CN105886814B - 一种可植入的骨修复内植物用镁合金材料及其制备方法 - Google Patents
一种可植入的骨修复内植物用镁合金材料及其制备方法 Download PDFInfo
- Publication number
- CN105886814B CN105886814B CN201610304330.9A CN201610304330A CN105886814B CN 105886814 B CN105886814 B CN 105886814B CN 201610304330 A CN201610304330 A CN 201610304330A CN 105886814 B CN105886814 B CN 105886814B
- Authority
- CN
- China
- Prior art keywords
- powder
- magnesium alloy
- magnesium
- alloy materials
- implants
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/025—Other specific inorganic materials not covered by A61L27/04 - A61L27/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/02—Inorganic materials
- A61L27/04—Metals or alloys
- A61L27/047—Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/12—Both compacting and sintering
- B22F3/14—Both compacting and sintering simultaneously
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0089—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with other, not previously mentioned inorganic compounds as the main non-metallic constituent, e.g. sulfides, glass
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Dermatology (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Manufacturing & Machinery (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明涉及一种可植入的骨修复内植物用镁合金材料及其制备方法。将镁粉和硅酸钙粉末混合后放入模具中,所述的硅酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%,在750‑900MPa压力下冷压成型后,在温度520‑600℃、100‑200MPa的环境下进行热压烧结,得到可植入的骨修复内植物用镁合金材料。与现有技术相比,本发明在镁粉中添加一定比例的硅酸钙粉末,提高了镁合金的生物相容性及耐蚀性。这种可植入的骨修复内植物用镁合金材料具有良好的生物相容性和安全性,可直接在人体内降解,免除了患者进行二次手术的痛苦。
Description
技术领域
本发明涉及一种镁合金材料,尤其是涉及一种可植入的骨修复内植物用镁合金材料及其制备方法。
背景技术
传统的作为骨修复植入体材料的医用镁合金,大都是将一些金属元素添加到镁合金基体中,或将磷、钙等制成涂层,这样的生物材料都有生物相容性较差,腐蚀速率过快,降解不可控,达不到治疗效果的问题。
中国专利CN 105112696 A公开了一种镁合金材料的制备方法,先将二氧化硅、氧化镍粉、硅酸钙、碳酸钠混合,置于马弗炉中500~600℃保温,冷却,再将所得混合物、硬脂酸、二氧化锰、有机膨润土混合,球磨;最后将所得混合物与镁粉混合,在真空条件下熔炼,冷却,即得。该发明提供的镁合金材料拉伸强度达到了1035MPa以上,伸长率达到了4.45%以上,密度达到了7.35以上,硬度达到了HV714以上,具有高拉伸强度、高硬度与韧度以及高密度的特点。但是由于该镁合金材料中所含元素复杂,不适于作为医用镁合金材料使用。
目前还有一种镁合金材料制备方法,即溶胶凝胶法结合浸渍提拉的工艺在镁合金表面制备出陶瓷涂层形成镁合金骨修复材。这种以镁合金为基体,在表面形成涂层的镁合金材料生物相容性较差,腐蚀速率过快,降解不可控,达不到治疗效果的问题,另外这种复合材料制备工艺复杂。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种具有更好的生物相容性以及可控降解性的可植入的骨修复内植物用镁合金材料及其制备方法。
本发明的目的可以通过以下技术方案来实现:
一种可植入的骨修复内植物用镁合金材料,由镁粉和碳酸钙粉末混合烧结而成,其中,所述的硅酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%。
所述的可植入的骨修复内植物用镁合金材料的制备方法为:将镁粉和硅酸钙粉末混合后放入模具中,在750-900MPa压力下冷压成型后,在温度520-600℃、100-200MPa的环境下进行热压烧结,得到可植入的骨修复内植物用镁合金材料。
镁粉和硅酸钙粉的混合方式是整体混合,通过机械混粉的方式实现。
热压烧结操作时,从室温开始加热到额定温度,保持每分钟匀速上升25℃~35℃,达到额定温度后,保持5-10分钟,在在目标温度附近维持5-10分钟,有助于两种相(即镁与碳酸钙)的融合,使样品更加致密。所述的额定温度为520-600℃。
热压烧结后,先释放压力,再自然降温,温度降至常温取出即可。
与现有技术相比,采用的是硅酸钙粉末与镁粉的混合来得到镁合金材料,在520-600℃下,进行半固态烧结(即镁部分融化),在高温高压的作用下,两种粉末表面破碎,相互粘结,最终在扫描电子显微镜下观察到,镁和硅酸钙两相较好地融合,提高镁合金的生物相容性和耐蚀性,使其降解变得可控。这也使得试样具有较好的力学性能和耐蚀性,而硅酸钙的加入也提高了其生物相容性。这种可植入的骨修复内植物用镁合金材料具有良好的生物相容性和安全性,可直接在人体内降解,免除了患者进行二次手术的痛苦。
附图说明
图1为实施例1所得镁合金试样的SEM图;
图2为实施例2所得镁合金试样的SEM图;
图3为实施例1所得镁合金试样腐蚀过程中单位表面积质量变化结果;
图4为实施例2所得镁合金试样的腐蚀速率变化结果。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例1
一种可植入的骨修复内植物用镁合金材料,将镁粉与硅酸钙粉混合,使硅酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%,将镁粉与硅酸钙粉的混合粉末放入模具中,在800MPa下冷压成型后,在温度为550℃、压力为150Mpa的情况下进行高温加压烧结,得到镁合金试样。
纯镁材料的抗弯强度为110.96MPa,而本实施例所得镁合金试样的抗弯强度为168.55MPa,相较于纯镁材料提升强度50%。
对本实施例所得镁合金试样进行腐蚀试验,同时还有三种对比材料。
其中,A材料表示纯镁,B材料表示镁粉与硅酸钙粉的混合材料。ABABA表示A材料与B材料的层状结构,该层状结构两侧均为纯镁材料,ABABA中,硅酸钙占样品总质量的20%;ABAB表示A材料与B材料的层状结构,该层状结构一侧为纯镁材料,另一侧为镁粉与硅酸钙粉的混合材料,ABAB中,硅酸钙占样品总质量的20%。全混合(失重)指的是镁粉与硅酸钙粉没有分层的混合材料(酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%),也就是本实施例所得的镁合金试样。
对纯镁粉、ABABA、ABAB及全混合(失重)材料进行时间与单位表面积质量变化进行分析,结果如图3所示,可以看出,在同样的时间下,全混合(失重)样品,也就是本实施例所得的镁合金试样在腐蚀过程中单位表面积质量变化最小,即腐蚀速率变化相比两外三种检测材料更平稳。
实施例2
一种可植入的骨修复内植物用镁合金材料,将镁粉与硅酸钙粉混合,使硅酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%,将镁粉与硅酸钙粉的混合粉末放入模具中,在800MPa下冷压成型后,在温度600℃、压力150MPa的情况下热压烧结,得到镁合金试样。
纯镁材料的抗弯强度为110.96MPa,而本实施例所得镁合金试样的抗弯强度为150.43MPa,相较于纯镁材料提升强度35%。
对本实施例所得镁合金试样进行腐蚀试验,同时还有三种对比材料。
其中,A材料表示纯镁,B材料表示镁粉与硅酸钙粉的混合材料。ABABA表示A材料与B材料的层状结构,该层状结构两侧均为纯镁材料,ABABA中,硅酸钙占样品总质量的20%;ABAB表示A材料与B材料的层状结构,该层状结构一侧为纯镁材料,另一侧为镁粉与硅酸钙粉的混合材料,ABAB中,硅酸钙占样品总质量的20%。全混合(失重)指的是镁粉与硅酸钙粉没有分层的混合材料(酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%),也就是本实施例所得的镁合金试样。
对纯镁粉、ABABA、ABAB及全混合(失重)材料进行腐蚀速率的变化分析,结果如图4所示,可以看出,全混合(失重)样品,也就是本实施例所得的镁合金试样在腐蚀过程初始腐蚀速率最小,同时随着时间的增长,其腐蚀速率仍然小于其他三种对比材料。
上述的对实施例的描述是为便于该技术领域的普通技术人员能理解和使用发明。熟悉本领域技术的人员显然可以容易地对这些实施例做出各种修改,并把在此说明的一般原理应用到其他实施例中而不必经过创造性的劳动。因此,本发明不限于上述实施例,本领域技术人员根据本发明的揭示,不脱离本发明范畴所做出的改进和修改都应该在本发明的保护范围之内。
Claims (3)
1.一种可植入的骨修复内植物用镁合金材料的制备方法,其特征在于,可植入的骨修复内植物用镁合金材料由镁粉和硅酸钙粉混合烧结而成,其中,所述的硅酸钙粉在镁粉与硅酸钙粉的混合粉末中的质量分数为20%;
制备方法为:将镁粉和硅酸钙粉末混合后放入模具中,在750-900MPa压力下冷压成型后,在温度520-600℃、100-200MPa的环境下进行热压烧结,得到可植入的骨修复内植物用镁合金材料;
热压烧结操作时,从室温开始加热到额定温度,保持每分钟匀速上升25℃~35℃,达到额定温度后,保持5-10分钟,所述的额定温度为520-600℃。
2.根据权利要求1所述的一种可植入的骨修复内植物用镁合金材料的制备方法,其特征在于,镁粉和硅酸钙粉的混合方式是整体混合,通过机械混粉的方式实现。
3.根据权利要求1所述的一种可植入的骨修复内植物用镁合金材料的制备方法,其特征在于,热压烧结后,先释放压力,再自然降温,温度降至常温取出即可。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610304330.9A CN105886814B (zh) | 2016-05-10 | 2016-05-10 | 一种可植入的骨修复内植物用镁合金材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610304330.9A CN105886814B (zh) | 2016-05-10 | 2016-05-10 | 一种可植入的骨修复内植物用镁合金材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105886814A CN105886814A (zh) | 2016-08-24 |
CN105886814B true CN105886814B (zh) | 2017-12-15 |
Family
ID=56702437
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610304330.9A Expired - Fee Related CN105886814B (zh) | 2016-05-10 | 2016-05-10 | 一种可植入的骨修复内植物用镁合金材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105886814B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107267828A (zh) * | 2017-05-26 | 2017-10-20 | 广西庆达汽车零部件有限公司 | 一种镁铝合金的制备方法 |
CN107760945B (zh) * | 2017-10-26 | 2019-06-04 | 中南大学 | 一种具有高腐蚀抗力和生物活性的镁合金及其制备方法 |
CN109351980B (zh) * | 2018-12-06 | 2022-05-10 | 南京理工大学 | 热压烧结法制备多尺度析出强化镁合金材料的方法 |
CN111773434A (zh) * | 2019-04-04 | 2020-10-16 | 中国科学院金属研究所 | 镁锶-磷酸钙/硅酸钙复合骨水泥填充物及其制备与应用 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102784014B (zh) * | 2012-08-14 | 2014-11-26 | 中国科学院深圳先进技术研究院 | 多孔性骨支架及其制备方法 |
CN104099501B (zh) * | 2014-07-21 | 2016-06-22 | 上海理工大学 | 一种珍珠粉/镁合金准自然骨复合材料及其制备方法 |
-
2016
- 2016-05-10 CN CN201610304330.9A patent/CN105886814B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN105886814A (zh) | 2016-08-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105886814B (zh) | 一种可植入的骨修复内植物用镁合金材料及其制备方法 | |
Dong et al. | A novel multifunctional carbon aerogel-coated platform for osteosarcoma therapy and enhanced bone regeneration | |
Shao et al. | 3D printing magnesium-doped wollastonite/β-TCP bioceramics scaffolds with high strength and adjustable degradation | |
Schierano et al. | An alumina toughened zirconia composite for dental implant application: in vivo animal results | |
US8703294B2 (en) | Bioactive graded zirconia-based structures | |
Liu et al. | Sol–gel derived bioglass as a coating material for porous alumina scaffolds | |
Oktar et al. | Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO 2, MgO, Al 2 O 3, and ZrO 2 | |
Liu et al. | Mechanical properties' improvement of a tricalcium phosphate scaffold with poly-l-lactic acid in selective laser sintering | |
Henriques et al. | Bond strength enhancement of zirconia-porcelain interfaces via Nd: YAG laser surface structuring | |
CN104841018B (zh) | 一种多层生物复合材料及其制备方法 | |
US20110195378A1 (en) | Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof | |
Ormanci et al. | Spark plasma sintered Al2O3–YSZ–TiO2 composites: Processing, characterization and in vivo evaluation | |
US20130150227A1 (en) | Composite Bio-Ceramic Dental Implant and Fabricating Method Thereof | |
CN105250040B (zh) | 缓冲型生物活性玻璃陶瓷种植牙 | |
Shuai et al. | Effect of nano‐zirconia on the mechanical and biological properties of calcium silicate scaffolds | |
Liu et al. | The effect of graded glass–zirconia structure on the bond between core and veneer in layered zirconia restorations | |
Zhang et al. | Endowing polyetheretherketone implants with osseointegration properties: in situ construction of patterned nanorod arrays | |
Tkachenko et al. | Strength and fracture mechanism of iron reinforced tricalcium phosphate cermet fabricated by spark plasma sintering | |
Myat-Htun et al. | Tailoring mechanical and in vitro biological properties of calcium‒silicate based bioceramic through iron doping in developing future material | |
Bellucci et al. | Bioactive glass/ZrO2 composites for orthopaedic applications | |
CN109825797B (zh) | 锆合金的处理方法及应用 | |
WO2005105166A1 (en) | A composite | |
Cattell et al. | The development and testing of glaze materials for application to the fit surface of dental ceramic restorations | |
Sasany et al. | Effect of different liner techniques and argon plasma treatment of zirconia base on the adhesion and color change of veneering ceramic | |
Zhou et al. | Investigation of the structure and mechanical properties of a novel dental graded glass/zirconia ceramic |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20171215 |
|
CF01 | Termination of patent right due to non-payment of annual fee |