CN105891633A - 学生宿舍用电器类型判断装置 - Google Patents

学生宿舍用电器类型判断装置 Download PDF

Info

Publication number
CN105891633A
CN105891633A CN201610213351.XA CN201610213351A CN105891633A CN 105891633 A CN105891633 A CN 105891633A CN 201610213351 A CN201610213351 A CN 201610213351A CN 105891633 A CN105891633 A CN 105891633A
Authority
CN
China
Prior art keywords
current
appliance
load
classifier
electrical equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610213351.XA
Other languages
English (en)
Inventor
凌云
郭艳杰
孔玲爽
聂辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University of Technology
Original Assignee
Hunan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University of Technology filed Critical Hunan University of Technology
Priority to CN201610213351.XA priority Critical patent/CN105891633A/zh
Publication of CN105891633A publication Critical patent/CN105891633A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种学生宿舍用电器类型判断装置,包括信息采集模块、信息处理模块、通信模块。所述装置同时采用包括启动冲激电流、启动平均电流、启动电流冲量在内的电器启动电流特征,以及电器的负载电流频谱特征作为识别特征,特征信息丰富;采用包括决策树分类器和贝叶斯分类器的组合分类器进行识别与判断分类,兼顾决策树分类器和贝叶斯分类器的特点进行综合识别判断,准确率高;提供的启动电流特征获取方法和负载电流频谱特征获取方法简单、可靠。所述装置可以用在学生集体宿舍等一些需要进行用电电器管理的集体公共场所,也可以用于需要进行电器类型识别与统计的其他需要进行用电设备管理的场合。

Description

学生宿舍用电器类型判断装置
技术领域
本发明涉及一种设备判断及分类装置,尤其是涉及一种学生宿舍用电器类型判断装置。
背景技术
目前,主流的电器负载性质判断方法包括基于负载功率综合系数算法的电器负载判断方法、基于电磁感应的电器负载判断方法、基于神经网络算法的电器负载判断方法、基于周期性离散变换算法的电器负载判断方法等。各种方法均能够在一定程度是实现电器负载性质的判断,但由于特征性质单一,判断手段单一,普遍存在泛化能力不够及不能完全准确判断的问题。
发明内容
本发明的目的在于,针对现在已有技术的缺陷,提供一种能够实现高效判断的学生宿舍用电器类型判断装置。所述判断装置包括信息采集模块、信息处理模块、通信模块。
所述信息采集模块用于采集电器的负载电流并转换成电流数字信号;所述电流数字信号被送至信息处理模块;所述信息处理模块依据输入的电流数字信号,采用组合分类器进行电器类型判断;所述通信模块用于发送信息处理模块的电器类型判断结果至上位机。
所述组合分类器的输入特征包括电器的启动电流特征和电器的负载电流频谱特征;所述组合分类器包括决策树分类器和贝叶斯分类器;所述启动电流特征包括启动冲激电流、启动平均电流、启动电流冲量。
所述信息采集模块包括电流传感器、前置放大器、滤波器、A/D转换器;所述信息处理模块的核心为DSP,或者为ARM,或者为单片机,或者为FPGA。
所述A/D转换器可以采用信息处理模块的核心中包括的A/D转换器。
所述信息采集模块、信息处理模块、通信模块的全部或者部分功能集成在一片SoC上。
所述通信模块还接收上位机的相关工作指令;所述通信模块与上位机之间的通信方式包括无线通信方式与有线通信方式;所述无线通信方式包括ZigBee、蓝牙、WiFi、433MHz数传方式;所述有线通信方式包括485总线、CAN总线、互联网、电力载波方式。
所述负载电流频谱特征通过以下方法获得:
步骤一、获取电器负载的稳态电流信号,并将其转换为对应的稳态电流数字信号;
步骤二、对稳态电流数字信号进行傅立叶变换,得到负载电流频谱特性;
步骤三、将负载电流频谱特性中谐波次数为n次的奇次谐波信号相对幅值作为负载电流频谱特征,n=1,3,…,M;所述M表示谐波最高次数且M大于等于3。
所述组合分类器中,决策树分类器为主分类器,贝叶斯分类器为辅助分类器。
所述组合分类器进行电器类型判断的方法是:当主分类器成功实现电器类型判断时,主分类器的电器类型判断结果为组合分类器的判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果为2种或者2种以上电器类型,将主分类器输出的2种或者2种以上电器类型判断结果中,辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果中未能给出判断的电器类型时,将辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果。
所述启动电流特征由信息处理模块通过以下方法获得:
步骤1、电器启动前,开始对电器的负载电流连续采样并对负载电流大小进行判断;当负载电流有效值大于ε时,判定电器开始启动并转向步骤2;所述ε为大于0的数值;
步骤2、对电器的负载电流进行连续采样,以工频周期为单位计算负载电流有效值并保存;计算最近N个工频周期的负载电流有效值的平均值;当最近N个工频周期之内的每个工频周期的负载电流有效值与该N个工频周期的负载电流有效值的平均值相比较,波动幅度均小于设定的相对误差范围E时,判定电器负载进入稳定状态,转向步骤3;所述N的取值范围为50-500;所述E的取值范围为2%-20%;
步骤3、将最近N个工频周期之内的负载电流有效值的平均值作为电器负载稳态电流;将电器开始启动时刻至最近N个工频周期起始时刻之间的时间作为启动过程时间;计算电器开始启动后L个工频周期之内的电器负载电流有效值的平均值与电器负载稳态电流之间的比值,将该比值作为电器的启动冲激电流;计算电器的启动过程时间之内的电器负载电流有效值的平均值与电器负载稳态电流之间的比值,将该比值作为电器的启动平均电流;计算电器的启动平均电流与启动过程时间之间的乘积,将该乘积作为电器的启动电流冲量;所述L的取值范围为1-5。
所述组合分类器的输入特征还包括电器负载稳态电流。
本发明的有益效果是:同时采用电器的启动电流特征、电器的负载电流频谱特征以及电器负载稳态电流有效值作为所述学生宿舍用电器类型判断装置的判断特征,特征信息丰富;采用包括决策树分类器和贝叶斯分类器的组合分类器进行判断分类,兼顾决策树分类器和贝叶斯分类器的特点进行综合判断,泛化能力与判断准确率高;提供的包括启动冲激电流、启动平均电流、启动电流冲量在内的启动电流特征获取方法,以及负载电流频谱特征获取方法简单、可靠。
附图说明
图1为本发明学生宿舍用电器类型判断装置实施例的结构示意图;
图2为白炽灯台灯的启动过程电流波形;
图3为电阻炉等电阻性负载的启动过程电流波形;
图4为单相电机类负载的启动过程电流波形;
图5为计算机及开关电源类负载的启动过程电流波形;
图6为学生宿舍用电器类型判断装置进行电器类型判断的流程图。
具体实施方式
以下结合附图对本发明作进一步说明。
图1为本发明学生宿舍用电器类型判断装置实施例的结构示意图,包括信息采集模块101、信息处理模块102、通信模块103。
信息采集模块102用于采集电器的负载电流并将负载电流转换成电流数字信号,电流数字信号被送至信息处理模块102。信息采集模块中包括电流传感器、前置放大器、滤波器、A/D转换器等组成部分,分别完成负载电流信号的传感、放大、滤波与模数转换功能。当负载电流范围较大时,可以选择具有程控功能的前置放大器,或者是在A/D转换器前再增加一个独立的程控放大器,对范围较大的负载电流实行分段控制放大,使输入至A/D转换器的电压信号范围保持在合理的区间,保证转换精度。滤波器用于滤除高频分量,避免频谱混叠。
信息处理模块102依据输入的电流数字信号,采用包括决策树分类器和贝叶斯分类器的组合分类器实现电器类型判断。组合分类器的输入特征包括电器的启动电流特征和电器的负载电流频谱特征。信息处理模块102的核心为DSP、ARM、单片机,或者为FPGA。当信息处理模块的核心中包括有A/D转换器且该A/D转换器满足要求时,信息采集模块101中的A/D转换器可以采用信息处理模块102的核心中包括的A/D转换器。
通信模块103用于实现与上位机之间的通信,将判断结果发送至上位机。通信模块102与上位机之间的通信方式包括无线通信方式与有线通信方式,可以采用的无线通信方式包括ZigBee、蓝牙、WiFi、433MHz数传等方式,可以采用的有线通信方式包括485总线、CAN总线、互联网、电力载波等方式。通信模块103还可以接收上位机的相关工作指令,完成指定的工作任务。上位机可以是管理部门的服务器,也可以是各种工作站,或者是各种移动终端。
信息采集模块101、信息处理模块102、通信模块103的全部或者部分功能可以集成在一片SoC上,减小判断装置体积,方便安装。
不同的电器设备具有不同的启动电流特征。如图2所示为白炽灯台灯的启动过程电流波形。白炽灯是将灯丝通电加热到白炽状态,利用热辐射发出可见光的电光源。白炽灯的灯丝通常用耐高温的金属钨制造,但金属钨的电阻随温度变化大,以Rt表示钨丝在t℃时的电阻,以R0表示钨丝在0℃时的电阻,则两者有下述的关系
Rt=R0(1+0.0045t)
例如,设白炽灯的灯丝(钨丝)在正常工作时的温度为2000℃,一只“220V 100W”的白炽灯的灯丝在2000℃正常工作时的电阻为
R t = U 2 P = 220 × 220 100 = 484 Ω
其在不通电时0℃的电阻为
R 0 = R t 1 + 0.0045 t = 484 1 + 0.0045 × 2000 = 48.4 Ω
其在不通电时20℃的电阻为
R20=R0(1+0.0045t)=52.8Ω
即白炽灯在启动通电的瞬间电流超过其额定电流的9倍,且最大启动电流发生在启动时刻。随着白炽灯钨丝温度的升高,白炽灯的负载电流按照指数规律减小,然后进入稳定状态。
设电器负载稳态电流有效值为IW,且定义电器负载电流有效值进入电器负载稳态电流有效值的一个设定的相对误差范围之内并稳定在这个相对误差范围之内,则电器负载进入稳定状态。相对误差范围可以设定为10%,也可以设定为2%、5%、15%、20%等2%-20%之间的值。图2中,设定的相对误差范围为10%,当白炽灯的负载电流按照指数规律减小到其IW的10%误差范围时,如图2中的时刻TS,启动过程结束。白炽灯的启动过程时间为TS。IW为有效值。
选择启动冲激电流IG、启动平均电流ID、启动电流冲量QI作为电器的启动电流特征;启动冲激电流IG、启动平均电流ID均为标么值。具体定义是:启动冲激电流IG为电器启动开始后T2时间之内的电器负载电流平均值与电器负载稳态电流IW的比值;启动平均电流ID为电器启动时间TS之内的电器负载电流平均值与电器负载稳态电流IW的比值;启动电流冲量QI为启动平均电流ID与启动过程时间TS的乘积,量纲为ms。电器负载电流、电器负载稳态电流均为有效值。T2的取值范围为20-100ms,或者是1-5个工频周期;例如,T2取值40ms,即2个工频周期。启动冲激电流IG反映的是电器负载启动后短时间内的电流冲激大小。在部分电器的启动过程中,当有电器的实际启动过程时间TS小于设定的T2时,令电器的启动过程时间TS等于T2。启动平均电流ID反映的是电器负载启动过程中的电流整体大小。启动电流冲量QI反映的是电器负载启动的整体强度。
图2中,白炽灯的启动冲激电流IG为T0(白炽灯启动时刻,电流为I0)至T2(设定的时刻,电流为I2)之间白炽灯的电流平均值与白炽灯的稳态电流IW的比值。启动平均电流ID为T0(白炽灯启动时刻)至TS(白炽灯启动过程结束时间)之间白炽灯的电流平均值与白炽灯的稳态电流IW的比值。启动电流冲量QI为白炽灯启动平均电流ID与启动过程时间TS的乘积。
如图3所示为电阻炉等电阻性负载的启动过程电流波形。电阻炉等电阻性负载通常采用镍铬、铁铬铝等电热合金丝,其共同特点是电阻温度修正系数小,电阻值稳定。以牌号为Cr20Ni80的镍铬电热丝为例,其在1000℃时的电阻修正系数为1.014,即1000℃时相对于20℃时,牌号为Cr20Ni80的镍铬电热丝电阻只增加1.4%。电阻炉等电阻性负载在通电启动时即进入稳定状态,电阻炉等电阻性负载的实际启动过程时间TS=0,因此,令电阻炉等电阻性负载的实际启动过程时间TS=T2;例如,当T2设定为40ms时,则此时的启动过程时间TS也为40ms。由于电阻性负载T0时刻电流I0、T2时刻电流I2与电阻性负载的稳态电流IW相等,因此,电阻性负载的启动冲激电流IG=1,启动平均电流ID=1。
如图4所示为单相电机类负载的启动过程电流波形。单相电机类负载既具有电感性负载特性,又具有反电动势负载特性。启动时刻,由于电感的作用,启动时刻的启动电流I0为0;随后电流迅速上升,在电机反电动势未建立之前,达到电流峰值IM;此后,电机转速增加,电机负载电流逐步减小,直到进入稳定状态。图4中,单相电机类负载的启动冲激电流IG为T0(单相电机类负载启动时刻,电流为I0)至T2(设定的时刻,电流为I2)之间单相电机类负载的电流平均值与稳态电流IW的比值。启动平均电流ID为T0(单相电机类负载启动时刻)至TS(单相电机类负载启动过程结束时间)之间单相电机类负载的电流平均值与稳态电流IW的比值。启动电流冲量QI为单相电机类负载启动平均电流ID与启动过程时间TS的乘积。
如图5所示为计算机及开关电源类负载的启动过程电流波形。计算机及开关电源类负载因为对电容充电的影响,在启动瞬间会产生一个很大的浪涌电流,其峰值可达到稳态电流有效值IW的几倍至十几倍,时间为1至2个工频周期。由于计算机及开关电源类负载的启动时间短,其启动过程时间TS有可能小于设定的T2;当其启动过程时间TS小于设定的T2时,令TS等于T2。图5中,计算机及开关电源类负载的启动冲激电流IG为T0(计算机及开关电源类负载启动时刻,电流为I0)至T2(设定的时刻,电流为I2)之间计算机及开关电源类负载的电流平均值与稳态电流IW的比值。启动平均电流ID为T0(计算机及开关电源类负载启动时刻)至TS(计算机及开关电源类负载启动过程结束时间)之间计算机及开关电源类负载的电流平均值与稳态电流IW的比值。启动电流冲量QI为计算机及开关电源类负载启动平均电流ID与启动过程时间TS的乘积。
获取电器的启动电流特征的方法是:
电器启动前,负载电流值为0(未开机)或者很小(处于待机状态)时,信息处理模块102即开始对负载电流进行连续采样;当采样得到的负载电流值有效值开始大于0或者是开始大于电器的待机电流时,即判断出电器已经启动,记录该时刻为T0。用一个较小的非负阈值ε来区分电器启动前后的负载电流值,当ε取值特别小时,例如,ε取值1mA时,所述判断装置不考虑待机情况,即认为待机也是电器的启动状态;当ε取值较小但大于电器的待机电流时,例如,ε取值20mA时,所述判断装置会将电器的待机状态认为是未启动状态,但同时也会的部分功率特别小的电器造成漏判断。
信息处理模块102对负载电流进行连续采样,且以工频周期为单位计算负载电流有效值并保存;当电器已经启动,且连续采样达到N个工频周期后,采样的同时连续计算最近N个工频周期的负载电流有效值的平均值IV;信息处理模块102对最近N个工频周期之内每个工频周期的负载电流有效值与该N个工频周期的负载电流有效值的平均值进行比较,误差(或波动)幅度均小于设定的相对误差范围E时,判定电器负载进入稳定状态,该最近N个工频周期的起始时刻为启动过程的结束时刻,记录该时刻为T1(如图2-图5所示)。
将最近N个工频周期之内的负载电流有效值的平均值作为电器负载稳态电流IW;将电器开始启动时刻T0至最近N个工频周期起始时刻T1之间的时间作为启动过程时间TS。计算T0至设定的T2之间(即电器开始启动后1-5个工频周期之内)的负载电流平均值与稳态电流IW的比值,将该比值作为电器的启动冲激电流IG。计算T0至TS之间的负载电流平均值与稳态电流IW的比值,将该比值作为电器的启动平均电流ID。计算电器的启动平均电流ID与启动过程时间TS的乘积,将该乘积作为电器的启动电流冲量QI
由于预先不知道电器负载稳态电流有效值IW,因此,将N个工频周期,即一段持续时间TP之内波动范围小于设定的相对误差范围E时的负载电流有效值的平均值作为电器负载稳态电流有效值IW。由于普通电器负载的启动过程较快,所以,TP的取值范围为1-10s,典型取值是2s,相应的工频周期数量N的取值范围为50-500,N的典型取值是100。所述相对误差范围E的取值范围为2%-20%,E的典型取值是10%。
组合分类器的输入特征还包括电器的负载电流频谱特征。电器的负载电流频谱特征由信息处理模块102控制信息采集模块101,通过以下步骤获得:
步骤一、待电器负载进入稳定状态后,获取电器负载的稳态电流信号,并将其转换为对应的稳态电流数字信号。
步骤二、对稳态电流数字信号进行傅立叶变换,得到负载电流频谱特性。为保证傅立叶变换的顺利进行,在前述获取电器负载的稳态电流信号,并将其转换为对应的稳态电流数字信号的过程中,A/D转换器的精度和速度需要满足傅立叶变换的要求,采样频率可以设定为10kHz,或者是其他数值;信息处理模块102对采集到的稳态电流数字信号进行FFT运算,计算其频谱。
步骤三、将负载电流频谱特性中的n次谐波信号相对幅值作为负载电流频谱特征,其中,n=1,2,…,M;在组成组合分类器的输入特征向量时,n次谐波信号相对幅值在输入特征向量中按照1,2,…,M的顺序依次排列。由于负载电流频谱特性主要由奇次谐波组成,除少数电器设备外,偶次谐波分量几乎为0,因此,也可以将负载电流频谱特性中谐波次数为n次的奇次谐波信号相对幅值依序作为负载电流频谱特征,其中,n=1,3,…,M。n=1时的1次谐波为工频基波。所述谐波信号相对幅值为谐波信号幅值与电器负载稳态电流有效值IW的比值。所述M表示谐波最高次数,一般情况下,M大于等于3。
组合分类器中,决策树分类器为主分类器,贝叶斯分类器为辅助分类器。组合分类器的输入特征包括前述的启动电流特征和负载电流频谱特征,组合分类器的输入特征同时作为决策树分类器的输入特征和贝叶斯分类器的输入特征。
如图6所示为学生宿舍用电器类型判断装置进行电器类型判断的流程图,学生宿舍用电器类型判断装置进行电器类型判断的方法是:
步骤A、等待电器启动;
步骤B、采集电器启动电流数据并保存,直至电器启动过程结束;
步骤C、分析采集的电器启动电流数据,获取电器的启动电流特征;
步骤D、采集电器稳态工作时的数据并保存;
步骤E、分析采集的电器稳态工作时的数据,获取电器的负载电流频谱特征;
步骤F、将启动电流特征和负载电流频谱特征作为组合分类器的输入特征;组合分类器进行电器类型判断;
步骤G、输出电器类型判断结果。
所述组合分类器进行电器类型判断与识别的方法是:当主分类器成功实现电器类型判断,即主分类器输出的判断结果为唯一的电器类型,即判断结果中唯一的电器类型为是时,将主分类器判断的电器类型作为组合分类器的电器类型判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果为2种或者2种以上电器类型,即判断结果中有2种或者2种以上电器类型为是时,将主分类器输出的2种或者2种以上电器类型判断结果中,辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果中未能给出判断的电器类型,即判断结果中没有电器类型为是时,将辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果。
以一个简单的实施例1为例,来说明组合分类器进行电器类型判断的方法。设有一个组合分类器,其输入特征为x={IG,ID,QI,A1,A2,A3,A4,A5},其中,IG是启动冲激电流;ID是启动平均电流;QI是启动电流冲量;A1、A2、A3、A4、A5为负载电流频谱特性中的1-5次谐波信号相对幅值。组合分类器的输出是{B1,B2,B3,B4},B1、B2、B3、B4分别代表组合分类器对白炽灯、电阻炉、吹风机、计算机的判断结果输出,判断结果B1、B2、B3、B4的取值均为二值分类标记。主分类器的输入特征也是x={IG,ID,QI,A1,A2,A3,A4,A5},其输出是{F1,F2,F3,F4},F1、F2、F3、F4分别代表主分类器对白炽灯、电阻炉、吹风机、计算机的判断结果输出,判断结果F1、F2、F3、F4的取值也均为二值分类标记。辅助分类器的输入特征同样为x={IG,ID,QI,A1,A2,A3,A4,A5},其输出是{P(y1|x),P(y2|x),P(y3|x),P(y4|x)},P(y1|x)、P(y2|x)、P(y3|x)、P(y4|x)为辅助分类器输出的后验概率,P(y1|x)、P(y2|x)、P(y3|x)、P(y4|x)之间的相互大小表明辅助分类器的当前输入特征表示所判断的电器属于白炽灯、电阻炉、吹风机、计算机的可能性大小。
在实施例1中,B1、B2、B3、B4的分类标记和F1、F2、F3、F4的分类标记均取1、0。分类标记为1时,相应的电器类型与当前输入特征匹配,为确认的判断结果,或者说相应的电器类型判断结果为是;分类标记为0时,相应的电器类型与输入特征不匹配,未能成为确认的判断结果,或者说相应的电器类型判断结果为否。
在实施例1中,设某次的主分类器的判断结果分类标记为F1F2F3F4=0100,则认为主分类器成功实现电器类型判断,因此,不考虑辅助分类器的判断结果,直接令B1B2B3B4=0100,即组合分类器的判断结果是:被判断的电器为电阻炉。
在实施例1中,设某次的主分类器的判断结果分类标记为F1F2F3F4=1010,则认为主分类器未能实现电器类型判断,且主分类器的判断结果为2种或者2种以上电器类型;再设此时辅助分类器的判断结果满足P(y1|x)<P(y3|x),则令B1B2B3B4=0010,即组合分类器的判断结果是:被判断的电器为吹风机。
在实施例1中,设某次的主分类器的判断结果分类标记为F1F2F3F4=0000,则认为主分类器未能实现电器类型判断,且主分类器的判断结果中未能给出判断的电器类型;再设此时辅助分类器的判断结果满足P(y1|x)>P(y2|x)且P(y1|x)>P(y3|x)且P(y1|x)>P(y4|x),则令B1B2B3B4=1000,即组合分类器的判断结果是:被判断的电器为白炽灯。
组合分类器、主分类器的判断结果分类标记也可以采用其他的方案,例如,分别用分类标记1、-1,或者是0、1,或者是-1、1,以及其他方案来表示相应电器判断结果为是、否。组合分类器与主分类器的分类标记方案可以相同,也可以不相同。
所述组合分类器的输入特征中,还可以包括电器负载稳态电流有效值IW。例如,有2种不同的电器,电烙铁和电阻炉需要判断,电烙铁、电阻炉都是纯电阻负载,且都具有电阻温度修正系数小,电阻值稳定的共同特点。因此,单纯依靠前述的启动电流特征和负载电流频谱特征无法将他们进行区分。输入特征中增加电器负载稳态电流有效值IW后,电烙铁功率小,电器负载稳态电流有效值IW小;电阻炉功率大,电器负载稳态电流有效值IW大,特征不同,组合分类器可以进行并完成判断。
辅助分类器为贝叶斯分类器。可以选择NBC分类器(朴素贝叶斯分类器)、TAN分类器(树扩展朴素贝叶斯分类器)、BAN分类器(增强的贝叶斯分类器)等三种贝叶斯分类器之中的一种作为辅助分类器。
实施例2选择NBC分类器作为辅助分类器。朴素贝叶斯分类的定义如下:
⑴设x={a1,a2,…,am}为一个待分类项,而每个a为x的一个特征属性;
⑵有类别集合C={y1,y2,…,yn};
⑶计算P(y1|x),P(y2|x),…,P(yn|x);
⑷如果P(yk|x)=max{P(y1|x),P(y2|x),…,P(yn|x)},则x∈yk
计算第⑶步中的各个条件概率的具体方法是:
①找到一个已知分类的待分类项集合作为训练样本集;
②统计得到各类别下各个特征属性的条件概率估计;
P(a1|y1),P(a2|y1),…,P(am|y1);
P(a1|y2),P(a2|y2),…,P(am|y2);
…;
P(a1|yn),P(a2|yn),…,P(am|yn)。
③根据贝叶斯定理,有:
P ( y i | x ) = P ( x | y i ) P ( y i ) P ( x ) - - - ( 1 )
因为分母对于所有类别为常数,因此我们只要将分子最大化即可;又因为在朴素贝叶斯中各特征属性是条件独立的,所以有:
P ( x | y i ) P ( y i ) = P ( a 1 | y i ) P ( a 2 | y i ) ... P ( a m | y i ) P ( y i ) = P ( y i ) &Pi; j = 1 m P ( a j | y i )
实施例2中,组合分类器的输入特征是{IG,ID,QI,A1,A3,IW},其中IG是启动冲激电流;ID是启动平均电流;QI是启动电流冲量;A1、A3为负载电流频谱特性中的1、3次奇次谐波信号相对幅值;IW为电器负载稳态电流有效值,单位是安培。要求判断的电器类别是白炽灯、电阻炉、电风扇、计算机、电烙铁。令朴素贝叶斯分类器的特征属性组合x={a1,a2,a3,a4,a5,a6}中的元素与组合分类器的输入特征集合中的元素按序{IG,ID,QI,A1,A3,IW}一一对应;朴素贝叶斯分类器的输出类别集合C={y1,y2,y3,y4,y5}则分别与电器类别白炽灯、电阻炉、电风扇、计算机、电烙铁一一对应。
训练NBC分类器的过程包括:
1、对特征属性进行分段划分,进行离散化处理。实施例2中,采取的特征属性离散化方法是:
a1:{a1<3.5,3.5≤a1≤7,a1>7};
a2:{a2<1.25,1.25≤a2≤2.5,a2>2.5};
a3:{a3<125,125≤a3≤500,a3>500};
a4:{a4<0.7,0.7≤a4≤0.9,a4>0.9};
a5:{a5<0.02,0.02≤a5≤0.05,a5>0.05};
a6:{a6<0.45,a6≥0.45}。
2、对每类电器类型均采集多组样本作为训练样本,同时计算每类电器类型样本在所有电器类型样本中所占有的比例,即分别计算P(y1)、P(y2)、P(y3)、P(y4)、P(y5)。当每类电器均采集相同的样本数量时,例如,每类电器均采集超过100组的样本,其中每类电器随机选择100组样本作为训练样本,其他则作为测试样本,总的训练样本为500组,且有
P(y1)=P(y2)=P(y3)=P(y4)=P(y5)=0.2。
3、计算训练样本每个类别条件下各个特征属性分段的频率(比例),统计得到各类别下各个特征属性的条件概率估计,即分别统计计算
P(a1<3.5|y1)、P(3.5≤a1≤7|y1)、P(a1>7|y1);
P(a1<3.5|y2)、P(3.5≤a1≤7|y2)、P(a1>7|y2);
…;
P(a1<3.5|y5)、P(3.5≤a1≤7|y5)、P(a1>7|y5);
P(a2<1.25|y1)、P(1.25≤a2≤2.5|y1)、P(a2>2.5|y1);
P(a2<1.25|y2)、P(1.25≤a2≤2.5|y2)、P(a2>2.5|y2);
…;
P(a2<1.25|y5)、P(1.25≤a2≤2.5|y5)、P(a2>2.5|y5);
P(a3<125|y1)、P(125≤a3≤500|y1)、P(a3>500|y1);
P(a3<125|y2)、P(125≤a3≤500|y2)、P(a3>500|y2);
…;
P(a3<125|y5)、P(125≤a3≤500|y5)、P(a3>500|y5);
P(a4<0.7|y1)、P(0.7≤a4≤0.9|y1)、P(a4>0.9|y1);
P(a4<0.7|y2)、P(0.7≤a4≤0.9|y2)、P(a4>0.9|y2);
…;
P(a4<0.7|y5)、P(0.7≤a4≤0.9|y5)、P(a4>0.9|y5);
P(a5<0.02|y1)、P(0.02≤a5≤0.05|y1)、P(a5>0.05|y1);
P(a5<0.02|y2)、P(0.02≤a5≤0.05|y2)、P(a5>0.05|y2);
P(a5<0.02|y5)、P(0.02≤a5≤0.05|y5)、P(a5>0.05|y5);
P(a6<0.45|y1)、P(a6≥0.45|y1);
P(a6<0.45|y2)、P(a6≥0.45|y2);
…;
P(a6<0.45|y5)、P(a6≥0.45|y5)。
经过上述的步骤1、步骤2、步骤3,NBC分类器训练完成。其中,步骤1对特征属性进行分段划分由人工确定,对每一个输入特征进行分段离散化时,分段的数量为2段或者2段以上,例如,实施例2中,特征a1-a5都分为3段,特征a6分为2段。每一个特征具体分为多少段,分段阈值的选择可以根据训练后的贝叶斯分类器对测试样本测试后的结果进行调整。步骤2、步骤3由信息处理模块102或者是计算机计算完成。
本发明中采用贝叶斯分类器进行分类的方法是:
1、将组合分类器的输入特征作为贝叶斯分类器的输入特征。在实施例2中,将组合分类器的输入特征集合{IG,ID,QI,A1,A3,IW}作为贝叶斯分类器的输入特征x,且有x={a1,a2,a3,a4,a5,a6}。
2、根据训练得到的各类别下各个特征属性的条件概率估计,分别确定各输入特征属性的分段所在并确定其对每类电器类别的概率P(a1|y1)~P(am|yn),其中,电器类别集合为C={y1,y2,…,yn}。实施例2中,电器类别集合C={y1,y2,y3,y4,y5}对应代表的电器类别是白炽灯、电阻炉、电风扇、计算机、电烙铁,确定P(a1|y1)~P(a6|y5)的方法是采用训练NBC分类器过程中得到的各个特征属性的条件概率估计。
3、按照式
P ( y i | x ) = P ( x | y i ) P ( y i ) P ( x )
计算每种电器类别的后验概率。因为分母P(x)对于所有电器类别为常数,令P(x)=1替代实际的P(x)值,不影响每种电器类别后验概率之间的相互大小比较,此时有
P ( y i | x ) = P ( x | y i ) P ( y i ) = P ( y i ) &Pi; j = 1 m P ( a j | y i )
实施例2中,有
P ( y 1 | x ) = P ( x | y 1 ) P ( y 1 ) = P ( y 1 ) &Pi; j = 1 6 P ( a j | y 1 ) ;
P ( y 2 | x ) = P ( x | y 2 ) P ( y 2 ) = P ( y 2 ) &Pi; j = 1 6 P ( a j | y 2 ) ;
P ( y 3 | x ) = P ( x | y 3 ) P ( y 3 ) = P ( y 3 ) &Pi; j = 1 6 P ( a j | y 3 ) ;
P ( y 4 | x ) = P ( x | y 4 ) P ( y 4 ) = P ( y 4 ) &Pi; j = 1 6 P ( a j | y 4 ) ;
P ( y 5 | x ) = P ( x | y 5 ) P ( y 5 ) = P ( y 5 ) &Pi; j = 1 6 P ( a j | y 5 ) .
采用测试样本对训练好的贝叶斯分类器进行测试,根据测试结果决定是否调整对输入特征的离散化方法(即调整分段数量与阈值),重新训练贝叶斯分类器。
主分类器为决策树分类器,决策树分类器的算法可以选择ID3,C4.5,CART等。实施例2选择采用ID3决策树分类器作为主分类器。ID3决策树分类器的几个定义如下:
设D为用类别对训练元组进行的划分,则D的熵表示为:
inf o ( D ) = - &Sigma; i = 1 u p i log 2 ( p i ) ;
其中pi表示第i个类别在整个训练元组(即样本)中出现的概率,可以用属于此类别元素的数量除以训练元组元素总数量作为估计。熵的实际意义表示是D中元组的类标号所需要的平均信息量。
假设将训练元组D按属性A进行划分,则A对D划分的期望信息为:
info A ( D ) = - &Sigma; j = 1 v | D j | | D | inf o ( D j ) - - - ( 2 )
而信息增益即为两者的差值:
gain(A)=info(D)-infoA(D) (3)
ID3算法在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂。
训练ID3决策树分类器可以采用特征属性离散化方法,也可以采用连续特征属性的潜在分裂法。其具体方法是:检测所有的属性,选择信息增益最大的属性产生决策树结点,由该属性的不同取值建立分支,再对各分支的子集递归调用该方法建立决策树结点的分支,直到所有子集仅包含同一类别的数据为止。最后得到一棵决策树,它可以用来对新的样本进行分类。在实施例2中,对每类电器类型均采集多组样本,随机抽取部分作为训练样本,其余的作为测试样本。
特征属性离散化方法训练ID3决策树分类器的过程包括:
1)对每个特征属性实现特征区分。实施例2中,采取的特征区分方法是:
a1:{a1<3.5,3.5≤a1≤6,a1>6};
a2:{a2<1.9,a2≥1.9};
a3:{a3<300,a3≥300};
a4:{a4<0.85,a4≥0.85};
a5:{a5<0.1,a5≥0.05};
a6:{a6<0.45,a6≥0.45}。
2)计算各属性的信息增益。在实施例2中,针对训练样本按照式(2)和式(3)分别计算6个特征属性的信息增益。
3)选择具有最大信息增益的属性作为该次分裂的分裂(决策)属性及决策树结点,取得分裂结果,建立分支;如果样本都在同一个类,则该结点成为树叶,并用该类标记。
4)在已有分裂结果的基础上,递归使用前述步骤计算子结点的分裂属性,建立分支,最终得到整个决策树。
经过上述的步骤,ID3决策树分类器训练完成。其中,步骤1)对特征属性进行分段特征区分由人工确定,对每一个输入特征进行分段离散化时,分段的数量为2段或者2段以上,例如,实施例2中,特征a1分为3段,特征a2-a6均分为2段。每一个特征具体分为多少段,分段阈值的选择可以根据训练后的决策树分类器对测试样本测试后的结果进行调整。步骤2)至步骤4)由信息处理模块102或者是计算机完成。
连续特征属性的潜在分裂法训练ID3决策树分类器的过程包括:
Ⅰ、计算各属性的信息增益。先将训练样本D中元素按照特征属性排序,则每两个相邻元素的中间点可以看做潜在分裂点,从第一个潜在分裂点开始,分裂D并计算两个集合的期望信息,具有最小期望信息的点称为这个属性的最佳分裂点,其信息期望作为此属性的信息期望。在实施例2中,针对训练样本,找出最佳分裂点按照式(2)和式(3)分别计算6个特征属性的信息增益。
Ⅱ、选择具有最大信息增益的属性作为该次分裂的分裂(决策)属性及决策树结点,取得分裂结果,建立分支;如果样本都在同一个类,则该结点成为树叶,并用该类标记。
Ⅲ、在已有分裂结果的基础上,递归使用前述步骤计算子结点的分裂属性,建立分支,最终得到整个决策树。
在前述决策树的训练过程中,当给定结点的所有样本属于同一类,结束递归过程,决策树已经建立。给定结点的所有样本属于同一类,有可能是单种电器类别的确认结果,也可能是所有电器类型的否定结果。
在前述决策树分类器的训练过程中,当没有剩余属性可以用来进一步划分样本时,同样需要结束递归过程,但此时有些子集还不是纯净集,即集合内的元素不属于同一类别;此时,可以采用增加特征属性,例如,在实施例2中增加负载电流频谱特性中的5次、7次等奇次谐波信号相对幅值作为新的特征属性,对决策树进行重新训练。当训练后或者重新训练后的决策树分类器最终的部分子集不是纯净集,其集合内的元素不属于同一类别时,不采用子集“多数表决”方式将子集中出现次数最多的类别作为此结点类别,而是直接将子集中的所有类别作为此结点类别,即所述决策树分类器可以输出多种电器类别的确认结果。
主分类器还可以选择由多个二类输出决策树分类器组成,每个二类输出决策树分类器对应判断一种电器类型,例如,实施例1中可以采用4个二类输出决策树分类器分别判断白炽灯、电阻炉、吹风机、计算机,实施例2中可以采用5个二类输出决策树分类器分别判断白炽灯、电阻炉、电风扇、计算机、电烙铁。主分类器选择多个二类输出决策树分类器共同组成时,所有二类输出决策树分类器的输入特征均为主分类器的输入特征,所有的训练样本均作为每个二类输出决策树分类器的训练样本。主分类器选择多个二类输出决策树分类器共同组成时,每个二类输出决策树分类器只需要完成一种电器类型的判断,决策树的训练相对简单。当所述某个二类输出决策树分类器的训练结束后,或者是增加特征属性重新训练结束后,有些子集还不是纯净集,即有子集还不能确认输入属性是否属于该二类输出决策树分类器所判断的电器类型时,将该子集所在的节点定义为是,即让该二类输出决策树分类器在此种情况下判定此次输入的特征属性属于所判断的电器类型。由于此时主分类器由多个二类输出决策树分类器组成,各二类输出决策树分类器之间相互独立,因此,对某一特征属性进行判断时,主分类器有可能输出的判断结果为唯一的电器类型,或者判断结果为2种或者2种以上电器类型,或者未能给出判断的电器类型。

Claims (10)

1.一种学生宿舍用电器类型判断装置,其特征在于,包括信息采集模块、信息处理模块、通信模块;
所述信息采集模块用于采集电器的负载电流并转换成电流数字信号;所述电流数字信号被送至信息处理模块;
所述信息处理模块依据输入的电流数字信号,采用组合分类器进行电器类型判断;
所述通信模块用于发送信息处理模块的电器类型判断结果至上位机;
所述组合分类器的输入特征包括电器的启动电流特征和电器的负载电流频谱特征;
所述组合分类器包括决策树分类器和贝叶斯分类器;
所述启动电流特征包括启动冲激电流、启动平均电流、启动电流冲量。
2.如权利要求1所述的学生宿舍用电器类型判断装置,其特征在于,所述信息采集模块包括电流传感器、前置放大器、滤波器、A/D转换器;所述信息处理模块的核心为DSP,或者为ARM,或者为单片机,或者为FPGA。
3.如权利要求2所述的学生宿舍用电器类型判断装置,其特征在于,所述A/D转换器采用信息处理模块的核心中包括的A/D转换器。
4.如权利要求1所述的学生宿舍用电器类型判断装置,其特征在于,所述信息采集模块、信息处理模块、通信模块的全部或者部分功能集成在一片SoC上。
5.如权利要求1所述的学生宿舍用电器类型判断装置,其特征在于,所述通信模块还接收上位机的相关工作指令;所述通信模块与上位机之间的通信方式包括无线通信方式与有线通信方式;所述无线通信方式包括ZigBee、蓝牙、WiFi、433MHz数传方式;所述有线通信方式包括485总线、CAN总线、互联网、电力载波方式。
6.如权利要求1-5中任一项所述的学生宿舍用电器类型判断装置,其特征在于,所述组合分类器中,决策树分类器为主分类器,贝叶斯分类器为辅助分类器。
7.如权利要求6所述的学生宿舍用电器类型判断装置,其特征在于,所述组合分类器进行电器类型判断的方法是:当主分类器成功实现电器类型判断时,主分类器的电器类型判断结果为组合分类器的判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果为2种或者2种以上电器类型,将主分类器输出的2种或者2种以上电器类型判断结果中,辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果;当主分类器未能实现电器类型判断,且主分类器的判断结果中未能给出判断的电器类型时,将辅助分类器输出中概率最高的电器类型作为组合分类器的电器类型判断结果。
8.如权利要求6所述的学生宿舍用电器类型判断装置,其特征在于,所述负载电流频谱特征通过以下方法获得:
步骤一、获取电器负载的稳态电流信号,并将其转换为对应的稳态电流数字信号;
步骤二、对稳态电流数字信号进行傅立叶变换,得到负载电流频谱特性;
步骤三、将负载电流频谱特性中谐波次数为n次的奇次谐波信号相对幅值作为负载电流频谱特征,其中,n=1,3,…,M;所述M表示谐波最高次数且M大于等于3。
9.如权利要求6所述的学生宿舍用电器类型判断装置,其特征在于,所述启动电流特征由信息处理模块通过以下方法获得:
步骤1、电器启动前,开始对电器的负载电流连续采样并对负载电流大小进行判断;当负载电流有效值大于ε时,判定电器开始启动并转向步骤2;所述ε为大于0的数值;
步骤2、对电器的负载电流进行连续采样,以工频周期为单位计算负载电流有效值并保存;计算最近N个工频周期的负载电流有效值的平均值;当最近N个工频周期之内的每个工频周期的负载电流有效值与该N个工频周期的负载电流有效值的平均值相比较,波动幅度均小于设定的相对误差范围E时,判定电器负载进入稳定状态,转向步骤3;所述N的取值范围为50-500;所述E的取值范围为2%-20%;
步骤3、将最近N个工频周期之内的负载电流有效值的平均值作为电器负载稳态电流;将电器开始启动时刻至最近N个工频周期起始时刻之间的时间作为启动过程时间;计算电器开始启动后L个工频周期之内的电器负载电流有效值的平均值与电器负载稳态电流之间的比值,将该比值作为电器的启动冲激电流;计算电器的启动过程时间之内的电器负载电流有效值的平均值与电器负载稳态电流之间的比值,将该比值作为电器的启动平均电流;计算电器的启动平均电流与启动过程时间之间的乘积,将该乘积作为电器的启动电流冲量;所述L的取值范围为1-5。
10.如权利要求9所述的学生宿舍用电器类型判断装置,其特征在于,所述组合分类器的输入特征还包括电器负载稳态电流。
CN201610213351.XA 2016-04-08 2016-04-08 学生宿舍用电器类型判断装置 Pending CN105891633A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610213351.XA CN105891633A (zh) 2016-04-08 2016-04-08 学生宿舍用电器类型判断装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610213351.XA CN105891633A (zh) 2016-04-08 2016-04-08 学生宿舍用电器类型判断装置

Publications (1)

Publication Number Publication Date
CN105891633A true CN105891633A (zh) 2016-08-24

Family

ID=57012076

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610213351.XA Pending CN105891633A (zh) 2016-04-08 2016-04-08 学生宿舍用电器类型判断装置

Country Status (1)

Country Link
CN (1) CN105891633A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505518A (zh) * 2017-07-22 2017-12-22 华映科技(集团)股份有限公司 基于设备电流id的用电设备老化评估方法
CN108224681A (zh) * 2017-12-16 2018-06-29 广西电网有限责任公司电力科学研究院 基于决策树分类器的非侵入式空调启动检测方法
CN110516743A (zh) * 2019-08-28 2019-11-29 珠海格力智能装备有限公司 用电设备的识别方法、装置、存储介质和处理器
CN113063984A (zh) * 2021-03-16 2021-07-02 合肥艾通自动化工程有限公司 一种负载识别装置、识别方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158285A (zh) * 2013-05-16 2014-11-19 北京中科泛美科技有限公司 一种用于用电终端的用电监控系统
CN104237786A (zh) * 2014-09-10 2014-12-24 海信(山东)冰箱有限公司 一种识别电路及家电设备
CN204086431U (zh) * 2014-09-28 2015-01-07 杭州久笛电子科技有限公司 一种用电负载管理智能终端
CN105372541A (zh) * 2015-12-24 2016-03-02 山东大学 一种基于模式识别的家用电器智能集总检测系统及其工作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104158285A (zh) * 2013-05-16 2014-11-19 北京中科泛美科技有限公司 一种用于用电终端的用电监控系统
CN104237786A (zh) * 2014-09-10 2014-12-24 海信(山东)冰箱有限公司 一种识别电路及家电设备
CN204086431U (zh) * 2014-09-28 2015-01-07 杭州久笛电子科技有限公司 一种用电负载管理智能终端
CN105372541A (zh) * 2015-12-24 2016-03-02 山东大学 一种基于模式识别的家用电器智能集总检测系统及其工作方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
梁正习: "《漏电保护器实用技术》", 30 September 1995 *
王娟等: "基于BP神经网络的负载识别和C语言实现", 《河北省科学院学报》 *
陈彪等: "基于RBF网络和贝叶斯分类器融合的人脸识别方法", 《电子产品世界》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107505518A (zh) * 2017-07-22 2017-12-22 华映科技(集团)股份有限公司 基于设备电流id的用电设备老化评估方法
CN107505518B (zh) * 2017-07-22 2020-01-17 华映科技(集团)股份有限公司 基于设备电流id的用电设备老化评估方法
CN108224681A (zh) * 2017-12-16 2018-06-29 广西电网有限责任公司电力科学研究院 基于决策树分类器的非侵入式空调启动检测方法
CN110516743A (zh) * 2019-08-28 2019-11-29 珠海格力智能装备有限公司 用电设备的识别方法、装置、存储介质和处理器
CN113063984A (zh) * 2021-03-16 2021-07-02 合肥艾通自动化工程有限公司 一种负载识别装置、识别方法及系统

Similar Documents

Publication Publication Date Title
CN105866581B (zh) 一种电器类型识别方法
CN105759148B (zh) 一种用电器类型判断方法
CN105785187B (zh) 一种学生宿舍用电器类型判断方法
CN105913006A (zh) 一种用电负载类型识别方法
CN110991786B (zh) 基于相似日负荷曲线的10kV静态负荷模型参数辨识方法
CN105913005A (zh) 电器负载类型智能识别方法与装置
CN105891633A (zh) 学生宿舍用电器类型判断装置
CN106909101B (zh) 一种非侵入式家用电器分类装置及方法
CN105759149B (zh) 学生宿舍用电器类型判断器
CN111368904B (zh) 一种基于电力指纹的电器设备识别方法
CN108875783A (zh) 一种面向不平衡数据集的极限学习机变压器故障诊断方法
CN110070048A (zh) 基于双次K-means聚类的设备类型识别方法及系统
WO2013081717A2 (en) System and method employing a hierarchical load feature database to identify electric load types of different electric loads
CN110518576A (zh) 基于回路矩阵识别低压台区拓扑结构的优化方法及系统
CN109376944A (zh) 智能电表预测模型的构建方法及装置
CN110210684A (zh) 粮食加工方案优化方法、装置、设备及存储介质
CN109359665A (zh) 一种基于支持向量机的家电负荷识别方法及装置
CN107817382A (zh) 智能电表、电器识别方法以及具有该电表的智能公寓系统
CN105868790A (zh) 用电负载类型识别器
CN105866580A (zh) 电器类型判断装置
CN105913009A (zh) 电器类型识别器
CN115456034A (zh) 一种电动自行车充电自动识别监测方法及系统
CN105913010A (zh) 用电器类型判断器
CN110991510A (zh) 不平衡分类学习的泛化低压异常箱表关系识别方法及系统
CN103823970B (zh) 基于算法模型的双重化继电保护装置的异常告警辨识方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824

RJ01 Rejection of invention patent application after publication