通过THz-TDS测试得结果如图8所示;可知本实施例中SOI衬底石墨烯晶体管太赫兹波双频点选频调制器工作条件为源电极接地,漏电极-双频点超材料结构谐振单元组加恒定电压(1-3V),方框环形栅电极接交流或者直流电压(-12-12V),相比于Si衬底调制器工作电压大大减小;在工作状态,SOI衬底石墨烯晶体管太赫兹波双频点选频调制器在频点0.4THz处的调制深度达到17.7%,在频点0.9THz处的调制深度为15.7%,调制速率约为500KHz。
以上所述,仅为本发明的具体实施方式,本说明书中所公开的任一特征,除非特别叙述,均可被其他等效或具有类似目的的替代特征加以替换;所公开的所有特征、或所有方法或过程中的步骤,除了互相排斥的特征和/或步骤以外,均可以任何方式组合。

Claims (8)

1.SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,包括衬底(101),衬底上表面依次设置的Al2O3栅介质层(102)、石墨烯薄膜(103),以及源电极(105)、漏电极-双频点超材料结构谐振单元组(106)、栅电极(104);其特征在于,所述衬底(101)为SOI衬底;所述源电极(105)、漏电极-双频点超材料结构谐振单元组(106)设置于石墨烯薄膜(103)上,漏电极-双频点超材料结构谐振单元组(106)用于实现双频点调制;所述栅电极(104)为环形栅电极、设置于衬底(101)上表面且环绕所述Al2O3栅介质层(102)、石墨烯薄膜(103)、源电极(105)、漏电极-双频点超材料结构谐振单元组(106)。
2.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述漏电极-双频点超材料结构谐振单元组由漏电极、以及连接于漏电极且呈阵列排布的N个重复性谐振单元组成,N≥3,所述谐振单元由人工金属电磁谐振结构组成。
3.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述SOI衬底为蓝宝石–SiO2–Si结构,其中的Si层的厚度为5~50μm。
4.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述Al2O3栅介质层的厚度为30nm~60nm。
5.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述石墨烯薄膜为单层石墨烯,电阻率为40~100Ω·cm,载流子迁移率大于2000cm2/Vs。
6.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述源电极、漏电极-双频点超材料结构谐振单元组、栅电极均采用金属银、金、铜、镍或铝,厚度为50nm~1μm。
7.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器,其特征在于,所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器的尺寸大于5*5mm。
8.按权利要求1所述SOI衬底石墨烯晶体管太赫兹波双频点选频调制器的制备方法,包括以下步骤:
步骤1.清洗SOI衬底:将SOI衬底依次进行丙酮、酒精和去离子水冲洗后烘干备用;
步骤2.沉积介质层:采用原子层沉积法在衬底正面利用掩膜遮盖沉积Al2O3介质层,将SOI衬底放入原子沉积装置沉积腔中,加热沉积腔至80-120℃,通入氧气与氩气,控制氧气流量为2-5sccm、氩气流量10-20sccm,并保持腔体气压为60-100mTorr,打开射频源开关,设置射频功率为180W,通入三甲基铝,沉积得厚度为30-60nm的Al2O3介质层;
步骤3.转移石墨烯薄膜:首先在生长有石墨烯薄膜的金属基体上旋涂一层PMMA,然后将金属基体放入过硫酸铵溶液中将基体腐蚀干净,再将旋涂有PMMA的石墨烯薄膜用去离子水清洗干净后转移至Al2O3介质层上,最后采用丙酮去除石墨烯薄膜表面的PMMA,即完成石墨烯薄膜的转移;
步骤4.制备源电极、漏电极-双频点超材料结构谐振单元组以及栅电极:在石墨烯薄膜上制备源电极、漏电极-双频点超材料结构谐振单元组,再于SOI衬底表面制备环形金属电极,作为栅电极;即制备得到SOI衬底石墨烯晶体管太赫兹波双频点选频调制器。
CN201610223600.3A 2016-04-12 2016-04-12 Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法 Active CN105892103B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610223600.3A CN105892103B (zh) 2016-04-12 2016-04-12 Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610223600.3A CN105892103B (zh) 2016-04-12 2016-04-12 Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法

Publications (2)

Publication Number Publication Date
CN105892103A true CN105892103A (zh) 2016-08-24
CN105892103B CN105892103B (zh) 2019-05-14

Family

ID=57013041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610223600.3A Active CN105892103B (zh) 2016-04-12 2016-04-12 Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法

Country Status (1)

Country Link
CN (1) CN105892103B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054076A (zh) * 2020-09-23 2020-12-08 成都能太科技有限公司 一种可高效光控的太赫兹法诺谐振超构器件
CN112331728A (zh) * 2021-01-06 2021-02-05 武汉敏芯半导体股份有限公司 一种基于低维材料的波导晶体管探测器及其制备方法
CN113066905A (zh) * 2021-04-12 2021-07-02 山东大学 一种通过光刻技术制备硒化铟光电探测器的方法
CN113267913A (zh) * 2021-05-29 2021-08-17 枣庄学院 一种超材料调制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290637A (zh) * 2011-06-16 2011-12-21 电子科技大学 基于异向介质理论的双频吸收器
CN102800986A (zh) * 2012-08-02 2012-11-28 中国科学院上海微系统与信息技术研究所 一种基于电谐振的太赫兹双频带超材料
CN103034014A (zh) * 2012-12-26 2013-04-10 东南大学 一种太赫兹波调制器
CN104678597A (zh) * 2014-07-25 2015-06-03 电子科技大学 一种石墨烯场效应晶体管太赫兹波调制器及其制备方法
CN105338798A (zh) * 2015-11-24 2016-02-17 黄山学院 红外波段可调双频/三频石墨烯超材料吸收装置及其使用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102290637A (zh) * 2011-06-16 2011-12-21 电子科技大学 基于异向介质理论的双频吸收器
CN102800986A (zh) * 2012-08-02 2012-11-28 中国科学院上海微系统与信息技术研究所 一种基于电谐振的太赫兹双频带超材料
CN103034014A (zh) * 2012-12-26 2013-04-10 东南大学 一种太赫兹波调制器
CN104678597A (zh) * 2014-07-25 2015-06-03 电子科技大学 一种石墨烯场效应晶体管太赫兹波调制器及其制备方法
CN105338798A (zh) * 2015-11-24 2016-02-17 黄山学院 红外波段可调双频/三频石墨烯超材料吸收装置及其使用方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DAVID SHREKENHAMER等: "High speed terahertz modulation from metamaterials with embedded high electron mobility transistors", 《OPTICS EXPRESS》 *
RICCARDO DEGLINNOCENTI等: "Low-Bias Terahertz Amplitude Modulator Based on Split-Ring Resonators and Graphene", 《ACS NANO》 *
TAIICHI OTSUJI等: "Emission and Detection of Terahertz Radiation Using Two-Dimensional Electrons in III–V Semiconductors and Graphene", 《IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054076A (zh) * 2020-09-23 2020-12-08 成都能太科技有限公司 一种可高效光控的太赫兹法诺谐振超构器件
CN112331728A (zh) * 2021-01-06 2021-02-05 武汉敏芯半导体股份有限公司 一种基于低维材料的波导晶体管探测器及其制备方法
CN113066905A (zh) * 2021-04-12 2021-07-02 山东大学 一种通过光刻技术制备硒化铟光电探测器的方法
CN113267913A (zh) * 2021-05-29 2021-08-17 枣庄学院 一种超材料调制器

Also Published As

Publication number Publication date
CN105892103B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
Kakenov et al. Graphene based terahertz phase modulators
Zhou et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2
Varshney Reconfigurable graphene antenna for THz applications: a mode conversion approach
Li et al. Dual control of active graphene–silicon hybrid metamaterial devices
Valmorra et al. Low-bias active control of terahertz waves by coupling large-area CVD graphene to a terahertz metamaterial
Lee et al. Switching terahertz waves with gate-controlled active graphene metamaterials
Yao et al. Dynamically electrically tunable broadband absorber based on graphene analog of electromagnetically induced transparency
CN105892103A (zh) Soi衬底石墨烯晶体管太赫兹波双频点选频调制器及其制备方法
Dai et al. Broadband tunable terahertz cross-polarization converter based on Dirac semimetals
Arezoomandan et al. Tunable terahertz metamaterials employing layered 2-D materials beyond graphene
CN104678597A (zh) 一种石墨烯场效应晶体管太赫兹波调制器及其制备方法
CN106646930B (zh) 基于柔性石墨烯场效应晶体管结构的多级太赫兹调制器
CN103984125A (zh) 基于石墨烯的电控太赫兹衰减片、制备方法及使用方法
Xu et al. Electrically tunable terahertz metamaterials with embedded large-area transparent thin-film transistor arrays
Zhang et al. Graphene-enabled active metamaterial for dynamical manipulation of terahertz reflection/transmission/absorption
Eltresy et al. Silver sandwiched ITO based transparent antenna array for RF energy harvesting in 5G mid-range of frequencies
Chen et al. Recent progress in graphene terahertz modulators
D’Arco et al. Fabrication and spectroscopic characterization of graphene transparent electrodes on flexible cyclo-olefin substrates for terahertz electro-optic applications
Arezoomandan et al. Graphene–dielectric integrated terahertz metasurfaces
Mencarelli et al. Design of a coplanar graphene-based nano-patch antenna for microwave application
Masuminia et al. A novel tunable graphene based terahertz absorber with polarization insensitive
CN110246956A (zh) 一种极化不敏感的可调电磁诱导透明太赫兹器件
Padilla et al. Properties of dynamical electromagnetic metamaterials
Wang et al. Multifunctional Graphene Metasurface for Highly Flexible Control of Microwave Absorption
CN105892102B (zh) 基于石墨烯的太赫兹波透射型调制器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant