CN105891752B - 具有分配网络的磁共振设备 - Google Patents

具有分配网络的磁共振设备 Download PDF

Info

Publication number
CN105891752B
CN105891752B CN201610087207.6A CN201610087207A CN105891752B CN 105891752 B CN105891752 B CN 105891752B CN 201610087207 A CN201610087207 A CN 201610087207A CN 105891752 B CN105891752 B CN 105891752B
Authority
CN
China
Prior art keywords
shifting element
phase
phase shifting
mrt
signal output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610087207.6A
Other languages
English (en)
Other versions
CN105891752A (zh
Inventor
L.埃伯勒
J.尼斯特勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN105891752A publication Critical patent/CN105891752A/zh
Application granted granted Critical
Publication of CN105891752B publication Critical patent/CN105891752B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34076Birdcage coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3607RF waveform generators, e.g. frequency generators, amplitude-, frequency- or phase modulators or shifters, pulse programmers, digital to analog converters for the RF signal, means for filtering or attenuating of the RF signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3678Electrical details, e.g. matching or coupling of the coil to the receiver involving quadrature drive or detection, e.g. a circularly polarized RF magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/5659Correction of image distortions, e.g. due to magnetic field inhomogeneities caused by a distortion of the RF magnetic field, e.g. spatial inhomogeneities of the RF magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)

Abstract

本发明提供一种MR设备(MRT),具有至少一个分配网络(1;11),用于向MR天线(BC)的多个馈送点(Fx‑A,Fx‑B)分配电输入信号(Tx‑Chx),所述分配网络(1)至少具有:连接到节点(2)的第一信号输出端(Ox‑A)和第二信号输出端(Ox‑B),布置在所述节点(2)和所述第一信号输出端(Ox‑A)之间的第一移相元件(3),以及布置在所述节点(2)和所述第二信号输出端(Ox‑B)之间的第二移相元件(4),其中,所述第一移相元件(3)和所述第二移相元件(4)产生不同的相位偏移,以及所述第一移相元件(3)和所述第二移相元件(4)作为不同长度的电导线构造。本发明例如可应用于向MR设备的身体线圈、特别是所谓的鸟笼天线进行馈送。

Description

具有分配网络的磁共振设备
技术领域
本发明涉及一种具有至少一个分配网络的磁共振(“MR”)设备,该分配网络用于向MR天线的多个馈送点分配电输入信号。本发明例如能够应用于MR设备的身体线圈、特别是所谓的鸟笼天线的馈送。
背景技术
为了进行MR成像,借助至少一个MR发送天线在特别是患者的待检查的身体的位置处产生至少一个所谓的B1场。在此,MR发送天线经常具有能够单独控制的多个天线子系统,例如以便产生垂直和水平的场分量,其一起产生B1场的圆形极化。
在自大约2特斯拉起的较高的基本场强度B0的情况下,可能由于患者对MR发送天线的影响而对B1场的产生造成干扰。这种影响例如通过对天线子系统施加不同的负荷来起作用,由此使垂直和水平场分量不同地衰减。这种影响例如也可能由于复杂的反射因数和/或耦合而作用于天线阻抗上。这两种情况都导致最终产生的场例如在理想的圆形极化的激励方面与希望的场不对应。此外,在患者和由天线产生的电磁场之间还存在直接的相互作用。这两种相互作用最后都导致在发送波形和接收波形中出现不均匀,其在由此建立的MR图像中部分导致显著的强度变化。解决这些问题的一种方案是使用多通道MR发送系统。在此,MR发送天线由被N个独立的HF发送器控制的N个独立的天线元件构成。致动可以通过合适的预扫描方法来设置,使得在激励自旋时实现至少一个均匀的场分布。
在实践中使用的多通道MR发送系统的最简单的实施方式是二通道发送系统,其中,MR发送天线能够在角度偏移90°的两个馈送点处借助能独立产生的HF发送脉冲来致动。然而,这种二通道MR发送系统用于令人满意地解决上面概括的问题的自由度太小。尤其是在自大约7特斯拉起的更高的基本场强度B0的情况下存在具有多于两个的发送通道的MR发送系统,但是由于其复杂性和成本尚未在临床系统中得到应用。
用于对场分量的均匀度施加影响的一种简单的变形方案是使用如在图1中示出的具有四端口馈送的发送天线。在此,通常是圆形极化的MR天线(例如所谓的鸟笼或者“Birdcage”天线BC),其中,分别两个以180°彼此相对的馈送点F1-A和F1-B或F2-A和F2-B利用共同的馈送线缆连接(也就是说,属于同一个通道),其中,在一个通道的馈入的信号之间存在180°的相位偏移。
此外,图2示出了包括具有馈送点F1-A、F1-B、F2-A和F2-B的鸟笼天线BC形式的MR发送天线的MR设备MRT的示意性结构。该鸟笼天线BC具有或者连接到两个分配网络N1和N2。分配网络N1和N2被配置为将到来的两个通道Ch1和Ch2的电输入信号Tx-Ch1和Tx-Ch2(例如由HF发送器产生的激励脉冲)相应地分割为子信号Tx-Ch1-A和Tx-Ch1-B以及Tx-Ch2-A和Tx-Ch2-B,并且分配给馈送点F1-A和F1-B以及F2-A和F2-B。为此,可以将分配网络N1和N2的对应的信号输入端I1和I2连接到能够特别是独立地产生输入信号Tx-Ch1和Tx-Ch2的相应的发送器(在图中未示出)。
更准确地说,馈入信号输入端I1或I2中的输入信号Tx-Ch1或Tx-Ch2可以被所属的分配网络N1或N2分割为相应的两个子信号Tx-Ch1-A和Tx-Ch1-B或Tx-Ch2-A和Tx-Ch2-B,然后在两个分配网络N1或N2的对应的信号输出端O1-A和O1-B或O2-A和O2-B处呈现这些子信号。相应的输入信号Tx-Ch1或Tx-Ch2或者通道Ch1或Ch2的两个子信号Tx-Ch1-A和Tx-Ch1-B或Tx-Ch2-A和Tx-Ch2-B,在信号输出端O1-A和O1-B或O2-A和O2-B处以及在馈送点F1-A和F1-B或F2-A和F2-B处以相位偏移 相位偏移。
为了均匀地向相关联的馈送点F1-A和F1-B或F2-A和F2-B分配MR发送器的功率,可以与移相器一起使用有功功率分配器(例如威尔金森分配器、混合分配器等)。为此,图3示出了传统的分配网络Nx的等效电路图,其中,x=1或2。分配网络Nx具有4个节点K1至K4,其中,分别在节点K1和K2以及K3和K4之间连接有电感或线圈L,同时分别在节点K1和K3以及K2和K4之间连接有电容或电容器C。第一节点K1连接到信号输入端Ix,第二节点K2经由分立的第一移相部件PS-A连接到第一信号输出端Ox-A,第三节点K3经由分立的第二移相部件PS-B连接到第二信号输出端Ox-B,并且第四节点K4连接到地GND。第一移相元件PS-A使来自第二节点K2的电信号偏移90°或者Lambda/4。第二移相元件PS-B使来自第三节点K3的电信号偏移-90°或270°或者–Lambda/4或3/4Lambda。因此,在第一信号输出端Ox-A处和在第二信号输出端Ox-B处呈现的信号彼此相位偏移180°,但是特别地具有相同的幅值或者功率。在此缺点是,对分立部件、例如线圈、电容器、电阻等的高要求以及其必须的平衡。
发明内容
本发明要解决的技术问题是,至少部分地克服现有技术的缺点,并且特别地利用特别简单和低成本的装置提供用于使MR发送天线中的场分布均匀、例如对称的可能性,由此获得图像质量的改善,特别是对于具有2特斯拉或更大的高基本场强、尤其是具有7特斯拉或更大的基本场强的MR设备。
上述技术问题通过具有至少一个网络(下面称为“分配网络”,而不限制普遍适用性)的MR设备来解决,所述网络用于向MR天线的多个馈送点分配电输入信号,所述分配网络至少具有:连接到节点的第一信号输出端和第二信号输出端,布置在所述节点和所述第一信号输出端之间的第一移相元件,以及布置在所述节点和所述第二信号输出端之间的第二移相元件,其中,所述第一移相元件和所述第二移相元件产生不同的相位偏移以及所述第一移相元件和所述第二移相元件作为不同长度的电导线构造。
这种MR设备提供如下优点:通过放弃作为移相元件的分立的电或电子部件,能够利用简单的电路措施实现MR天线中的场分布的均匀化,由此实现图像质量的改善。为了实现进行功率划分和相位偏移的网络,这里适当的电导线的互连就足够了。换句话说,可以在网络中放弃分立的部件,而仅借助于导线或导线区段、例如借助于线缆段来实现功率划分以及相位偏移。可以关于其长度并且在必要时关于其导线特征波阻抗来选择线缆,使得产生希望的传输特性。在此,利用如下事实:在信号通过导线时,借助设置导线的长度,能够以准确并且可良好地再现的方式相位偏移一相位偏移的值
也可以该网络称为“馈送网络”。
MR天线可以是单纯的发送天线或者发送/接收天线。
用作移相元件的不同长度的电导线例如可以作为线缆或线缆段来构造,例如作为同轴线缆或者其片段来构造。替换地或者附加地,电导线可以作为电路板的导体迹线或者导体迹线段、作为微带线等来构造。这些用作移相元件的电导线特别地不包括传统的电气部件、例如电阻、电容器、电感、忆阻器等。
原则上,也可以存在多于两个的信号输出端。
一种实施方式是,所述节点直接连接到所述分配网络的信号输入端,也就是说,特别是其间没有连接另外的专用移相元件,特别是也不是以对应地针对性地确定尺寸的电导线的形式。这得到如下优点:通过该节点连接的至少两个信号路径或者信号支路可以特别简单地以彼此不同的方式来设计。
还有一种实施方式是,所述节点经由另一个移相元件(下面称为“第三”移相元件,而不限制普遍适用性)连接到所述分配网络的信号输入端。因此,可以进一步减少用作移相元件的电导线的数量。第三移相元件也可以以电导线的形式存在,其长度与希望的相位偏移的大小对应地来设置。这里,电导线也可以是具有希望的长度的对应地配置的线缆段、导体迹线或者导体迹线段、微带导线等。
另一种实施方式是,所述第三移相元件产生与所述第一移相元件或者与所述第二移相元件相反的相位偏移。因此,可以将第一信号输出端或者第二信号输出端处的相位偏移设置为0或者对应的值、例如360°、720°等。
还有另一种实施方式是,在所述节点与所述第一信号输出端之间和/或在所述节点与所述第二信号输出端之间,分别布置有与所述第一移相元件或与所述第二移相元件串联的至少一个另外的移相元件。由此,可以以简单的方式特别多样地来设置第一信号输出端处和/或第二信号输出端处的相位偏移。一种对于简单的结构特别有利的扩展方案是,该另外的移相元件以具有合适的、预先给定的长度的电导线的形式存在。
还有一种实施方式是,至少一个另外的移相元件产生与和其串联连接的第一移相元件或第二移相元件相反的相位偏移由此,也可以将第一信号输出端或者第二信号输出端处的相位偏移设置为0或者对应的值:模(360°)、例如360°、720°等,特别是在节点直接连接到信号输入端的情况下。
此外,一种实施方式是,第一移相元件和第二移相元件产生或者建立彼此相反的相位偏移
特别是,相位偏移相同的量因此,例如第一移相元件可以产生的相位偏移,而第二移相元件可以产生的相位偏移。当连接在节点和信号输入端之间的另外的移相元件产生绝对值相同、即例如或者的相位偏移时,这特别有利,因为于是因此能够在两个信号输出端中的一个处以简单的方式设置为0的相位偏移,而于是另一个信号输出端具有相位偏移
此外,一种实施方式是,通过所述分配网络在所述第一信号输出端处产生关于所述第二信号输出端相差180°的相位偏移。由此,可以将在信号输出端处得到的输出信号直接馈入MR天线的馈送点中,以便例如能够实现四端口馈送等。为此,特别有利的是,从信号输出端延伸到馈送点的电导线具有相同的长度。
此外,一种实施方式是,第一移相元件或者第二移相元件产生对应于0°的相位偏移由此,在一种情况下可以完全放弃第一移相元件或者第二移相元件,从而于是例如信号输入端直接连接到相关联的第一或第二信号输出端,或者该信号输出端也可以用作信号输入端。
特别地确定作为具有预先给定的长度的电导线构造的移相元件的尺寸,使得利用分配网络实现希望的传输特性,例如在信号输入端和信号输出端获得特定的阻抗和/或电压。例如关于其长度和导线特征波阻抗来选择电导线、特别是线缆,使得得到希望的传输特性。在此,例如两种配置是特别有利的:
在第一种配置中,分配网络被设计为,使得分配网络的信号输入端处的输入阻抗对应于负载阻抗。输入阻抗特别地对应于在连接到MR天线的分配网络的信号输入端处存在或者测量的阻抗,而负载阻抗对应于在信号输出端处存在的连接在后面的、特别是包括MR天线或者其一部分的电气结构的阻抗。也就是说,特别地,在网络的信号输入端处可能出现与在MR天线处相同的(输入)阻抗。这种设计产生如下优点:相对于另外常见的并联电路,通过分配网络不进行阻抗变换。由此能够从输入阻抗直接推断出阻抗,由此推断出患者对MR天线施加的负荷。
在第二种配置中,分配网络被设计为,使得(分配网络的信号输入端处的)输入电压的量对应于(分配网络的信号输出端处的)输出电压的量。也就是说,特别地在分配网络的信号输入端处出现与在MR天线的输出端处相同的电压的量,也就是说独立于MR天线的阻抗或者患者对MR天线施加的负荷。当要确定并监视MR天线的部件负荷,例如以便防止部件损坏时,这特别有利。于是,为了获知MR天线中的相关联的电压,测量网络的信号输入端处的电压就足够了。
附图说明
上面描述的本发明的特性、特征和优点以及实现其的方式,结合下面结合附图详细解释的对实施例的示意性描述,将变得更清楚并且更容易理解。在此,为了清楚起见,可以对相同或相同地作用的元素设置相同的附图标记。
图1以斜视图示出了鸟笼天线形式的MR发送天线;
图2示出了具有MR发送天线的MR设备的示意性结构;
图3示出了MR设备的传统分配网络的等效电路图;
图4示出了根据第一实施例的本发明的分配网络的等效电路图;以及
图5示出了根据第二实施例的本发明的分配网络的等效电路图。
具体实施方式
图4示出了本发明的分配网络1的等效电路图,其例如可以用作MR设备MRT的分配网络Nx(x=1或2)或者说用作分配网络N1和N2。
分配网络1用作用于向MR天线Fx-A和Fx-B(其中,x=1或2)的多个馈送点分配输入信号Tx-Chx(其中,Chx=Ch1或Ch2)的分配网络。分配网络1具有第一信号输出端Ox-A和第二信号输出端Ox-B(其中,x=1或2),其连接到节点2。第一导线段3形式的第一移相元件布置或者连接在节点2和第一信号输出端Ox-A之间。第二导线段4形式的第二移相元件布置在节点2和第二信号输出端Ox-B之间。第一导线段3和第二导线段4例如可以作为线缆或线缆段、例如作为同轴线缆来构造。
输入信号Tx-Chx在节点2处分割或划分为强度或功率相同并且相位也仍然相同的两个部分,从而在该节点处产生分为两个支路BR-A和BR-B的分支,这里其仅具有第一导线段3或第二导线段4。
第一导线段3和第二导线段4分别产生一个相位偏移其可以通过导线段3和4的长度来设置。在此,导线段3和4产生不同的相位偏移其通过导线段3和4不同的长度来表示。更确切地说,将第一导线段3的长度选择为,使得在那里到来的输入信号Tx-Chx的部分与Lambda/4的相位延迟对应地经历相位偏移相对地,将第二导线段4的长度选择为,使得在那里到来的输入信号Tx-Chx的部分与-Lambda/4或3/4Lambda的相位延迟对应地经历相位偏移也就是说,第一导线段3和第二导线段4产生或者建立量相等的、彼此相反的相位偏移。
导线段3和4除了其长度不同之外可以相同地实施。此外,替换地,它们也可以例如在其导线横截面方面不同地实施,例如以便能够更简单地设置相应的阻抗ZL2。特别地,这里,两个导线段3和4例如具有相同的阻抗ZL2或者特征阻抗。
这里,节点2经由“第三”导线段5形式的第三移相元件连接到分配网络1的信号输入端Ix(x=1或2)。第三导线段5产生尚未分割的输入信号Tx-Chx的相位偏移也就是说,分配网络1仅由长度为Lambda/4(模(360°))和“-Lambda/4”或3/4Lambda(模(360°))的导线段构成。
由此,在第一支路BR-A的第一信号输出端Ox-A处得到功率被分割的输出信号Tx-Chx-A(其中,x=1或2),用于激励馈送点Fx-A,该输出信号相对于信号输入端Ix处的输入信号Tx-Chx相位偏移了 这特别地在均匀地或者周期性地产生的输入信号Tx-Chx的情况下可以对应于相位偏移
相对地,在第二支路BR-B的第二信号输出端Ox-B处,呈现功率被分割的输出信号Tx-Chx-B,其相对于信号输入端Ix处的输入信号Tx-Chx相位偏移了因为第三导线段5产生与第二导线段4相反的相位偏移。因此,两个输出信号Tx-Chx-A和Tx-Chx-B彼此相位偏移180°的量。
分配网络1的变换特性附加地可以通过适当地选择第三导线段5的特征阻抗或者阻抗ZL1和导线段3或4的阻抗ZL2来设置。特别地可以进行设置,以适配于MR天线BC在相应的馈送点Fx-A或Fx-B处的(复数值的)负载阻抗Z2或Z3。在此,这里例如假设Z2至少大约等于Z3。
信号输入端Ix处的阻抗Z0对应于如下装置的阻抗或特征阻抗,即该装置包括功率分配器1以及MR天线BC的负载阻抗Z2和Z3。因此,特别地,阻抗Z0可以对应于如从连接到信号输入端Ix的HF功率发送器看到的阻抗。
利用分配网络1,特别地可以产生两种实际上特别有利的配置。
在第一种配置中,信号输入端Ix处的输入阻抗Z0对应于负载阻抗Z2或Z3,即成立Z0=Z2=Z3。例如可以通过选择ZL1=ZL2/SQRT(2)来设置这种配置,例如,ZL1=50欧姆并且ZL2=71欧姆。由此,在信号输出端Ox-A和Ox-B处呈现的输出电压U2或U3对应于值U0/SQRT(2),其中,U0是在信号输入端Ix处呈现的输入电压。
这种配置具有不进行阻抗变换的优点。由此,可以从输入阻抗Z0直接推断出阻抗Z2或Z3,由此推断出患者对MR天线BC施加的负荷。
在第二种配置中,信号输入端Ix处的输入电压U0的量对应于输出电压U2或U3的量,例如通过成立U0=-U2=-U3。例如可以通过选择ZL1=ZL2/2来设置这种配置,例如ZL1=50欧姆并且ZL2=100欧姆。由此,输入阻抗Z0也被设置为负载阻抗Z2或Z3的一半,即于是成立Z0=Z2/2=Z3/2。
因此,在信号输入端Ix处显现特别是与在分配网络1的相应的信号输出端Ox-A或Ox-B处或者与在MR天线BC的输入端处相等的电压的量,具体说,独立于MR天线BC的阻抗或者患者对MR天线BC施加的负荷。当要确定并监视MR天线BC的部件负荷,以便例如防止部件损坏时,这特别有利。于是,为了之后获知MR天线BC中的相关联的电压U2或U3,测量分配网络1的信号输入端Ix处的电压U0就足够了。
图5示出了本发明的分配网络11的等效电路图,其同样可以用作MR设备MRT的分配网络Nx(x=1或2)或者用作分配网络N1和N2。
与分配网络1相同,分配网络11具有节点2、第一导线段3和第二导线段4。然而,现在节点2直接连接到分配网络11的信号输入端Ix。信号输入端Ix具有与分配网络1的输入阻抗Z0类似地定义的输入阻抗Z1。
除了分配网络1之外,在节点2和第一信号输出端Ox-A之间还连接有与第一导线段3串联的第一另外的导线段12形式的另一个移相元件。此外,现在在节点2和第二信号输出端Ox-B之间还连接有与第二导线段4串联的第二另外的导线段13形式的另一移相元件。
两个另外的导线段12和13使得通过它们的电信号产生-90°的相位偏移由此是Lambda/4相位延迟器。单纯地作为示例,这里它们两者具有阻抗ZL3。由此,与分配网络1的支路BR-A或BR-B类似,在支路BR-A或BR-B的两个信号输出端Ox-A和Ox-B中的每一个处,获得-180°或0°的相位偏移例如,在支路BR-B中,与分配网络1的支路BR-B类似,通过第二导线段4并且通过第二另外的导线段13,产生彼此相反的+90°或-90°的相位偏移。这里示出的电阻Z4和Z5表示MR天线BC在相关联的馈送点Fx-A或Fx-B处的(复数值的)负载阻抗。Z4大约等于Z5。这可以对应于分配网络1的负载阻抗Z2和Z3。
利用分配网络11,也可以特别地产生两种实际上特别有利的配置。
在分配网络11的第一种配置中,信号输入端Ix处的输入阻抗Z1对应于负载阻抗Z4或Z5,即适用Z1=Z4=Z5。例如可以通过选择ZL2=ZL3*SQRT(2)来设置这种配置,例如,ZL2=71欧姆并且ZL3=50欧姆。由此,在信号输出端Ox-A和Ox-B处呈现的输出电压U4或U5对应于值-U1/SQRT(2),其中,U0是在信号输入端Ix处呈现的输入电压。
这种配置具有不进行阻抗变换的优点。由此,可以从输入阻抗Z1直接推断出负载阻抗Z4,由此推断出患者对MR天线BC施加的负荷。
在分配网络11的第二种配置中,信号输入端Ix处的输入电压U1的量对应于输出电压U4或U5的量,即适用U1=U4=U5。例如可以通过选择ZL2=ZL3来设置这种配置,例如ZL2=ZL3=50欧姆。由此,输入阻抗Z1也被设置为负载阻抗Z4或Z5的一半,即于是适用Z1=Z4/2=Z5/2。
虽然通过示出的实施例进一步详细说明并描述了本发明,但是本发明不局限于此,本领域技术人员可以由此得出其它变型方案,而不脱离本发明的保护范围。
因此,也可以多于两个的支路、例如3个、4个等的支路从节点开始出发。因此,分配网络可以将输入信号分割为多于两个的输出信号,其中的至少两个输出信号彼此相位偏移。
例如,也可以将分配网络11的多个串联连接的导线、例如分开地存在的导线段3和12或者导线段4和13组合成具有相同的特征的单个导线段。特别地可以将存在于共同支路中的导线段组合成具有相同的特征的单个导线段。如果一个支路的导线段的相位偏移相加为零,则该支路的信号输出端也可以直接连接到该节点,或者该节点用作该支路的信号输出端。
一般来说,“一”、“一个”等可以理解为单数或复数,特别是在“至少一个”或者“一个或更多个”等的意义上,只要这没有例如通过表述“正好一个”等被明确排除。
此外,数值指定可以包括准确的所指定的数值以及正常的公差范围,只要这没有被明确排除。

Claims (26)

1.一种MR设备(MRT),具有至少一个分配网络(1;11),用于向MR天线(BC)的多个馈送点(Fx-A,Fx-B)分配电输入信号(Tx-Chx),所述分配网络(1)至少具有
-连接到节点(2)的第一信号输出端(Ox-A)和第二信号输出端(Ox-B),
-布置在所述节点(2)和所述第一信号输出端(Ox-A)之间的第一移相元件(3),以及
-布置在所述节点(2)和所述第二信号输出端(Ox-B)之间的第二移相元件(4),其中,
-所述第一移相元件(3)和所述第二移相元件(4)产生不同的相位偏移,以及
-所述第一移相元件(3)和所述第二移相元件(4)作为不同长度的电导线构造,
其中,所述电导线具有预先给定的长度,并且所述第一移相元件和所述第二移相元件产生的相位偏移由于电导线具有预先给定的长度而是预先给定的。
2.根据权利要求1所述的MR设备(MRT),其中,所述节点(2)直接连接到所述分配网络(11)的信号输入端(Ix)。
3.根据权利要求1所述的MR设备(MRT),其中,所述节点(2)经由电导线形式的第三移相元件(5)连接到所述分配网络(1)的信号输入端(Ix)。
4.根据权利要求3所述的MR设备(MRT),其中,所述第三移相元件(5)产生与所述第一移相元件(3)或者与所述第二移相元件(4)相反的相位偏移。
5.根据权利要求1所述的MR设备(MRT),其中,在所述节点(2)与所述第一信号输出端(Ox-A)之间,布置有与所述第一移相元件(3)串联的电导线形式的至少一个第一另外的移相元件(12),并且在所述节点(2)与所述第二信号输出端(Ox-B)之间,布置有与所述第二移相元件(4)串联的电导线形式的至少一个第二另外的移相元件(13)。
6.根据权利要求5所述的MR设备(MRT),其中,至少一个第一另外的移相元件(12)产生与和其串联连接的第一移相元件(3)相反的相位偏移,并且至少一个第二另外的移相元件(13)产生与和其串联连接的第二移相元件(4)相反的相位偏移。
7.根据权利要求1所述的MR设备(MRT),其中,在所述节点(2)与所述第一信号输出端(Ox-A)之间,布置有与所述第一移相元件(3)串联的电导线形式的至少一个第一另外的移相元件(12),或者在所述节点(2)与所述第二信号输出端(Ox-B)之间,布置有与所述第二移相元件(4)串联的电导线形式的至少一个第二另外的移相元件(13)。
8.根据权利要求7所述的MR设备(MRT),其中,至少一个第一另外的移相元件(12)产生与和其串联连接的第一移相元件(3)相反的相位偏移,或者至少一个第二另外的移相元件(13)产生与和其串联连接的第二移相元件(4)相反的相位偏移。
9.根据权利要求1至8中任一项所述的MR设备(MRT),其中,第一移相元件(3)和第二移相元件(4)产生彼此相反的相位偏移。
10.根据权利要求1至8中任一项所述的MR设备(MRT),其中,通过所述分配网络(1;11)在所述第一信号输出端(Ox-A)处产生关于所述第二信号输出端(Ox-B)相差180°的相位偏移。
11.根据权利要求1至8中任一项所述的MR设备(MRT),其中,第一移相元件(3)或者第二移相元件(4)产生对应于0°的相位偏移。
12.根据权利要求1至8中任一项所述的MR设备(MRT),其中,所述分配网络的输入阻抗(Z0;Z1)对应于负载阻抗(Z2,Z3;Z4,Z5)。
13.根据权利要求1至8中任一项所述的MR设备(MRT),其中,输入电压(U0;U1)的量对应于输出电压的量(U2,U3;U4,U5)。
14.一种MR设备(MRT),具有至少一个分配网络(1;11),用于向MR天线(BC)的多个馈送点(Fx-A,Fx-B)分配电输入信号(Tx-Chx),所述分配网络(1)至少具有
-连接到节点(2)的第一信号输出端(Ox-A)和第二信号输出端(Ox-B),
-布置在所述节点(2)和所述第一信号输出端(Ox-A)之间的第一移相元件(3),以及
-布置在所述节点(2)和所述第二信号输出端(Ox-B)之间的第二移相元件(4),其中,
-所述第一移相元件(3)和所述第二移相元件(4)产生不同的相位偏移,以及
-所述第一移相元件(3)和所述第二移相元件(4)作为不同长度的电导线构造,
其中,所述电导线构造为线缆,并且所述第一移相元件和所述第二移相元件产生的相位偏移由于线缆的长度而是预先给定的。
15.根据权利要求14所述的MR设备(MRT),其中,所述节点(2)直接连接到所述分配网络(11)的信号输入端(Ix)。
16.根据权利要求14所述的MR设备(MRT),其中,所述节点(2)经由电导线形式的第三移相元件(5)连接到所述分配网络(1)的信号输入端(Ix)。
17.根据权利要求16所述的MR设备(MRT),其中,所述第三移相元件(5)产生与所述第一移相元件(3)或者与所述第二移相元件(4)相反的相位偏移。
18.根据权利要求14所述的MR设备(MRT),其中,在所述节点(2)与所述第一信号输出端(Ox-A)之间,布置有与所述第一移相元件(3)串联的电导线形式的至少一个第一另外的移相元件(12),并且在所述节点(2)与所述第二信号输出端(Ox-B)之间,布置有与所述第二移相元件(4)串联的电导线形式的至少一个第二另外的移相元件(13)。
19.根据权利要求18所述的MR设备(MRT),其中,至少一个第一另外的移相元件(12)产生与和其串联连接的第一移相元件(3)相反的相位偏移,并且至少一个第二另外的移相元件(13)产生与和其串联连接的第二移相元件(4)相反的相位偏移。
20.根据权利要求14所述的MR设备(MRT),其中,在所述节点(2)与所述第一信号输出端(Ox-A)之间,布置有与所述第一移相元件(3)串联的电导线形式的至少一个第一另外的移相元件(12),或者在所述节点(2)与所述第二信号输出端(Ox-B)之间,布置有与所述第二移相元件(4)串联的电导线形式的至少一个第二另外的移相元件(13)。
21.根据权利要求20所述的MR设备(MRT),其中,至少一个第一另外的移相元件(12)产生与和其串联连接的第一移相元件(3)相反的相位偏移,或者至少一个第二另外的移相元件(13)产生与和其串联连接的第二移相元件(4)相反的相位偏移。
22.根据权利要求14至21中任一项所述的MR设备(MRT),其中,第一移相元件(3)和第二移相元件(4)产生彼此相反的相位偏移。
23.根据权利要求14至21中任一项所述的MR设备(MRT),其中,通过所述分配网络(1;11)在所述第一信号输出端(Ox-A)处产生关于所述第二信号输出端(Ox-B)相差180°的相位偏移。
24.根据权利要求14至21中任一项所述的MR设备(MRT),其中,第一移相元件(3)或者第二移相元件(4)产生对应于0°的相位偏移。
25.根据权利要求14至21中任一项所述的MR设备(MRT),其中,所述分配网络的输入阻抗(Z0;Z1)对应于负载阻抗(Z2,Z3;Z4,Z5)。
26.根据权利要求14至21中任一项所述的MR设备(MRT),其中,输入电压(U0;U1)的量对应于输出电压的量(U2,U3;U4,U5)。
CN201610087207.6A 2015-02-17 2016-02-16 具有分配网络的磁共振设备 Active CN105891752B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202861.5A DE102015202861B4 (de) 2015-02-17 2015-02-17 MR-Gerät mit Verteilernetzwerk
DE102015202861.5 2015-02-17

Publications (2)

Publication Number Publication Date
CN105891752A CN105891752A (zh) 2016-08-24
CN105891752B true CN105891752B (zh) 2019-12-27

Family

ID=56551968

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610087207.6A Active CN105891752B (zh) 2015-02-17 2016-02-16 具有分配网络的磁共振设备

Country Status (4)

Country Link
US (1) US10162024B2 (zh)
KR (1) KR101812404B1 (zh)
CN (1) CN105891752B (zh)
DE (1) DE102015202861B4 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3577479A1 (en) 2017-01-31 2019-12-11 Koninklijke Philips N.V. Inductively feeding an rf coil for magnetic resonance imaging
EP3470864A1 (en) 2017-10-12 2019-04-17 Koninklijke Philips N.V. Feeding a coil for magnetic resonance imaging
EP3514561A1 (en) 2018-01-18 2019-07-24 Koninklijke Philips N.V. Multi-channel magnetic resonance imaging rf coil
KR102555740B1 (ko) * 2021-04-30 2023-07-17 가천대학교 산학협력단 자기공명 영상장치의 다중 송신모드용 위상천이기

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565732A (zh) * 2010-10-19 2012-07-11 西门子公司 用于磁共振断层造影系统的天线电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6661374B2 (en) 2000-12-08 2003-12-09 Kmw Inc. Base transceiver station having multibeam controllable antenna system
US7382128B2 (en) * 2006-02-24 2008-06-03 Kenergy, Inc. Magnetic resonance imaging system with a Class-E radio frequency amplifier
US7714581B2 (en) * 2006-04-19 2010-05-11 Wisconsin Alumni Research Foundation RF coil assembly for magnetic resonance imaging and spectroscopy systems
US7525313B2 (en) * 2007-05-04 2009-04-28 General Electric Company System and method for multi-channel MR transmission
DE102008005994B4 (de) * 2008-01-24 2012-03-29 Siemens Aktiengesellschaft Anordnung zur Ansteuerung einer Antennenanordnung
DE102008006117B4 (de) * 2008-01-25 2013-12-12 Siemens Aktiengesellschaft Magnetresonanzanlage, Antennensystem, Verfahren zum Aufbau einer Magnetresonanzanlage und Verfahren zur Erzeugung von Magnetresonanzaufnahmen
KR101142524B1 (ko) 2011-09-09 2012-05-07 (주)비젼알에프텍 계기착륙시설(ils) 안테나 위상분배장치(adu)의 위상 시프터 및 이를 포함한 가변 이득 조정 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102565732A (zh) * 2010-10-19 2012-07-11 西门子公司 用于磁共振断层造影系统的天线电路

Also Published As

Publication number Publication date
DE102015202861B4 (de) 2016-11-10
CN105891752A (zh) 2016-08-24
US10162024B2 (en) 2018-12-25
KR101812404B1 (ko) 2017-12-26
US20160238678A1 (en) 2016-08-18
DE102015202861A1 (de) 2016-08-18
KR20160101703A (ko) 2016-08-25

Similar Documents

Publication Publication Date Title
CN105891752B (zh) 具有分配网络的磁共振设备
CN103338696B (zh) 磁共振成像装置
CN1735814B (zh) 用于具有多个发送通道的mr设备的高频系统及其中的mr设备
RU2689285C2 (ru) Катушка типа "птичья клетка" с распределенным возбуждением
US9535142B2 (en) Multichannel RF volume resonator for MRI
US8102330B1 (en) Dual band circularly polarized feed
CN101398471B (zh) 高频发射系统、磁共振设备以及用于控制磁共振设备的方法
CN101809808B (zh) 环型定向耦合器
US9297868B2 (en) Antenna circuit for an MRI system
CN107546457A (zh) 差分定向耦合器、信号转换系统和用于转换差分输入信号的方法
CN109073717B (zh) 具有用于磁共振成像装置的可选驱动端口的rf发射系统
US20090189609A1 (en) Apparatus for controlling an antenna arrangement
US4945321A (en) π/2 power divider
DE102007012052B4 (de) Anordnung zur Ansteuerung von Einzelantennen einer Antennenanordnung
Yan et al. Ratio‐adjustable power splitters for array‐compressed parallel transmission
CN105006606B (zh) 射频信号移相网络
US20190052237A1 (en) Amplifier circuit and method
Yazdanbakhsh et al. Variable power combiner for RF mode shimming in 7-T MR imaging
US10670673B2 (en) Device and method for transmitting signals over a shielded balanced line
EP3819652B1 (en) Method and system for determining and/or adjusting phases of at least two electrical signals
KR20130046636A (ko) 선택적 전력 분배 기능을 갖는 전력 분배기
US2450616A (en) Electrical networks for phase shifters
KR20150101516A (ko) 이중대역 비대칭 전력 분배기
JP2000166896A (ja) Rfコイルおよび磁気共鳴撮像装置
DE202018005094U1 (de) Symmetrierglied mit integrierter Impedanzwandlung und Bandpassfilter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant