CN105891277A - Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance - Google Patents

Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance Download PDF

Info

Publication number
CN105891277A
CN105891277A CN201610313145.6A CN201610313145A CN105891277A CN 105891277 A CN105891277 A CN 105891277A CN 201610313145 A CN201610313145 A CN 201610313145A CN 105891277 A CN105891277 A CN 105891277A
Authority
CN
China
Prior art keywords
module
wall
adjacent
cavity volume
solenoid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610313145.6A
Other languages
Chinese (zh)
Inventor
张华芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shaoxing
Original Assignee
University of Shaoxing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shaoxing filed Critical University of Shaoxing
Priority to CN201610313145.6A priority Critical patent/CN105891277A/en
Publication of CN105891277A publication Critical patent/CN105891277A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/221Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance by investigating the dielectric properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/24Investigating the presence of flaws

Abstract

The invention relates to a wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance. A filter, a temperature control module, a magnetization module, a mechanical centrifugal module, a rotary magnetic field centrifugal module, a adsorption module, an adjacent capacitance particle monitoring module and a demagnetization module of the wear particle monitoring system are successively connected; the filter adopts a variable structure filter, and one end of the filter is provided with an oil liquid inlet; one end of the demagnetization module is provided with an oil liquid outlet. An adjacent capacitance sensor technique based on a capacitance fringe effect is introduced to realize the non-intrusive and unrestraint monitoring of the wear particles; through the magnetization module, the mechanical centrifugal module and the rotary magnetic field centrifugal module, the wear particles in an oil liquid are magnetized and polymerized into large particles, and then, the large particles are transported near the tube wall and are adsorbed by the adsorption module to improve the strength for the adjacent capacitance sensor to output a monitoring signal; through the temperature control module and a reasonable design of the polar plate layer structure of the adjacent capacitance sensor, the noise is inhibited, and the integral performance of the monitoring device of the adjacent capacitance sensor is optimized.

Description

A kind of wear particle monitoring system of filtering, centrifugation and adjacent capacitor
[technical field]
The present invention relates to the wear particle on-line monitoring system in a kind of fluid pressure line fluid, be specifically related to one filter The wear particle monitoring system of ripple, centrifugation and adjacent capacitor, belongs to hydraulic system technical field.
[background technology]
Wear particle in hydraulic system oil liquid not only can make kinematic pair produce abrasive wear but also can make kinematic pair Relative motion be obstructed and cause control component actuation malfunctioning.Statistics both domestic and external show, hydraulic machinery 70% source of trouble From the particle contamination of fluid.Therefore, the wear particle in fluid is carried out on-line monitoring and has become minimizing abrasion and hydraulic system One of important channel of fault.
Capacitance sensor is applied to the pollution monitoring of machine fluid because it is easy to make, with low cost.Patent documentation 1 (Chinese invention patent Authorization Notice No. CN 101435788B) discloses a kind of online oil liquid monitoring based on dielectric constant measurement Sensor and system thereof, the sensor of this invention includes bearing and is fixed on three poles of inside, and three poles constitute Differential cylindrical capacitor, can monitor the minor variations of sensor capacitance value, thus the anti-minor variations pushing away fluid dielectric constant, enter And realize the enforcement to contamination level of oil liquid and monitor.Sensor pole in this monitoring method is immersed in fluid, causes fluid The change of fluidised form, have impact on certainty of measurement;Fluid can form deposition oil film on sensor pole surface, not only causes certainty of measurement Decline, the most also bring sensor to clean problem.
Document 2 (Zhao Xinze etc., Wuhan Univ. of Water Conservancy and Electric Power's journal, 1999 (3)) disclose a kind of oil contamination Electric capacity sensor probe is used in monitoring, and this probe is made up of a cylindrical glass pipe and the two halves circular electrode being close to this pipe outer wall, its Substantially parallel plate capacitor sensor.This capacitance sensor excitation pole plate is retrained by conduit under fluid pressure diameter with receiving polar plate spacing, Owing to conduit under fluid pressure diameter is relatively large, this transducer sensitivity is not ideal enough.
Meanwhile, the wear particle of prior art carries out the fluid big ups and downs in on-line monitoring equipment, can cause monitoring number Cause monitoring unsuccessfully according to fluctuating widely.
Therefore, for solving above-mentioned technical problem, use filtering, centrifugation and the adjacent electricity of a kind of innovation of necessary offer The wear particle monitoring system held, to overcome described defect of the prior art.
[summary of the invention]
For solving above-mentioned technical problem, it is an object of the invention to provide one filtering, centrifugation and adjacent capacitor Wear particle monitoring system, its use non-invasive metering system, to measured without restrictive, monitoring signal is strong and sensitive Spend high and low cost, environmental suitability strong.
For achieving the above object, the technical scheme that the present invention takes is: a kind of filtering, centrifugation and adjacent capacitor Wear particle monitoring system, it includes wave filter, temperature control module, magnetized module, mechanical centrifugal module, rotating excitation field centrifugal mold Block, adsorption module, adjacent capacitor particulate matter monitoring module and demagnetization module;Wherein, described wave filter, temperature control module, magnetization Block, mechanical centrifugal module, rotating excitation field are centrifuged module, adsorption module, adjacent capacitor particulate matter monitoring module and demagnetization module successively Connect;One end of described wave filter is provided with fluid entrance, and it includes input pipe, shell, outlet tube, elastic thin-wall, H mode filter And cascaded H mode filter;Wherein, described input pipe is connected to one end of shell;Described outlet tube is connected to another of shell End;Described elastic thin-wall is installed in shell along the radial direction of shell;Described input pipe, outlet tube and elastic thin-wall are collectively forming one C-type cavity volume wave filter;Some taper structure changes damping holes are uniformly had in the axial direction of described elastic thin-wall;Described taper structure changes Damping hole is made up of cone shaped elastic damping hole pipe and slot apertures;Between described elastic thin-wall and shell formed resonance series cavity volume I with And parallel resonance cavity volume;The outside of described resonance series cavity volume I set a resonance series cavity volume II, described resonance series cavity volume I and Insert pipe by the taper of some uniform arrangements between resonance series cavity volume II to connect;Described H mode filter is positioned at parallel resonance In cavity volume, it is connected with taper structure changes damping hole;Described cascaded H mode filter is positioned at resonance series cavity volume I and series connection is total to Shaking in cavity volume II, it is also connected with taper structure changes damping hole;Described H mode filter and cascaded H mode filter are axially in right Claim to arrange, and form connection in series-parallel H mode filter;One end of described demagnetization module is provided with fluid outlet, its by remanent magnetism sensor and Demagnetizer forms.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described The axis of input pipe and outlet tube is the most on the same axis;The wider place of described taper structure changes damping hole opening is positioned at resonance series In cavity volume I and parallel resonance cavity volume, its taper angle is 10 °;The poplar of described taper structure changes damping hole cone shaped elastic damping hole pipe The Young's modulus of family name's modular ratio elastic thin-wall wants big, can be with change in fluid pressure stretching or compression;The Young's modulus of slot apertures is than cone The Young's modulus of shape elastic damping hole pipe wants big, can be with fluid opened by pressure or closedown;The wider place of tube opening is inserted in described taper Being positioned at resonance series cavity volume II, its taper angle is 10 °;The position that pipe and taper structure changes damping hole are inserted in described taper is mutual Stagger.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Temperature control module includes heater, cooler and temperature sensor;Described heater uses the profit of the Chongqing gold letter of band temperature detection Lubricating oil heater;Remover for surface evaporation type air cooling selected by described cooler, and the finned tube of cooler selects KLM type finned tube;Temperature passes Sensor uses platinum resistance temperature sensor.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Magnetized module includes aluminum matter pipeline, some windings, iron shell, flange and some magnetizing current output modules;Wherein, described Some windings are rotating around outside aluminum matter pipeline, and each winding is made up of positive winding and inverse winding, the electric current in positive winding and inverse winding Equal in magnitude;Described iron shell is coated on aluminum matter pipeline;Described flange welding is at the two ends of aluminum matter pipeline;Each magnetization electricity Stream output module is connected to a winding.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Mechanical centrifugal module uses eddy flow to be centrifuged module;Described eddy flow is centrifuged module and includes eddy flow tube wall, the first flow deflector, the second water conservancy diversion Sheet, motor and flow transducer;Wherein, described first flow deflector is provided with 3, and these 3 first flow deflectors are along tube wall Circumference is uniformly distributed every 120 °, and its laying angle is set to 18 °;Described second flow deflector and the first flow deflector structure are identical, and it is arranged After the first flow deflector, and and the first flow deflector stagger 60 ° and be connected in tube wall, its laying angle is set to 36 DEG C;Described first leads The long limit of flow is connected with tube wall, and minor face extends along the axis of tube wall;Its leading edge frustrates into obtuse, and trailing edge is processed into wing, and it is high Degree is 0.4 times of tube wall diameter, 1.8 times of a length of tube wall diameter;Described motor connect and drive the first flow deflector and Second flow deflector, to regulate laying angle;Described flow transducer is arranged on the central authorities in tube wall.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Rotating excitation field is centrifuged module and includes aluminum matter pipeline, iron shell, three-phase symmetric winding, flange and three-phase symmetrical current module; Described three-phase symmetric winding is wound on outside aluminum matter pipeline;Described iron shell is coated on aluminum matter pipeline;Described flange welding is at aluminum The two ends of matter pipeline;Described three-phase symmetrical current module connects described three-phase symmetric winding.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Adsorption module uses homopolarity adjacent type absorbing ring;Described homopolarity adjacent type absorbing ring include aluminium ring shape pipeline, forward solenoid, Reverse solenoid and irony magnetic conduction cap;Described forward solenoid and reverse solenoid are respectively arranged in aluminium ring shape pipeline, Both are connected with electric current in opposite direction so that forward solenoid and reverse solenoid adjacent produce like pole;Described irony Magnetic conduction cap is arranged on the inwall of aluminium ring shape pipeline, and it is positioned at forward solenoid and reverse solenoid adjacent and forward Solenoid and the intermediate point of reverse solenoid axis.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Adsorption module uses the homopolarity adjacent type absorbing ring of charged hammer;The homopolarity adjacent type absorbing ring of described charged hammer includes aluminum matter Circulating line, forward solenoid, reverse solenoid, irony magnetic conduction cap, dividing plate, electric shock hammer and electric magnet;Described forward helical Pipe and reverse solenoid are respectively arranged in aluminium ring shape pipeline, and both are connected with electric current in opposite direction so that forward solenoid Like pole is produced with reverse solenoid adjacent;Described irony magnetic conduction cap is arranged on the inwall of aluminium ring shape pipeline, its position In forward solenoid and reverse solenoid adjacent and forward solenoid and the intermediate point of reverse solenoid axis;Described every Plate is between forward solenoid and reverse solenoid;Described electric shock hammer and electric magnet are between dividing plate;Described electric magnet is even Connect and electric shock hammer can be promoted, making electric shock hammer tap aluminium ring shape inner-walls of duct.
The present invention is further arranged to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: described Adjacent capacitor particulate matter monitoring module includes organic glass inner wall, ground shield, reception pole plate, excitation pole plate and outer wall;Its In, described machine glass inner wall, ground shield and outer wall in tubular construction, and successively from-inner-to-outer arrange;In described machine glass The thickness of wall is 0.5mm, and dielectric constant is 2.5;The dielectric constant of described ground shield is 1.5-2.5, and thickness is outer wall thickness 1 to 2 times of degree;Described reception pole plate, excitation pole plate are embedded in ground shield, and are positioned at outside machine glass inner wall;Described Receive pole plate, excitation pole plate all uses Peano curve structure pole plate layer, is provided with sealing coat between the two;The width of described sealing coat Degree is 0.8-1 times of lucite inner wall thickness.
The present invention is also configured to by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor: it includes one ECU, described wave filter, remanent magnetism sensor, demagnetizer, heater, cooler, temperature sensor, magnetizing current output module, machine Tool is centrifuged module, rotating excitation field is centrifuged module, adsorption module and adjacent capacitor particulate matter monitoring module are all electrically connected on ECU.
Compared with prior art, there is advantages that
1. the magnetized module of the multipair forward and reverse loop construction of the present invention, coil current can numeral set, to produce magnetic online Change the non-uniform magnetic-field needed, make the wear particle in fluid force-magnetized and aggregate into bulky grain, making colloidal particles divide simultaneously Solution melts and suppresses air bubble growth;Mechanically and magnetically field be centrifuged module make magnetic microparticles " separate " and to cavity wall move;By absorption Module capture duct wall surface magnetization polymeric macroparticle.
2. in fluid pressure line wear particle monitoring device, introduce adjacent capacitive sensors based on electric capacity edge effect, logical Cross and wear particle is magnetized, aggregate into bulky grain the centrifugal tube wall that is adsorbed onto to improve granule density, increase tube wall surface fluid Dielectric constant, greatly improve sensor output signal strength and ingenious solve signal intensity and penetration depth index conflict Contradiction.
3. in pole plate layer designs, introduce efficient frontier length and baroque Peano curve structure.This Piano is bent In line structure pole plate layer, the curve of excitation pole plate, reception pole plate and isolation pole plate composition can travel through in square pole plate layer all Point, obtain one be full of whole square pole plate sheaf space curve.In the case of pole plate aspect is amassed and fixed, this structure has There are the longest efficient frontier, maximum polar plate area and labyrinth, obtain optimum signal intensity with this.
4. wave filter can be decayed the fluctuation pressure of the high, medium and low frequency range in hydraulic system, and can suppress flowed fluctuation, protects Card monitoring result is accurate.
5. wave filter, temperature control module, magnetized module, mechanical centrifugal module, rotating excitation field are centrifuged module, adsorption module, phase The fluid pressure line wear particle monitoring technology route that adjacent electric capacity particulate matter monitoring module combines, both ensure that monitoring reliability, with Time make again the overall performance of monitoring system optimum.
[accompanying drawing explanation]
Fig. 1 is the structural representation by the wear particle monitoring system of filtering, centrifugation and adjacent capacitor of the present invention.
Fig. 2 is the structural representation of the wave filter in Fig. 1.
Fig. 3 is the profile in Fig. 1 along A-A.
Fig. 4 is H mode filter schematic diagram in Fig. 3.
Fig. 5 is cascaded H mode filter schematic diagram in Fig. 3.
Fig. 6 is H mode filter and cascaded H mode filter frequency characteristic constitutional diagram.Wherein, solid line is cascaded H mode filter Frequency characteristic.
Fig. 7 is connection in series-parallel H mode filter frequency characteristic figure.
Fig. 8 is the structural representation of c-type cavity volume wave filter.
Fig. 9 is the cross sectional representation of elastic thin-wall.
Figure 10 is the schematic diagram of taper structure changes damping hole in Fig. 2.
Figure 10 (a) to Figure 10 (c) is the working state figure of taper structure changes damping hole.
Figure 11 is the structure chart of the magnetized module in Fig. 1.
Figure 12 is the structure chart of the magnetizing coil in Figure 11.
Figure 13 is the structure chart of the magnetizing current output module in Figure 11.
Figure 14-1 is the horizontal schematic diagram that the eddy flow in Fig. 1 is centrifuged module.
Figure 14-2 is the radial direction schematic diagram that the eddy flow in Fig. 1 is centrifuged module.
Figure 15 is that the rotating excitation field in Fig. 1 is centrifuged module diagram.
Figure 16 be the adsorbent equipment in Fig. 1 be the structural representation of homopolarity adjacent type absorbing ring.
Figure 17 be the adsorbent equipment in Fig. 1 be the structural representation of the homopolarity adjacent type absorbing ring of charged hammer.
Figure 18-1 is the radial direction semi-cutaway of the adjacent capacitor particulate matter monitoring module in Fig. 1.
Figure 18-2 is the transverse cross-sectional view of the adjacent capacitor particulate matter monitoring module in Fig. 1.
Figure 18-3 is receiving pole plate and encouraging the schematic diagram of pole plate in Figure 18-1.
Figure 18-4 is the partial enlarged drawing in Figure 18-3 at A.
Figure 19 is the connection diagram of ECU.
[detailed description of the invention]
Referring to shown in Figure of description 1 to accompanying drawing 19, the present invention is a kind of filtering, centrifugation and adjacent capacitor Wear particle monitoring system, it is by wave filter 8, temperature control module 1, magnetized module 2, mechanical centrifugal module 3, rotating excitation field centrifugal mold Several parts compositions such as block 4, adsorption module 5, adjacent capacitor particulate matter monitoring module 6, demagnetization module 7 and ECU10.Wherein, described Wave filter 8, temperature control module 1, magnetized module 2, mechanical centrifugal module 3, rotating excitation field are centrifuged module 4, adsorption module 5, adjacent electricity Hold particulate matter monitoring module 6 and demagnetization module 7 is sequentially connected with.
One end of described wave filter 8 is provided with fluid entrance 91, is used for defeated for hydraulic oil people's device, and the hydraulic system that can decay In the fluctuation pressure of high, medium and low frequency range, and suppression flowed fluctuation, it is ensured that monitoring result is accurate.Described wave filter 8 is by inputting Several parts compositions such as pipe 81, shell 88, outlet tube 89, elastic thin-wall 87, H mode filter 812 and cascaded H mode filter 813.
Wherein, described input pipe 81 is connected to one end of shell 88;Described outlet tube 89 is connected to the other end of shell 88. Described elastic thin-wall 87 is installed in shell 88 along the radial direction of shell.The axis of described input pipe 81 and outlet tube 89 is not same On axis, so can improve the filter effect of more than 10%.
Described input pipe 81, outlet tube 89 and elastic thin-wall 87 are collectively forming a c-type cavity volume wave filter, thus hydraulic pressure of decaying System high-frequency pressure fluctuation.The filter transmission coefficient obtained after processing by lumped-parameter method is:
Velocity of sound L in a mediumVC-type cavity volume length SVC-type cavity volume volume Z characteristic impedance
γ transmission coefficient f pressure oscillation frequency SIInput pipe cross-sectional area.
From above formula, c-type wave filter is similar with the electric capacity effect in circuit.The pressure pulse wave of different frequency is by being somebody's turn to do During wave filter, transmission coefficient is different with frequency.Frequency is the highest, then transmission coefficient is the least, and this shows the pressure pulse wave of high frequency Decay the most severe when device after filtering, thus serve the effect eliminating high frequency pressure pulsations.
The design principle of described c-type cavity volume wave filter is as follows: when in pipeline, the fluctuating frequency of pressure is higher, and the pressure of fluctuation is made It is used in convection cell on fluid and produces pinch effect.When the flow of change enters c-type cavity volume by input pipe, liquid stream exceedes averagely Flow, the cavity volume of expansion can absorb unnecessary liquid stream, and releases liquid stream when less than average discharge, thus absorption pressure pulsating energy Amount.
Described elastic thin-wall 87 weakens hydraulic system medium-high frequency pressure fluctuation by being forced to mechanical vibration.By lumped parameter The elastic thin-wall natural frequency that method obtains after processing is:
K elastic thin-walled structures coefficient h elastic thin-wall thickness R elastic thin-wall radius
The mass density of the Young's modulus ρ elastic thin-wall of E elastic thin-wall
The Poisson's ratio of the current-carrying factor mu elastic thin-wall of η elastic thin-wall.
Substitute into actual parameter, above formula is carried out simulation analysis it is found that the natural frequency generally ratio H type of elastic thin-wall 87 The natural frequency of wave filter is high, and its attenuation band is also wide than H mode filter.In relatively wide frequency band range, elastic Thin-walled has good attenuating to pressure fluctuation.Meanwhile, the elastic thin-wall radius in the filter construction of the present invention is bigger And relatively thin, its natural frequency, closer to Mid Frequency, can realize the effective attenuation to the medium-high frequency pressure fluctuation in hydraulic system.
The design principle of described elastic thin-wall 87 is as follows: when producing intermediate frequency pressure fluctuation in pipeline, c-type cavity volume is to pressure wave Dynamic damping capacity is more weak, flows into the periodically pulsing pressure continuous action of wave filter c-type cavity volume on elastic thin-wall 87.Elastic Thin-walled then does periodic vibration by the frequency of fluctuation pressure, and this forced vibration consumes the pressure fluctuation energy of fluid, thus real Existing Mid Frequency pressure filtering.From the principle of virtual work, elastic thin-wall consumes ability and its forced oscillation of fluid pulsation pressure energy Potential energy and kinetic energy sum time dynamic are directly related, and in order to improve Mid Frequency filtering performance, the radial design of elastic thin-wall is long-range In pipe radius, and the thickness of thin-walled is less, and representative value is less than 0.1mm.
Further, form resonance series cavity volume I84 between described elastic thin-wall 87 and shell 88 and parallel resonance is held Chamber 85.The outside of described resonance series cavity volume I84 sets a resonance series cavity volume II83, described resonance series cavity volume I84 and series connection Inserting pipe 82 by the taper of some uniform arrangements between resonance cavity volume II83 to connect, the wider place of pipe 82 opening is inserted in described taper Being positioned at resonance series cavity volume II83, its taper angle is 10 °.Uniformly have some tapers in the axial direction of described elastic thin-wall 87 to become Structural damping hole 86, taper structure changes damping hole 86 and taper are inserted the position of pipe 82 and are mutually staggered.
Described H mode filter 812 is positioned at parallel resonance cavity volume 85, and it is connected with taper structure changes damping hole 86.Institute State the wider place of taper structure changes damping hole 86 opening and be positioned at resonance series cavity volume I84 and parallel resonance cavity volume 85, its taper angle It it is 10 °.The wave filter natural angular frequency obtained after processing by lumped-parameter method is:
Velocity of sound L in a medium1The long D of damping hole1Damping hole diameter
L2Parallel resonance cavity volume height D2Parallel resonance cavity volume diameter.
Described cascaded H mode filter 813 is positioned at resonance series cavity volume I84 and resonance series cavity volume II83, and it also and is bored Deformation structure damping hole 86 is connected.After processing by lumped-parameter method, two natural angular frequencies of cascaded H mode filter 813 are:
Velocity of sound l in a medium1The long d of damping hole1Damping hole diameter l3Resonance pipe range
d3Resonantron diameter l2Resonance series cavity volume 1 height d2Resonance series cavity volume 1 diameter
l4Resonance series cavity volume 2 height d4Resonance series cavity volume 2 diameter.
Described H mode filter 812 and cascaded H mode filter 813 are axially symmetrical set, and form the filtering of connection in series-parallel H type Device, for broadening frequency filtering scope and make overall structure more compact.The multiple connection in series-parallel H types of the present invention circumferentially interface distributions Wave filter (only depicts 2) in figure, separate with dividing plate 20 each other, and the resonance bands of these multiple wave filter is different, Whole medium and low frequency filtering frequency range can be covered, it is achieved the entire spectrum filtering of medium and low frequency section after combining comprehensively.
All can be found by Fig. 6 H mode filter and cascaded H mode filter frequency characteristic and formula, cascaded H mode filter has 2 Individual natural angular frequency, at crest, filter effect is preferable, does not the most substantially have filter effect at trough;H mode filter has 1 Natural angular frequency, at crest, filter effect is preferable equally, does not the most substantially have filter effect at trough;Select suitably filter Ripple device parameter, makes the natural angular frequency of H mode filter just fall between 2 natural angular frequencies of cascaded H mode filter, as Shown in Fig. 7, in certain frequency range, the natural reonant frequency peak value of 3 next-door neighbours, in this frequency range, nothing were both defined Opinion the fluctuating frequency of pressure is at crest or all can guarantee that preferable filter effect at trough.Multiple connection in series-parallel H mode filters The bank of filters constituted both can cover whole medium and low frequency section, it is achieved the entire spectrum filtering of medium and low frequency section.
Further, described taper structure changes damping hole 86 is made up of cone shaped elastic damping hole pipe 16 and slot apertures 15, taper Narrow end is opened on elastic thin-wall 87.Wherein the Young's modulus of cone shaped elastic damping hole pipe 16 is than the Young's modulus of elastic thin-wall 87 Want big, can be with change in fluid pressure stretching or compression;The Young's modulus of slot apertures 15 is than the Young mould of cone shaped elastic damping hole pipe 16 Amount wants big, can be with fluid opened by pressure or closedown.Therefore when the fluctuating frequency of pressure falls at high band, c-type cavity volume filter construction Strobing, cone shaped elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (a) state;And when ripple frequency falls at Mid Frequency Time, filter construction becomes c-type cavity volume filter construction and elastic thin-wall 87 filter structure concurs, and cone shaped elastic damps Hole pipe 16 and slot apertures 15 are all in Figure 10 (a) state;When ripple frequency falls at some specific Frequency, filter construction Become plug-in type connection in series-parallel H mode filter, c-type cavity volume filter construction and elastic thin-wall filter structure to concur, taper Elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (b) state, due to the natural frequency quilt of plug-in type connection in series-parallel H mode filter It is designed as consistent with these particular low frequency ripple frequencies, the system that fundamental frequency energy is big can be played preferable filter effect;Work as arteries and veins Dynamic frequency fall the low-frequency range beyond some characteristic frequency time, cone shaped elastic damping hole pipe 16 and slot apertures 15 are all in Figure 10 (c) State.The design of such structure changes wave filter both ensure that the full frequency band full working scope filtering of hydraulic system, reduces again normal work The pressure loss of wave filter under condition, it is ensured that the hydraulic pressure rigidity of system.
The present invention can also the pulsation decay of solid line operating mode self-adaptive pressure.When hydraulic system working conditions change, both executive components Suddenly stop or running, and when the opening of valve changes, the characteristic impedance of pipe-line system can be caused to undergo mutation, so that former pipe Pressure curve with change in location in time in road changes the most therewith, then the position of pressure peak also changes.Due to the present invention The axial length of wave filter be designed as pulsing wavelength, and the connection in series-parallel H mode filter group of wave filter more than system main pressure Cavity volume length, the length of c-type cavity volume wave filter and the length of elastic thin-wall and wave filter axial length equal, it is ensured that pressure Peak is constantly in the effective range of wave filter;And the taper structure changes damping hole of connection in series-parallel H mode filter is opened On elastic thin-wall, it is uniformly distributed in the axial direction, resonates cavity volume 1 with the cavity volume 2 that resonates by multiple axial equally distributed identical The taper resonantron of parameter is connected, and mutually stagger in conical damping hole and taper resonantron position so that pressure peak change in location The performance of wave filter is had little to no effect, it is achieved thereby that operating mode adaptive-filtering function.In view of three kinds of filter structure axles Suitable to size and wave filter, this bigger size also ensure that hydraulic filter possesses stronger pressure fluctuation decay energy Power.
The method that the hydraulic filter using the present invention carries out hydraulic pulsation filtering is as follows:
1), hydraulic fluid enters c-type cavity volume wave filter by input pipe, and the cavity volume of expansion absorbs unnecessary liquid stream, completes height The filtering of pressure fluctuation frequently;
2), by elastic thin-wall 87 forced vibration, consume the pressure fluctuation energy of fluid, complete the filter of intermediate frequency pressure fluctuation Ripple;
3), by connection in series-parallel H mode filter group, and taper structure changes damping hole, taper insertion pipe and fluid produce altogether Shake, consume pulsation energy, complete the filtering of low frequency pulsation;
4), the axial length of wave filter is designed as more than hydraulic system main pressure pulsation wavelength, and the filter of connection in series-parallel H type Ripple device length, c-type cavity volume filter length and elastic thin-wall 87 length are equal with filter length, make pressure peak position always It is in the effective range of wave filter, it is achieved the filtering of pressure fluctuation when system condition changes;
5), by the flexible of the cone shaped elastic damping hole pipe of taper structure changes damping hole and the switch of slot apertures, pressure is completed Pulsation adaptive-filtering.
Described temperature control module 1 is made up of heater, cooler and temperature sensor.This temperature control module 1 main purpose be for Magnetizing assembly provides optimal magnetization temperature about 42 DEG C.Meanwhile, temperature can be led as topmost environment noise, different temperature Cause the fluid dielectric constant in fluid pressure line and notable change occurs, keep temperature constant that adjacent capacitive sensors can be avoided to be subject to temperature Degree effect of noise.
Described heater is electric heater, can use the lubricating oil heater of the Chongqing gold letter of band temperature detection own.Cold But device can be selected for remover for surface evaporation type air cooling, the advantage having water-cooled and air cooling concurrently, good heat dissipation effect, uses light pipe, fluid resistance Little;Cooler fin type is high wing, and finned tube selects KLM type finned tube, good heat-transfer, and thermal contact resistance is little, fin and pipe Contact area is big, and closely, firmly, it is good to bear cold and hot sudden turn of events ability, and fin root weather-resistant performance is high in laminating;Air cooler Bank of tubes number optimum is 8.Temperature sensor uses platinum resistance temperature sensor.
Described magnetizing assembly 2 can force-magnetized by the wear particle that carries in fluid, and make micron-sized wear particle Aggregate into bulky grain, the output signal strength of adjacent capacitive sensors can be improved.Meanwhile, from electromagnetic theory, magnetic field is strong Spending the biggest, the biggest to the captivation of ferromagnetic particle, large-sized iron granules translational speed is faster than undersized iron granules Much, wear particle is aggregated into bulky grain and also allow for later separation.
The dielectric constant of the colloidal particles carried in fluid and the dielectric constant of bubble and hydraulic oil and wear particle is all Differ, impact in order to avoid adjacent capacitive sensors below is monitored, need to design non-uniform magnetic-field and decompose or go Except colloidal particles and bubble.
Molecular alignment opinion is made according to magnetic field, when fluid flows through magnetic field, the magnetic field fortune to the colloidal particles in fluid Move and can produce certain impact so that colloidal particles makees olderly flowage in pipeline, decreases being connected with each other of colloidal particles, from And play the viscosity reduction effect separating colloidal particles.Meanwhile, there is cohesiveness between magnetized granule, this power limits bubble Formed and grow up.During bubble-free, the magnetic line of force in fluid is evenly distributed, and is in the steady state of magnetic.When fluid has bubble, bubble The magnetic line of force of local occurs curved had, by, the magnetic line of force of bending, the most uniform, parallel, the trend of steady statue that reverts to, thus produces The raw magnetic tension pointing to bubble center, this power can limit growing up of bubble.
But magnetic field is the strongest or the most weak magnetic treating result being all difficult to obtain.When magnetic induction is near a certain value, Magnetic treatment has optimum efficiency.Equally, the highest and the lowest viscosity reducing effect of temperature is the most bad.The decomposition of the colloidal particles in hydraulic oil Viscosity reduction needs certain temperature and magnetic field intensity, representative value be magnetic field intensity at about 200mT, temperature about 42 DEG C.Design non-all The impact that during even magnetic field, the edge effect in magnetic field to be considered is caused, magnetic induction should be designed as the one end flowed at fluid Relatively strong, and more weak in one end that fluid flows out, meet fluid outflow end, reduce magnetic field, alleviate the requirement that edge effect affects, with Time ensure fluid flow into end magnetic efficiency.
The magnetizing assembly of the present invention is by aluminum matter pipeline 21, some windings 22, iron shell 23, flange 24 and some magnetization Current output module 25 forms.Wherein, described aluminum matter pipeline 21 makes fluid flow there through and by magnetization treatment, and the magnetic of aluminum Conductance is the lowest, can make to obtain in pipeline 21 higher magnetic field intensity.
Described some windings 22, rotating around outside aluminum matter pipeline 21, are coated insullac by the copper wire of a diameter of about 1.0mm Make.Each winding 22 is all separate setting, is controlled by corresponding magnetizing current output module 25 respectively, wherein electric current root Need different according to system.Separate owing to often enclosing winding 22, its exit can cause electric current loop that this coil forms not Being real " justifying ", but have individual breach, this can cause the radial distribution of aluminum matter pipeline 21 internal magnetic field uneven, thus affects magnetic Change effect.For solving this problem, the often circle winding 22 of this creation is all made up of in order to produce positive winding 26 and inverse winding 27 The magnetic field in raw same polarity direction to make up the magnetic field that breach causes unbalanced simultaneously.Size of current phase in positive winding and inverse winding Deng.Aluminum matter pipeline 21 axis direction is arranged with multipair forward and reverse winding, by different electric currents, in order to form aforementioned claim Non-uniform magnetic-field.
Described iron shell 23 is coated on aluminum matter pipeline 21, and the material of irony can mask most magnetic flux.Described Flange 24 is welded on the two ends of aluminum matter pipeline 21.
Each magnetizing current output module 25 is connected to a winding 22, and by ECU10 control, it utilizes digital potentiometer to have Have and ECU10 real-time communication the feature of real time modifying resistance, it is achieved the real-time control of non-uniform magnetic-field.Described magnetizing current is defeated Go out module 25 use digital potentiometer be AD5206, there is the output of 6 passages, can and ECU between realize single bus data Transmission.ECU realizes the current settings of polylith magnetizing current output module to magnetization winding and constant output by monobus.Fortune Put AD8601 and metal-oxide-semiconductor 2N7002 and achieve the output of high-precision voltage follow by negative feedback.Constant High-current output uses The high voltage of Texas Instrument (TI), amplifier OPA 549 of big electric current.
Described centrifugal device 3 makes fluid under the action of the centrifugal, and the magnetized particles that quality is bigger is thrown toward cavity wall, and in fluid Bubble then shift at the central axis of pipeline under centrifugal action, its select eddy flow be centrifuged module 3.
Described eddy flow is centrifuged module 3 and uses the mode of energy loss, and its design principle is as follows: arrange certain height in the duct The flow deflector of the distortion of degree and length, and make blade face tangent line angled with axis, stream can be made because pipe flow border changes Body produces spiral flow in pipes, and this spiral flow can be analyzed to the circumferential flow around pipe axle and axial straight flowing, carries in fluid Particulate matter produces off-axis alignment heart screw.This eddy flow be centrifuged module 3 by eddy flow tube wall the 31, first flow deflector 32, second lead Several parts compositions such as flow 33, motor 34 and flow transducer 35, described motor 34 and flow transducer 35 electricity Property is connected to ECU10.
Wherein, described first flow deflector 32 is provided with 3, and these 3 first flow deflectors 32 are along tube wall 31 inner periphery every 120 ° all Even distribution, its laying angle (angle between the first flow deflector 32 and eddy flow tube wall 31) is set to 18 °, to ensure optimal slipstream Dynamic.Described second flow deflector 33 is identical with the first flow deflector 32 structure, after it is arranged on the first flow deflector 32, and and the first water conservancy diversion Sheet 32 staggers 60 ° and is connected in tube wall 31, and its laying angle is set to 36 DEG C, for reducing resistance and strengthening the intensity of circumferential flow. It addition, the 3rd or more flow deflector can be arranged the most again according to actual separation effect, laying angle gradually increases.Described stepping electricity Machine 34 connects and drives the first flow deflector 32 and the second flow deflector 33, to regulate laying angle, thus can obtain the most centrifugal effect Really, the operating mode making flow deflector 32,33 adaptation different is known.Described flow transducer 35 is arranged on the central authorities in tube wall 31, ECU10 By the numerical analysis cyclonic separation effect of reading flow quantity sensor 35, and controlling motor 34 accordingly, motor 34 is adjusted Save the laying angle of each flow deflector 32,33, to obtain more separating effect.
Further, the long limit of described first flow deflector 32 is connected with tube wall 31, and minor face 33 extends along the axis of tube wall 31; For reducing resistance, its leading edge frustrates into obtuse;For avoiding streaming, trailing edge is processed into wing;Its height is the 0.4 of tube wall 31 diameter Times, make the spiral flow of formation have bigger intensity;1.8 times of a length of tube wall 31 diameter are bigger to fluid to ensure Sphere of action.
Described rotating magnetic field device 4 is by aluminum matter pipeline 41, iron shell 42, three-phase symmetric winding 43, flange 44 and three Symmetrical current module 45 forms.Described three-phase symmetric winding 43 is wound on outside aluminum matter pipeline 41.Described iron shell 42 is coated on On aluminum matter pipeline 41.Described flange 44 is welded on the two ends of aluminum matter pipeline 41.Described three-phase symmetrical current module 45 connects described Three-phase symmetric winding 43, and by ECU10 control.
The operation principle of described rotating magnetic field device 4 is as follows: owing to the absolute mass of polymeric macroparticle is less, through eddy flow from After core module 3 initial centrifugation, though magnetization polymeric macroparticle has been thrown off conduit axis, but not yet close to tube wall, need to carry out two Secondary centrifugal.After magnetization polymeric macroparticle enters described rotating magnetic field device 4 with fluid, three-phase symmetric winding 43 flows through three relative Claiming electric current, this electric current produces rotating excitation field in aluminum matter pipeline 41.Magnetized particles under rotating excitation field effect by magnetic field force Effect, and the most spirally advance, simultaneously to aluminum matter pipeline 41 vessel wall motion.Reasonable adjusting magnetic field intensity The granule in fluid can be made " to separate " out from fluid, be gathered in aluminum matter pipeline 41 near-wall, it is simple to subsequent adsorbtion.
Described adsorption module 5 is big for adsorbing the magnetization polymerization being gathered in near-wall after rotated magnetic field device 4 is centrifuged Microgranule.When described adsorption module 5 uses homopolarity adjacent type absorbing ring, this homopolarity adjacent type absorbing ring by aluminium ring shape pipeline 51, The parts compositions such as forward solenoid 52, reverse solenoid 53 and irony magnetic conduction cap 54.Wherein, described forward solenoid 52 is with anti- Being respectively arranged in aluminium ring shape pipeline 51 and by ECU10 control to solenoid 53, both are connected with electric current in opposite direction so that Forward solenoid 52 and reverse solenoid 53 adjacent produce like pole.Described irony magnetic conduction cap 54 is arranged in aluminium ring shape pipe On the inwall in road 51, it is positioned at forward solenoid 52 and reverse solenoid 53 adjacent and forward solenoid 52 and reverse spiral shell The intermediate point of spool 53 axis.
The design principle of described homopolarity adjacent type absorbing ring is as follows: have the energising helical of multiple ribbon core inside absorbing ring Pipe, adjacent solenoid coil is connected with electric current in opposite direction so that forward solenoid and reverse solenoid adjacent produce same Property magnetic pole.Meanwhile, forward solenoid and reverse solenoid adjacent and forward solenoid and reverse solenoid axis intermediate point Absorbing ring inwall at be provided with irony magnetic conduction cap, parallel with absorbing ring axis in strip, the shell of absorbing ring is paramagnetism aluminum matter Outer tube wall, this set is conducive to improving magnetic circuit, strengthens the magnetic field intensity at absorbing ring inwall, strengthens the capture to granule and adsorbs Ability.Each solenoid current is directly controlled by ECU, can be different with concentration and change according to the size of granule, to obtain Good absorption property.After having adsorbed, ECU controls electric magnet power-off, and paramagnetism aluminum matter pipeline loses magnetism, and is attached to inner-walls of duct Upper magnetic polymeric bulky grain enters adjacent capacitor particulate matter monitoring module with fluid along tube wall.
Further, during the homopolarity adjacent type absorbing ring that described adsorbent equipment 5 may be used without charged hammer, this charged hammer Homopolarity adjacent type absorbing ring by aluminium ring shape pipeline 51, forward solenoid 52, reverse solenoid 53, irony magnetic conduction cap 54, every The parts compositions such as plate 55, electric shock hammer 56 and electric magnet 57.Wherein, described forward solenoid 52 and reverse solenoid 53 cloth respectively In being placed in aluminium ring shape pipeline 51 and by ECU10 control, both are connected with electric current in opposite direction so that forward solenoid 52 is with anti- Like pole is produced to solenoid 53 adjacent.Described irony magnetic conduction cap 54 is arranged on the inwall of aluminium ring shape pipeline 51, its It is positioned at forward solenoid 52 and reverse solenoid 53 adjacent and forward solenoid 52 and the centre of reverse solenoid 53 axis Point.Described electric shock hammer 56 and electric magnet 57 are between dividing plate 55.Described electric magnet 57 connects and can promote electric shock hammer 56, makes electricity Hammer 56 taps aluminium ring shape pipeline 52 inwall.Described ECU10 is electrically connected with and controls forward solenoid 52, reverse solenoid 53 With electric magnet 57.
The design principle of the homopolarity adjacent type absorbing ring of described charged hammer is as follows: have multiple ribbon core inside absorbing ring Energization solenoid, adjacent solenoid coil is connected with electric current in opposite direction so that forward solenoid and reverse solenoid are adjacent Place produces like pole.Meanwhile, forward solenoid and reverse solenoid adjacent and forward solenoid and reverse solenoid axle Being provided with irony magnetic conduction cap at the absorbing ring inwall of line intermediate point, parallel with absorbing ring axis in strip, the shell of absorbing ring is suitable Magnetic aluminum matter outer tube wall, this set is conducive to improving magnetic circuit, strengthens the magnetic field intensity at absorbing ring inwall, strengthens granule Capture absorbability.Each solenoid current is directly controlled by ECU, can be different with concentration and change according to the size of granule, To obtain optimal adsorption performance.Being additionally provided with by the electric hammer of magnet control between adjoining solenoids, dividing plate and helical are passed through in two ends Pipe Magnetic isolation.What this electric shock was hammered into shape is provided for preventing granule bulk deposition at irony magnetic conduction cap, affects adsorption effect.This Time, tapped the inwall of absorbing ring by magnet control electric hammer so that adsorbed granule scatter to both sides.Meanwhile, clearly When washing absorbing ring, the percussion of electric shock hammer can also improve cleaning performance.After having adsorbed, tapped by magnet control electric hammer and inhale The inwall of follower ring so that adsorbed granule scatter to both sides, ECU controls electric magnet power-off, paramagnetism aluminum matter pipeline subsequently Lose magnetism, be attached to magnetic polymeric bulky grain on inner-walls of duct and enter adjacent capacitor particulate matter monitoring module with fluid along tube wall.
Refer to Figure of description 18-1 to shown in accompanying drawing 18-4, described adjacent capacitor particulate matter monitoring module 6 on-line monitoring Wear particle situation in fluid pressure line.Described adjacent capacitor particulate matter monitoring module 6 is by lucite inwall 61, ground shield 62, pole plate 63, excitation several parts such as pole plate 64 and outer wall 65 composition are received.Wherein, described machine glass inner wall 61, grounded shield Layer 62 and outer wall 65 in tubular construction, and successively from-inner-to-outer arrange.
The thickness of described machine glass inner wall 61 is 0.5mm, and dielectric constant is the 2.5 (dielectric constant of hydraulic oil about 2.1 left sides Right), and the dielectric constant of hydraulic oil is close, therefore edge capacitance is fixed value;Gather when lucite inner wall surface piles with magnetization When closing bulky grain, magnetization polymeric macroparticle, hydraulic oil form mixed dielectric with lucite inwall, to sensors edges electric capacity Common effect, the dielectric constant of magnetization polymeric macroparticle is typically larger than 10, is hydraulic oil and the dielectric constant of lucite inwall Several times, enough cause the significant change of capacitance sensor edge capacitance, therefore may utilize adjacent capacitive sensors capacitance Change, thus the anti-minor variations pushing away fluid dielectric constant, and then realize the monitoring of the enforcement to wear particle.
Adjacent capacitive sensors performance based on electric capacity edge effect depends primarily on penetration depth, and (penetrating of electric field line is deep Degree), signal intensity (size of capacitance) and noise suppressed, measurement sensitivity (sensitive to change in voltage or electric field change Degree) and the measurement dynamic range of sensor.The capacitance that existing adjacent capacitive sensors measurement obtains is the faintest, usually pF Level is the least, the most worse to the measurement effect of the medium of the low-ks such as metal particle, therefore promotes sensor output letter Number intensity is particularly critical.Meanwhile, signal intensity and penetration depth two indices are conflicting, and this is also this sensor performance Promote difficult point.
Adjacent capacitive sensors signal intensity and sensor plate area, polar plate spacing is, and sensor and object under test Between distance, the dielectric constant of determinand suffers from the biggest relation.Through magnetization polymerization, the centrifugal and wear particle of adsorption treatment Assembling in lucite inner wall surface, the increase of amounts of particles causes the increase of fluid dielectric constant, the grain that aggregation of particles brings Footpath increases the increase also making fluid dielectric constant, magnetizes simultaneously and also has the function increasing dielectric constant, and three acts on simultaneously, greatly Strengthen greatly signal intensity;And owing to granule is close to organic glass inner wall surface, penetration depth is required almost nil, also solves Index of having determined collision problem.
Owing to adjacent capacitive sensors output signal strength is the faintest, noise is notable on the impact of measurement result.Generally Noise is mainly derived from two aspects, the noise of sensor self and environment noise.Ground shield is devised to reduce biography for this Sensor self-noise, the dielectric constant of ground shield 62 is 1.5-2.5, and shielding thickness is adjacent capacitive sensors outer wall 65 It is preferred between 1 to 2 times of thickness, to ensure to measure sensitivity.
Described reception pole plate 63, excitation pole plate 64 are embedded in ground shield 62, and are positioned at outside machine glass inner wall 61, Form gap magnetic field 66 between the two, be used for detecting aggregated particles 67.Described reception pole plate 63, excitation pole plate 64 all use effectively Edge length and baroque Peano curve structure pole plate layer.In this Peano curve structure pole plate layer, encourage pole plate 63, connect The curve receiving pole plate 64 composition can travel through all of point in square pole plate layer, obtains a full whole square pole plate layer empty Between curve.In the case of pole plate aspect is long-pending fixing, this structure has the longest efficient frontier, maximum polar plate area and the most complicated Structure, adds effective polar plate area and pole plate edge, adds sensors edges capacitance, reduce external interface circuit The requirement of sensitivity.Thus can obtain optimum signal intensity, sensor excitation pole plate uses curved edge also to keep away with receiving pole plate High sensitivity and the unstability of pole plate corner are exempted from.Further, described reception pole plate 63, excitation pole plate 64 are between the two It is provided with sealing coat 69;0.8-1 times that width is lucite inner wall thickness of described sealing coat 69, it can effectively will receive Pole plate 63, excitation pole plate 64 are isolated.
One end of described demagnetization module 7 is provided with fluid outlet 92, and it is made up of remanent magnetism sensor and demagnetizer.Due to magnetic hysteresis The existence of phenomenon, after ferromagnetic material is magnetized into saturation, even if cancelling externally-applied magnetic field, the magnetic induction in material still returns Less than zero point, need externally-applied magnetic field demagnetization.In order to prevent magnetic microparticles from entering hydraulic circuit, sensitive to pollution Hydraulic Elements cause Damage, described demagnetization module 7 controls the demagnetization intensity of demagnetizer according to the detected value of demagnetizer exit remanent magnetism sensor.Herein The demagnetization method used is electromagnetism demagnetization, and method is the opposing magnetic field by add suitable so that the magnetic induction in material Come back to zero point, and magnetic field intensity or electric current must invert in order and gradually reduce.
Referring to shown in Figure of description 19, described wear particle on-Line Monitor Device farther includes described ECU10, its The PIC16F877 of optional Microchip company.Described wave filter 8, remanent magnetism sensor, demagnetizer, heater, cooler, temperature Degree sensor, magnetizing current output module 25, mechanical centrifugal module 3, rotating excitation field are centrifuged module 4, adsorption module 5, adjacent electricity Hold particulate matter monitoring module 6 to be all electrically connected on ECU, and by ECU control.
Wear particle in using above-mentioned wear particle on-Line Monitor Device to have hydraulic pressure is monitored and is included following method:
1), the fluid in fluid pressure line carries wear particle and passes through wave filter 8, is decayed in hydraulic system by wave filter 8 The fluctuation pressure of high, medium and low frequency range, and suppression flowed fluctuation;
2), oil liquid temperature is controlled by temperature control module constant at 42 DEG C;
3), magnetized module 2 is force-magnetized by the wear particle that carries in fluid, makes micron-sized wear particle aggregate into Bulky grain
4), magnetization aggregated particles initial centrifugation in mechanical centrifugal module 3;
5), rotating excitation field module 4 carries out secondary centrifuging to magnetization aggregated particles;
6), adsorption module 5 adsorbs the magnetization big microgranule of polymerization being gathered in near-wall after rotated magnetic field module 4 is centrifuged;
7), by wear particle situation in adjacent capacitor particulate matter monitoring module 6 on-line monitoring fluid pressure line
8), demagnetization module 7 gives magnetized particles demagnetization, prevents magnetic microparticles from entering hydraulic circuit, sensitive to pollution hydraulic pressure unit Part causes damage.
Above detailed description of the invention is only the preferred embodiment of this creation, not in order to limit this creation, all in this wound Any modification, equivalent substitution and improvement etc. done within the spirit made and principle, should be included in this creation protection domain it In.

Claims (10)

1. one kind by filtering, the wear particle monitoring system of centrifugation and adjacent capacitor, it is characterised in that: include wave filter, Temperature control module, magnetized module, mechanical centrifugal module, rotating excitation field are centrifuged module, adsorption module, adjacent capacitor particulate matter monitoring module And demagnetization module;Wherein, described wave filter, temperature control module, magnetized module, mechanical centrifugal module, rotating excitation field be centrifuged module, Adsorption module, adjacent capacitor particulate matter monitoring module and demagnetization module are sequentially connected with;One end of described wave filter is provided with fluid entrance, It includes input pipe, shell, outlet tube, elastic thin-wall, H mode filter and cascaded H mode filter;Wherein, described input pipe It is connected to one end of shell;Described outlet tube is connected to the other end of shell;Described elastic thin-wall is installed on along the radial direction of shell In shell;Described input pipe, outlet tube and elastic thin-wall are collectively forming a c-type cavity volume wave filter;Described elastic thin-wall axial On uniformly have some taper structure changes damping holes;Described taper structure changes damping hole is by cone shaped elastic damping hole pipe and slot apertures group Become;Resonance series cavity volume I and parallel resonance cavity volume is formed between described elastic thin-wall and shell;Described resonance series cavity volume I Outside set a resonance series cavity volume II, by some uniform rows between described resonance series cavity volume I and resonance series cavity volume II Pipe connection is inserted in the taper of cloth;Described H mode filter is positioned at parallel resonance cavity volume, and it is connected with taper structure changes damping hole Logical;Described cascaded H mode filter is positioned at resonance series cavity volume I and resonance series cavity volume II, and it also damps with taper structure changes Hole is connected;Described H mode filter and cascaded H mode filter are axially symmetrical set, and form connection in series-parallel H mode filter;Institute The one end stating demagnetization module is provided with fluid outlet, and it is made up of remanent magnetism sensor and demagnetizer.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: the axis of described input pipe and outlet tube is the most on the same axis;The wider place of described taper structure changes damping hole opening is positioned at In resonance series cavity volume I and parallel resonance cavity volume, its taper angle is 10 °;Described taper structure changes damping hole cone shaped elastic damps The Young's modulus of hole pipe is bigger than the Young's modulus of elastic thin-wall, can be with change in fluid pressure stretching or compression;The Young of slot apertures The Young's modulus of modular ratio cone shaped elastic damping hole pipe wants big, can be with fluid opened by pressure or closedown;Described taper is inserted pipe and is opened The wider place of mouth is positioned at resonance series cavity volume II, and its taper angle is 10 °;Pipe and taper structure changes damping hole are inserted in described taper Mutually stagger in position.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: described temperature control module includes heater, cooler and temperature sensor;Described heater uses the Chongqing gold of band temperature detection The lubricating oil heater of letter;Remover for surface evaporation type air cooling selected by described cooler, and the finned tube of cooler selects KLM type finned tube; Temperature sensor uses platinum resistance temperature sensor.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: described magnetized module includes aluminum matter pipeline, some windings, iron shell, flange and some magnetizing current output modules;Its In, described some windings are rotating around outside aluminum matter pipeline, and each winding is made up of positive winding and inverse winding, in positive winding and inverse winding Size of current equal;Described iron shell is coated on aluminum matter pipeline;Described flange welding is at the two ends of aluminum matter pipeline;Each Magnetizing current output module is connected to a winding.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: described mechanical centrifugal module uses eddy flow to be centrifuged module;Described eddy flow be centrifuged module include eddy flow tube wall, the first flow deflector, Second flow deflector, motor and flow transducer;Wherein, described first flow deflector is provided with 3, these 3 first flow deflectors Being uniformly distributed along tube wall inner periphery every 120 °, its laying angle is set to 18 °;Described second flow deflector and the first flow deflector structure phase With, after it is arranged on the first flow deflector, and and the first flow deflector stagger 60 ° and be connected in tube wall, its laying angle is set to 36 DEG C;Institute The long limit stating the first flow deflector is connected with tube wall, and minor face extends along the axis of tube wall;Its leading edge frustrates into obtuse, and trailing edge is processed into the wing Shape, its height is 0.4 times of tube wall diameter, 1.8 times of a length of tube wall diameter;Described motor connects and drives first to lead Flow and the second flow deflector, to regulate laying angle;Described flow transducer is arranged on the central authorities in tube wall.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: described rotating excitation field is centrifuged module and includes aluminum matter pipeline, iron shell, three-phase symmetric winding, flange and three-phase symmetrical electricity Flow module;Described three-phase symmetric winding is wound on outside aluminum matter pipeline;Described iron shell is coated on aluminum matter pipeline;Described flange welds It is connected on the two ends of aluminum matter pipeline;Described three-phase symmetrical current module connects described three-phase symmetric winding.
The wear particle monitoring system of filtering the most as claimed in claim 6, centrifugation and adjacent capacitor, its feature exists In: described adsorption module uses homopolarity adjacent type absorbing ring;Described homopolarity adjacent type absorbing ring includes aluminium ring shape pipeline, forward Solenoid, reverse solenoid and irony magnetic conduction cap;Described forward solenoid and reverse solenoid are respectively arranged in aluminium ring shape In pipeline, both are connected with electric current in opposite direction so that forward solenoid and reverse solenoid adjacent produce like pole;Institute State irony magnetic conduction cap to be arranged on the inwall of aluminium ring shape pipeline, its be positioned at forward solenoid and reverse solenoid adjacent, with And forward solenoid and the intermediate point of reverse solenoid axis.
The wear particle monitoring system of filtering the most as claimed in claim 6, centrifugation and adjacent capacitor, its feature exists In: described adsorption module uses the homopolarity adjacent type absorbing ring of charged hammer;The homopolarity adjacent type absorbing ring of described charged hammer Including aluminium ring shape pipeline, forward solenoid, reverse solenoid, irony magnetic conduction cap, dividing plate, electric shock hammer and electric magnet;Described Forward solenoid and reverse solenoid are respectively arranged in aluminium ring shape pipeline, and both are connected with electric current in opposite direction so that just Like pole is produced to solenoid and reverse solenoid adjacent;Described irony magnetic conduction cap is arranged in the inwall of aluminium ring shape pipeline On, it is positioned at forward solenoid and reverse solenoid adjacent and forward solenoid and the intermediate point of reverse solenoid axis; Described dividing plate is between forward solenoid and reverse solenoid;Described electric shock hammer and electric magnet are between dividing plate;Described electricity Magnet connects and can promote electric shock hammer, makes electric shock hammer tap aluminium ring shape inner-walls of duct.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: described adjacent capacitor particulate matter monitoring module include organic glass inner wall, ground shield, reception pole plate, excitation pole plate and Outer wall;Wherein, described machine glass inner wall, ground shield and outer wall in tubular construction, and successively from-inner-to-outer arrange;Described machine The thickness of glass inner wall is 0.5mm, and dielectric constant is 2.5;The dielectric constant of described ground shield is 1.5-2.5, and thickness is 1 to 2 times of outer wall thickness;Described reception pole plate, excitation pole plate are embedded in ground shield, and are positioned at outside machine glass inner wall Side;Described reception pole plate, excitation pole plate all use Peano curve structure pole plate layer, are provided with sealing coat between the two;Described every The width of absciss layer is 0.8-1 times of lucite inner wall thickness.
The wear particle monitoring system of filtering the most as claimed in claim 1, centrifugation and adjacent capacitor, its feature exists In: it farther includes an ECU, described wave filter, remanent magnetism sensor, demagnetizer, heater, cooler, temperature sensor, magnetic It is equal that galvanic current output module, mechanical centrifugal module, rotating excitation field are centrifuged module, adsorption module and adjacent capacitor particulate matter monitoring module It is electrically connected on ECU.
CN201610313145.6A 2016-05-12 2016-05-12 Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance Pending CN105891277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610313145.6A CN105891277A (en) 2016-05-12 2016-05-12 Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610313145.6A CN105891277A (en) 2016-05-12 2016-05-12 Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance

Publications (1)

Publication Number Publication Date
CN105891277A true CN105891277A (en) 2016-08-24

Family

ID=56702797

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610313145.6A Pending CN105891277A (en) 2016-05-12 2016-05-12 Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance

Country Status (1)

Country Link
CN (1) CN105891277A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812331A1 (en) * 1978-03-21 1979-09-27 Karberg & Hennemann Kg Double filter for liquids - with small prefilter for coarse in series with depth filter for finest particles
CN2088691U (en) * 1991-03-07 1991-11-13 煤炭科学研究总院上海分院测试中心 Portable ferromagnetic abrasive particle measuring instrument
JP2003117311A (en) * 2001-10-17 2003-04-22 Shiatoru Catalyzer Laboratory Kk Apparatus for filtering liquid
CN1546198A (en) * 2003-11-28 2004-11-17 邝念曾 Method and system for purifying hydraulic-oil
CN1821887A (en) * 2005-02-18 2006-08-23 佳能株式会社 Magnetic toner
CN102243200A (en) * 2011-05-05 2011-11-16 南京航空航天大学 On-line monitoring sensor of lubricating oil
CN102519851A (en) * 2011-12-29 2012-06-27 吴望东 Capacitor type on-line iron spectrum detector
CN103134742A (en) * 2011-11-23 2013-06-05 中国人民解放军海军工程大学 On-site detection apparatus for ferromagnetism abrasive particles in oil
CN103998141A (en) * 2011-12-23 2014-08-20 曼·胡默尔有限公司 Centrifugal-force separator and filter arrangement having a centrifugal-force separator of said type

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812331A1 (en) * 1978-03-21 1979-09-27 Karberg & Hennemann Kg Double filter for liquids - with small prefilter for coarse in series with depth filter for finest particles
CN2088691U (en) * 1991-03-07 1991-11-13 煤炭科学研究总院上海分院测试中心 Portable ferromagnetic abrasive particle measuring instrument
JP2003117311A (en) * 2001-10-17 2003-04-22 Shiatoru Catalyzer Laboratory Kk Apparatus for filtering liquid
CN1546198A (en) * 2003-11-28 2004-11-17 邝念曾 Method and system for purifying hydraulic-oil
CN1821887A (en) * 2005-02-18 2006-08-23 佳能株式会社 Magnetic toner
CN102243200A (en) * 2011-05-05 2011-11-16 南京航空航天大学 On-line monitoring sensor of lubricating oil
CN103134742A (en) * 2011-11-23 2013-06-05 中国人民解放军海军工程大学 On-site detection apparatus for ferromagnetism abrasive particles in oil
CN103998141A (en) * 2011-12-23 2014-08-20 曼·胡默尔有限公司 Centrifugal-force separator and filter arrangement having a centrifugal-force separator of said type
CN102519851A (en) * 2011-12-29 2012-06-27 吴望东 Capacitor type on-line iron spectrum detector

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
何永勃 等: "基于环状电极的电容式润滑油磨粒检测系统设计", 《传感器与微系统》 *
杜润: "液压系统脉动衰减器的特性分析", 《中国博士学位论文全文数据库 工程科技Ⅱ辑》 *
桑青青: "多薄板振动式脉动衰减器滤波机理与特性分析", 《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》 *

Similar Documents

Publication Publication Date Title
CN105866196A (en) Online wearing particulate monitoring device based on filtering, electromagnetic centrifugation and adjacent capacitance
CN105891279A (en) Wear particle monitoring device with filtering, electromagnetic centrifugal separating and adjacent capacitance
CN105973777A (en) Method for monitoring wear particles on line by virtue of filtration, electromagnetic centrifugation and adjacent capacitance
CN106018499A (en) Wear particle online monitoring method using hydraulic filtering, centrifugation and adjacent capacitance
CN105891277A (en) Wear particle monitoring system adopting filtering, centrifugalization and adjacent capacitance
CN106018191A (en) Double-excitation solenoid type particle detection method achieved through full-frequency-band work condition self-adaptive filtering
CN106018213A (en) Wear particle monitoring method using filtering, electromagnetic centrifugal separation and adjacent capacitance
CN105891278A (en) Hydraulic filtering, electromagnetic centrifugation and adjacent capacitor abrasion fine particle monitoring device
CN106018218A (en) Wear particle monitoring method achieved through hydraulic filtration, electromagnetic centrifugation and adjacent capacitance
CN106018501A (en) Wear particle online monitoring method using filtering, centrifugation and adjacent capacitance
CN105866198A (en) Wear particle online monitoring device using filtering, centrifuge and adjacent capacitance
CN105866197A (en) Wear particle online monitoring device using filtering, centrifuge and adjacent capacitance
CN105973949A (en) System for monitoring wear particles on line by virtue of hydraulic filtration, centrifugation and adjacent capacitance
CN105842305A (en) Method for monitoring wear particles with hydraulic filtering, centrifugal separation and adjacent capacitors
CN106018220A (en) Abrasion particle on-line monitoring method with hydraulic pressure filtering, centrifugation and adjacent capacitors
CN106018212A (en) Wear particle online monitoring method using filtering, centrifugation and adjacent capacitance
CN106015173A (en) Wear particle monitoring equipment using hydraulic filtration, centrifugation and adjacent capacitance
CN106018219A (en) Wear particle online monitoring method using filtering, electromagnetic centrifugation and adjacent capacitance
CN105909594A (en) Abrasion particle monitoring equipment using filter waves, electromagnetic centrifugation and adjacent capacitances
CN205786449U (en) A kind of use temperature control, eddy flow centrifugal and the wear particle monitoring device of adjacent capacitor
CN105889180A (en) Monitoring method adopting temperature control, cyclone centrifuging and proximity capacitance for wear particles
CN105973766A (en) Worn particle monitoring system using temperature control, electric shock hammer adsorption and adjacent capacitance
CN105891275A (en) Wear particle monitoring device adopting temperature control, cyclone centrifugation and adjacent capacitance
CN106018214A (en) Wear particle online monitoring method using centrifugation, adsorption and adjacent capacitance
CN105973779A (en) Method for monitoring wear particles on line by virtue of centrifugation, electric hammer adsorption and adjacent capacitance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160824

RJ01 Rejection of invention patent application after publication