CN105874158A - Modeling of interaction of hydraulic fractures in complex fracture networks - Google Patents

Modeling of interaction of hydraulic fractures in complex fracture networks Download PDF

Info

Publication number
CN105874158A
CN105874158A CN 201480072188 CN201480072188A CN105874158A CN 105874158 A CN105874158 A CN 105874158A CN 201480072188 CN201480072188 CN 201480072188 CN 201480072188 A CN201480072188 A CN 201480072188A CN 105874158 A CN105874158 A CN 105874158A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
fracture
stress
hydraulic
fractures
network
Prior art date
Application number
CN 201480072188
Other languages
Chinese (zh)
Inventor
X·翁
O·克雷斯
Original Assignee
普拉德研究及开发股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Abstract

Methods of performing a fracture operation at a wellsite with a fracture network are provided. The methods involve obtaining wellsite data and a mechanical earth model, and generating a hydraulic fracture growth pattern for the fracture network over time. The generating involves extending hydraulic fractures from a wellbore and into the fracture network of a subterranean formation to form a hydraulic fracture network, determining hydraulic fracture parameters after the extending, determining transport parameters for proppant passing through the hydraulic fracture network, and determining fracture dimensions of the hydraulic fractures from the hydraulic fracture parameters, the transport parameters and the mechanical earth model. The methods also involve performing stress shadowing on the hydraulic fractures to determine stress interference between fractures at different depths, and repeating the generating based on the determined stress interference. The methods may also involve determining crossing behavior.

Description

复杂裂缝网络中水力压裂裂缝的相互作用的建模 Hydraulic fracture modeling interaction complex fracture network

[0001] 相关申请的交叉引用 CROSS [0001] REFERENCE TO RELATED APPLICATIONS

[0002] 本申请要求于2013年11月6日提交的美国临时申请第61/900479号的优先权,其全部内容在此通过参引方式纳入本文。 [0002] This application claims priority to US provisional application No. 61/900479 on November 6, 2013 submission, the entire contents of which are incorporated herein by reference method. 本申请是于2012年11月2日提交的美国申请第11/ 356369号的部分继续申请,其全部内容由此通过参引方式纳入本文。 This application is on November 2, 2012 filed US Application No. part of 11 / 356,369 continuation application, hereby incorporated herein in its entirety by reference method.

技术领域 FIELD

[0003] 本公开总体涉及用于执行井场操作的方法和系统。 [0003] The present disclosure relates generally to methods and systems for performing wellsite operations. 更具体地,本公开针对的是用于执行压裂操作的方法和系统,例如勘测地下地层以及在地下地层中表征水力压裂网络。 More particularly, the present disclosure is directed to a method and system for performing a fracturing operation, e.g. surveying subterranean formation and characterization of hydraulic fracturing in subterranean formations network.

背景技术 Background technique

[0004] 为了便于从油井和气井中回收碳氢化合物,包围这些井的地下地层可被水力压裂。 [0004] In order to facilitate recovery of hydrocarbons from oil and gas wells, the subterranean formation surrounding the well may be hydraulic fracturing. 水力压裂可以用于在地下地层中产生裂缝以允许油或气朝向井移动。 Hydraulic fracturing may be used to generate fractures in subterranean formations to allow oil or gas wells move toward. 通过将特别设计的高压和高速流体(这里被称作"压裂流体"或"压裂浆体")通过一个或多个井眼引入地层而使地层被压裂。 It is fractured by a specially designed high pressure and high velocity (referred to herein as "fracturing fluid" or "frac slurry") introduced into the formation by the formation of one or more wellbores. 根据地层内部的固有应力,水力压裂裂缝可以从井眼开始沿两个相反的方向延伸出几百英尺。 The intrinsic stress formation inside, two hydraulic fractures can be hundreds of feet opposite direction away from their start from the wellbore direction. 在特定环境下,它们可以形成复杂的裂缝网络。 Under certain circumstances, they may form a complex fracture network. 复杂的裂缝网络可以包括诱发的水力压裂裂缝和天然裂缝,它们可以沿着多个方位角在多个平面和方向、以及多个区域中交叉或者不交叉。 Complex fracture network may include a hydraulic fracture induced and natural fractures which may intersect along a plurality of azimuthal directions and in multiple planes, and a plurality of regions or do not intersect.

[0005] 当前的水力压裂监控方法和系统可以绘制出裂缝发生的位置和裂缝的范围。 [0005] Current hydraulic fracture monitoring method and system may draw the position and scope of fracture cracks occur. 一些微地震监控的方法和系统可以通过使用模型化的到达时间和/或射线路径将地震到达时间和极化信息绘制到三维空间中而处理地震事件位置。 Some micro-seismic monitoring system and a method of processing seismic event location may be modeled by using the arrival time and / or seismic ray paths and polarization of the arrival time information drawing a three-dimensional space. 这些方法和系统可以用于推测水力压裂裂缝随着时间的扩展。 These methods and systems can be expanded with the hydraulic fracture time for the estimation.

[0006] 通过压裂增产所产生的水力压裂裂缝的模式可以是复杂的并且可以形成采用相关的微地震事件分布进行标记的裂缝网络。 [0006] Mode of hydraulic fracture stimulation produced by fracturing can be complicated and may be related to the formation of cracks network using micro-seismic events marked distribution. 复杂的水力压裂网络已经发展成可以表现产生的水力压裂裂缝。 Complex hydraulic fracture networks has developed into hydraulic fractures may exhibit produced. 在美国专利/申请Ν〇·6101447、Ν〇·7363162、Ν〇·7788074、 No ·20080133186、Ν〇· 20100138196 和No .20100250215 中公开了压裂模型的例子。 In the US patents / applications Ν〇-6101447, 7363162 · Ν〇, Ν〇 · 7788074, No · 20080133186, 20100138196 and Ν〇 · No .20100250215 disclosed examples fracture model.

发明内容 SUMMARY

[0007] 在至少一个方面,本公开涉及在井场执行压裂操作的方法。 [0007] In at least one aspect, the present disclosure relates to a method of fracturing operation performed at the wellsite. 井场位于地下地层附近,井眼贯穿地下地层,裂缝网络位于地下地层中。 Wellsite located in a subterranean formation, a wellbore penetrating a subterranean formation, the subterranean formation fracture networks located. 所述裂缝网络具有天然裂缝。 The fracture network having a natural fractures. 井场可通过将具有支撑剂的注入流体注入到裂缝网络中而被增产。 Wellsite by injecting a fluid having proppant is injected into the fracture network is yield. 所述方法包括:获得包括天然裂缝的天然裂缝参数的井场数据以及获得地下地层的地质力学模型;生成裂缝网络的随着时间变化的水力压裂裂缝生长模式。 The method comprising: obtaining a natural fracture parameters include natural fractures and the well site data obtained geomechanical model of the underground formation; generated hydraulic fractures of the fracture network growth patterns change with time. 所述生成包括:使水力压裂裂缝从井眼延伸并进入地下地层的裂缝网络中,以形成包括天然裂缝和水力压裂裂缝的水力压裂网络;在所述延伸之后确定水力压裂裂缝的水力压裂参数;确定支撑剂通过水力压裂网络的传输参数;以及从所确定的水力压裂参数、所确定的传输参数和地质力学模型确定水力压裂裂缝的裂缝尺寸。 The generating comprising: hydraulic fracture extending into the fracture network of the subterranean formation from the wellbore to form a natural fracture network and hydraulic fracturing comprises hydraulic fracture; determining, after the hydraulic fractures extending hydraulic fracture parameters; proppant is determined by the transmission parameter hydraulic fracture network; and from the hydraulic fracture parameters determined transmission parameters and geomechanical model the determined fracture dimensions determined hydraulic fractures. 所述方法还包括在水力压裂裂缝上执行应力投影,以确定不同深度处的水力压裂裂缝之间的应力干涉,在水力压裂裂缝上执行额外的应力投影,以确定不同深度处的水力压裂裂缝之间的应力干涉,并且基于所确定的应力干涉重复上述生成。 The method further includes performing a hydraulic fracture stress on the projection, to determine the stress interference between the hydraulic fractures at different depths, perform additional stress projected on the hydraulic fractures, to determine the water at different depths fracture stress interference between the fractures, and the stress based on the determined interference generation repeats the above. 该方法还可以包括分析所述水力压裂裂缝之间的应力干涉,以评估每个裂缝的高度生长。 The method may further comprise analyzing the stress interference between the hydraulic fractures, to evaluate each fracture height growth.

[0008] 所述执行应力投影可以包括执行第一应力投影以确定所述水力压裂裂缝之间的干涉,和/或执行第二应力投影以确定不同深度处的水力压裂裂缝之间的干涉。 [0008] The projection may include performing stress performing a first projection to determine a stress interference between the hydraulic fractures, and / or performing a second stress interference between the projection to determine the hydraulic fractures at different depths . 所述执行应力投影可以包括执行二维位移不连续法和/或执行三维位移不连续法。 The projections may comprise a stress performing two-dimensional displacement discontinuity method performed and / or performing three-dimensional displacement discontinuity method.

[0009] 如果水力压裂裂缝遇到天然裂缝,该方法还可包括基于所确定的应力干涉确定水力压裂裂缝和相遇的裂缝之间的交叉特性,并且该重复可以基于所确定的应力干涉和交叉特性重复该生成。 [0009] If the natural fracture encountered hydraulic fracture, the method further comprises determining based on the determined stress interference between the fractures intersecting characteristics and meet hydraulic fractures, and the stress can be repeated based on the determined interference and cROSS repeated generation characteristics. 该方法还可包括通过将具有支撑剂的注入流体注入到压裂网络中而使井场增产。 The method may further include injecting a proppant having fluid injected into the fracture network wellsite stimulation.

[0010] 该方法还可以包括,如果水力压裂裂缝遇到天然裂缝,则确定在遇到的天然裂缝处的交叉特性,并且所述重复包括基于所确定的应力干涉和所述交叉特性来重复所述生成。 [0010] The method may further comprise, if the hydraulic fracture encountered natural fractures intersect at a natural fracture characteristics encountered is determined, and the repeating comprises repeating the crossing and interference based on the stress characteristics determined said generating. 裂缝生长模式可以被交叉特性改变或不改变。 Crack growth mode may be or may not change characteristics of the cross. 水力压裂网络的压裂压力可以比作用在遇到的裂缝上的应力更大,并且裂缝生长模式可以沿着遇到的裂缝扩展。 Fracturing Hydraulic fracturing pressure may be greater than the network of the fracture stress encountered, and crack growth pattern may extend along the crack encountered. 裂缝生长模式可以沿着遇到的裂缝持续扩展直到到达天然裂缝的端部。 Crack growth pattern may continue to expand until it reaches the end of the natural fracture along the fracture face. 裂缝生长模式可以在天然裂缝的端部改变方向,并且裂缝生长模式可以在天然裂缝的端部处沿垂直于最小应力的方向延伸。 Crack growth mode changing portion may extend in the direction of the end, and crack growth mode can be perpendicular to minimum stress direction at the end of the natural fracture orientation of the natural fractures. 裂缝生长模式可根据应力投影垂直于局部主应力扩展。 Crack growth mode can be extended to a local stress principal stress The vertical projection.

[0011]应力投影可包括对每个水力压裂裂缝执行位移不连续法。 [0011] The projections may comprise a stress fracture performed for each hydraulic displacement discontinuity method. 应力投影可包括围绕井场的多个井眼执行应力投影并且使用在多个井眼上执行的应力投影重复该生成。 Stress projection projector may include performing a stress field around a plurality of wells and wellbores using a stress projection executing on the plurality of wellbores generate duplicate. 应力投影可包括在井眼中以多个增产级执行应力投影。 Stress projections may comprise a stress performing projection in a wellbore to increase the plurality of stages.

[0012] 该方法还可包括验证裂缝生长模式。 [0012] The method may further include verifying crack growth mode. 该验证可包括将裂缝生长模式与压裂网络的增产的至少一种模拟结果进行对比。 The verification may comprise at least one yield a result of crack growth simulation model are compared with the fracture network. 该方法还可包括基于所述应力投影调整所述增产(例如栗送速率和/或流体粘性)。 The method may further comprise adjusting the projection based on the yield stress (e.g. Li feed rate and / or fluid viscosity).

[0013] 该延伸可包括基于天然裂缝参数和地下地层上的最小应力和最大应力沿着裂缝生长模式延伸水力压裂裂缝。 [0013] The extending may include a minimum stress on the natural fracture the subterranean formation parameters and the maximum stress and extending the hydraulic fracture along the fracture mode based growth. 确定裂缝尺寸可包括评估地震测量、蚂蚁追踪、声波测量、地质测量及它们的组合中的一种。 Determining flaw size measurement may include one seismic assessment, ant tracking, sonic measurements, geological survey, and combinations thereof. 井场数据可包括地质学数据、岩石物理数据、地质力学数据、测井测量数据、完井数据、历史数据及它们的组合中的至少一种。 Wellsite data may include at least one geological data, petrophysical data, geomechanical data, log measurement data, well completion data, historical data, and combinations thereof. 天然裂缝参数可以通过观测井眼成像记录、从井眼测量估算裂缝尺寸、获得微地震图像及它们的组合中之一而生成。 Natural fracture parameters may be recorded by observing borehole imaging, fracture dimensions estimated from borehole measurements, generating one micro seismic image obtained and combinations thereof.

附图说明 BRIEF DESCRIPTION

[0014] 用于表征井眼应力的系统和方法的实施例参照后面的图进行描述。 [0014] Example systems and methods for characterizing stress eye of the well will be described with reference to the following figures. 在全部附图中相同的附图标记用于标记相同的特征和部件。 In the drawings the same reference numerals are used for the same features and components numerals.

[0015] 图1.1为描绘压裂操作的水力压裂现场的示意图; [0015] Figure 1.1 is a graph depicting the fracturing operation site schematic hydraulic fracturing;

[0016] 图1.2为在其上描绘有微地震事件的水力压裂现场的示意图; [0016] Figure 1.2 is a drawing in which the micro seismic event schematic hydraulic fracture site;

[0017] 图2为2D压裂的示意图; [0017] FIG. 2 is a schematic 2D fracturing;

[0018]图3.1和3.2为应力阴影效应的示意图; [0018] FIGS. 3.1 and 3.2 is a schematic of stress shadow effects;

[0019]图4为将两个平行的直裂缝的2D DDM和Flac3D进行比较的示意图; [0019] FIG. 4 is a schematic diagram comparing the two parallel linear cracks and 2D DDM Flac3D;

[0020]图5.1-5.3为描绘延伸的裂缝在各个位置的应力的2D DDM和Flac3D曲线图; [0020] FIG 5.1-5.3 depicting cracks extending in 2D DDM stress at various locations and Flac3D graph;

[0021] 图6.1-6.2为描绘两个初始平行的裂缝分别在各向同性和各向异性的应力场中的扩展路径的曲线图; [0021] FIG 6.1-6.2 depicting two parallel initial fracture propagation path of each graph in isotropic and anisotropic stress field;

[0022] 图7.1-7.2为描绘两个初始偏移的裂缝分别在各向同性和各向异性的应力场中的扩展路径的曲线图; [0022] FIG 7.1-7.2 depicting two cracks respectively, a graph of the initial offset in the propagation path of the isotropic and anisotropic stress field;

[0023] 图8为沿着水平井的横向平行裂缝的示意图; [0023] FIG. 8 is a schematic transverse fracture along parallel horizontal wells;

[0024] 图9为描绘五个平行裂缝的长度的曲线图; [0024] FIG. 9 is a graph depicting five parallel longitudinal cracks;

[0025] 图10为描绘图9的平行裂缝的UFM裂缝几何特征和宽度的示意图; [0025] FIG. 10 UFM geometric characteristics and fracture width is a schematic diagram depicting a parallel crack 9;

[0026] 图11.1-11.2为分别描绘高射孔摩擦情况和大裂缝间隔情况下裂缝几何特征的示意图; [0026] FIG 11.1-11.2 is a schematic diagram of a high fracture geometry features and large cracks perforating Friction spacer depicts the case;

[0027]图12为描绘微地震绘制的图; [0027] FIG. 12 is a graph depicting microseismic plotted;

[0028] 图13.1-13.4分别为与级1-4的微地震测量相比较的模拟压裂网络的示意图; [0028] FIG 13.1-13.4 are simulated fracture network and microseismic measurement stage 1-4 a schematic comparison;

[0029] 图14.1-14.4为描绘各个级分布的压裂网络的示意图; [0029] FIG 14.1-14.4 fracture network depicting various stages of a schematic distribution;

[0030]图15为描绘执行压裂操作的方法的流程图; Flowchart depicting a method of fracturing operation performed [0030] FIG 15;

[0031]图16.1-16.4为描绘在压裂操作过程中围绕井眼的压裂生长的示意图; [0031] FIG 16.1-16.4 schematic grown around the wellbore during fracturing in fracturing operation is depicted;

[0032] 图17为显示附加于矩形3D DDM单元的坐标系的示意图; [0032] FIG. 17 is a schematic 3D DDM attached to the rectangular coordinate system of the display unit;

[0033] 图18-20为显示在不同深度处的两个垂直裂缝以及由于应力投影而影响各个裂缝的尚度生长的不意图; [0033] FIG 18-20 show the two vertical fractures at different depths of the projection due to the stress and the impact of growth of each crack is still not intended;

[0034] 图21为描绘执行压裂操作的另一个方法的流程图。 [0034] FIG. 21 is a flowchart depicting another method of performing the fracturing operation.

具体实施方式 detailed description

[0035] 后面的描述包括体现了本发明主题的技术的示例性的设备、方法、技术以及指令序列。 [0035] The following description of the subject matter embodying the present invention, exemplary devices, methods, techniques and sequences of instructions. 然而,可以理解的是描述的实施例在没有这些具体的细节时也可以实施。 However, it will be understood that the embodiments described without these specific details may be practiced.

[0036] 已经开发出用于获悉地下裂缝网络的模型。 [0036] have been developed for the learned model subterranean fracture network. 该模型可考虑各种因素和/或数据,但是可以不必考虑栗送的流体量或裂缝与注入的流体之间以及裂缝之间的机械相互作用。 The model can consider a variety of factors and / or data, but may not necessarily consider the mechanical interaction between the fluid between the fracture and the amount of injected fluid or Li and sent cracks. 限定的模型可提供对涉及的机理的基本理解,但是在数学描述上可能是复杂的和/或需要计算机处理资源和时间以提供对水力压裂扩展的准确模拟。 Defining a model can provide a basic understanding of the mechanism involved, but may be described mathematically complex and / or accurate simulation of the hydraulic fracturing extended computer processing resources and time required to provide. 限定的模型可以配置成执行模拟以考虑随着时间变化并且在期望条件下的因素,例如裂缝之间的相互作用。 Defined may be configured to perform simulation model to account for factors that vary with time and under the desired conditions, for example, interactions between fracture.

[0037] -种非传统的压裂模型(UFM)(或者复杂模型)可以用于模拟具有预先存在的天然裂缝的地层中的复杂裂缝网络扩展。 [0037] - non-traditional types of fracture model (the UFM) (or complex models) can be used to simulate the formation of complex fracture networks have extended pre-existing natural fractures in. 多个裂缝分支可以同时扩展并且彼此交叉/交错。 A plurality of crack branching and cross each other at the same time can be extended / interlaced. 每个开放的裂缝可以对周围的岩石和相邻的裂缝施加额外的应力,这可以被称作"应力阴影"效应。 Each open fractures can impose additional stress on the rock around and adjacent cracks, which may be called "stress shadow" effect. 应力阴影可能引起对裂缝参数(例如,宽度)的限制,这例如可能导致很大的支撑剂脱砂的风险。 Shadows may cause stress fracture limit parameters (e.g., width) of, for example, which may lead to significant risk of proppant screenout. 该应力阴影还可能改变裂缝扩展路径并且影响裂缝网络模式。 The shadow may change the stress and crack propagation path affect the fracture network mode. 该应力阴影可影响复杂压裂模型中对裂缝之间相互作用的建模。 This stress can affect the modeling of complex shading fracturing model interaction between cracks.

[0038]提出了一种计算复杂水力压裂网络中应力阴影的方法。 [0038] The proposed method for calculating the complex network of hydraulic fracturing stress shadow. 该方法可以基于具有对有限的裂缝高度进行修正的增强的2D位移不连续法(2D DDM)或3D位移不连续法(3D DDM)执行。 The method may displacement discontinuity method or 3D (3D the DDM) is performed based on having limited fracture height correcting enhanced 2D displacement discontinuity method (2D DDM). 通过2D DDM计算出的应力场可以与3D数值模拟(3D DDM或者flac3D)进行比较,以确定3D裂缝问题的近似值。 2D DDM calculated by the stress field may be compared to 3D numerical simulation (or the DDM 3D flac3D), to determine an approximation of the 3D cracks. 这种应力阴影计算可以集成在UFM中。 This stress may be integrated in the shade calculating the UFM. 两个裂缝的简单情况的结果显示,裂缝例如根据它们的初始相对位置可以彼此吸引或排斥,并且可以与独立的2D非平面水力压裂模型进行比较。 The results of two simple case of fracture of the display, for example, cracks can attract the initial relative position thereof or repel each other, and may be compared to the non-independent 2D planar hydraulic fracture model. 还可以提供应力阴影,例如使用3D DDM,来考虑在不同深度的裂缝间的相互作用。 Stress can also provide shade, for example, 3D DDM, to consider the interaction between the different depths of the cracks.

[0039] 提供了从多射孔簇扩展的平面和复杂裂缝的附加例子,显示出裂缝相互作用可以控制裂缝的尺寸和扩展模式。 [0039] Providing an extended crack size and crack interaction can be controlled from the additional examples of multi-perforation clusters and extended complex fracture plane, showing. 在具有小的应力各向异性的地层中,由于裂缝可能趋于彼此排斥而使得裂缝相互作用可能导致裂缝发生巨大的背离。 Stress anisotropy in the formation of small, since cracks may tend to repel each other such that the interaction may result in occurrence of cracks cracks great divergence. 然而,即使当应力各向异性很大并且由于裂缝相互作用引起的裂缝转向受限时,应力阴影对裂缝宽度仍然可能具有影响, 这可能影响到分配进入多射孔簇的注入速率,以及由此影响整个裂缝网络几何特征和支撑剂放置。 However, even when large stress anisotropy due to cracks and fractures due to the interaction steering restricted, the shadow may still have to stress crack width impact, which may affect the dispensed into multiple perforation clusters injection rate, and thus affect the entire network fracture geometry and proppant placement features.

[0040] 图1.1和1.2描绘了井场100周围的裂缝扩展。 [0040] Figures 1.1 and 1.2 depict crack extension 100 around the wellsite. 井场具有从在地面位置的井口装置108延伸并且穿过位于其下的地下地层102的井眼104。 Wellsite having a wellbore 104 located at a subterranean formation 102 which extends from a surface location at the wellhead 108 and through. 裂缝网络106围绕井眼104延伸。 Fracture network 106 extends around the borehole 104. 栗系统129定位在井口装置108附近,用于使流体通过管道142。 Li system 129 is positioned in the vicinity of the wellhead 108, 142 for passing fluid through the conduit.

[0041] 栗系统129被描绘为通过用于记录维护和运行数据和/或根据规定的栗送安排执行操作的现场操作者127控制。 [0041] Li system 129 is depicted as a field for recording the operator through the operation and maintenance data and / or transmitting in accordance with a predetermined schedule Li 127 performs control operations. 栗系统129在压裂操作中将流体从地面栗送到井眼104。 Li in the fluid system 129 to the fracturing operation in Li wellbore 104 from the ground.

[0042] 栗系统129可包括水源,例如多个水罐131,其向凝胶水合单元133提供水。 [0042] Li system 129 may comprise water, for example, a plurality of tank 131, which provides water to the gel hydration unit 133. 凝胶水合单元133将来自罐131的水与凝胶剂混合形成凝胶。 Gel hydration unit 133 from the water tank 131 with the gelling agent mixture to form a gel. 凝胶接着被送入搅拌机135,在那里与来自支撑剂运送装置137的支撑剂混合,形成压裂流体。 The gel is then fed into the mixer 135, where the mixing with proppant from the proppant transport device 137, the fracturing fluid is formed. 凝胶剂可以用于提高压裂流体的粘性,并且使支撑剂可悬浮在压裂流体中。 Gels may be used to increase the viscosity of the fracturing fluid and proppant can be suspended in the fracturing fluid. 它还可以充当摩擦减小剂,使得在具有较小摩擦压力的情况下可具有较高的栗送速率。 It can also act as a friction reducing agent, such that Li can have a higher transmission rate in the case of having a small frictional pressure.

[0043]压裂流体接着从搅拌机135通过柱塞栗被栗送到处理车120,如实线143所示。 [0043] The fracturing fluid is then fed from the mixer 135 is processed Li Li truck 120 through the plunger, the solid line 143 shown in FIG. 每个处理车120接收低压压裂流体并且将其在高压下排放到共用集管139(有时被称作发射拖车或发射器),如虚线141所示。 Each vehicle 120 receives a low pressure process and the fracturing fluid under high pressure which is discharged to the common header 139 (sometimes referred to as emission trailer or transmitter), the dashed line 141 as shown. 发射器139接着将压裂流体从处理车120引导到井眼104中,如实线115所示。 The transmitter 139 then process the fracturing fluid from the wellbore 120 to the vehicle 104, the solid line 115 shown in FIG. 可以使用一个或多个处理车120来以期望速率供给压裂流体。 You may use one or more processing fracturing fluid is supplied to the vehicle 120 at a desired rate.

[0044] 每个处理车120通常可以以任意的速率运行,例如在其最大运行容量下很好地运行。 [0044] Each treatment cart 120 may generally be run at any rate, for example, perform well at its maximum operating capacity. 在运行容量以下运行所述处理车120可以允许其中一个失效并且其余的在较高的速度下运行以弥补失效栗的缺席。 In the operation of the operating capacity of the process may allow the vehicle 120 and the remaining one failure at higher speeds in order to compensate for the absence of failure Li. 可以采用计算机化的控制系统149在压裂操作过程中管理整个栗系统129。 The computerized control system may be used to manage the entire 149 Li system 129 during the fracturing operation.

[0045] 各种流体,例如传统的具有支撑剂的增产流体,都可以用于产生裂缝。 [0045] The various fluids, stimulation fluids, for example, conventional proppant, generation of cracks can be used. 其它流体, 例如粘性凝胶、"滑溜水"(slick water,其可以具有摩擦减少物(聚合物)和水)也可以用于水力压裂页岩气井。 Other fluids, for example a viscous gel, "slick water" (slick water, which may have a reduced friction (polymer), and water) may also be used for hydraulic fracturing shale gas wells. 这种"滑溜水"可以是稀薄流体形式(例如,接近于水的粘性)并且可以用于产生更复杂的裂缝,例如可通过监测探测到的多微震裂缝。 This "slick water" may be a thin fluid form (e.g., close to the viscosity of water) and can be used to produce more complex fractures, for example, by multiple fracture microseismic monitoring detected.

[0046] 还如图1.1和1.2所示,裂缝网络包括位于井眼104周围的各个位置上的裂缝。 [0046] Also shown in FIG. 1.1 and 1.2, crack fracture network comprises at various locations around the borehole 104. 这些裂缝可以是在流体注入之前具有的天然裂缝144,或者在注入过程中地层102周围产生的水力压裂裂缝146。 These fractures may have natural fractures before the injection fluid 144, or 146 generated by hydraulic fracture the surrounding formation 102 during injection. 图1.2示出基于使用传统方法聚集的微震活动148的裂缝网络106。 Figure 1.2 shows the use of a conventional method based aggregation network fracture microseismic events 148 106.

[0047] 多级增产可以是非传统储层开发的规范。 [0047] The multi-stage stimulation may be non-standardized conventional reservoir development. 然而,对页岩储层中的完井进行优化的障碍可能包括缺少能够正确地模拟在这些地层中经常能观察到的复杂裂缝扩展的水力压裂模型。 However, an obstacle to completion shale reservoir optimization may include missing can be accurately simulate complex fracture often observed in these formations in hydraulic fracturing model is extended. 已经开发出了复杂的压裂网络模型(或者UFM)(例如参见Weng,X.,Kre SSe,0.,Wu, R.和Gu,H.,Modeling of Hydraulic Fracture Propagation in a Naturally Fractured Formation. 2011年1月24-26日美国德克萨斯州伍德兰兹市的SPE水力压裂会议和展览上提供的论文SPE 140253(此后称作"Weng 2011");Kresse,0·,Cohen,C,Weng,X,Wu,R.,和Gu, Η· 2011 (此后称作"Kresse 2011")·Numerical Modeling of Hydraulic Fracturing in Naturally Fractured Formations.45th US Rock Mechanics/Geomechanics Symposium, San Francisco,CA,June 26-29,它们的全部内容由此被包含于此)。 We have developed a complex fracture network model (or the UFM) (see, e.g. Weng, X., Kre SSe, 0., Wu, R. and Gu, H., Modeling of Hydraulic Fracture Propagation in a Naturally Fractured Formation. 2011 paper SPE 140253 on January 24-26 available on Woodlands, Texas City, SPE hydraulic fracturing Conference and exhibition (hereinafter referred to as "Weng 2011"); Kresse, 0 ·, Cohen, C, weng, X, Wu, R., and Gu, Η · 2011 (hereinafter referred to as "Kresse 2011") · Numerical Modeling of Hydraulic Fracturing in Naturally Fractured Formations.45th US Rock Mechanics / Geomechanics Symposium, San Francisco, CA, June 26 -29, whereby the entire contents of which are incorporated herein).

[0048] 现有的模型可以用于模拟裂缝扩展、岩石变形以及流体在处理过程中产生的复杂裂缝网络中的流动。 [0048] The model can be used to simulate the existing crack propagation, rock deformation and flow of fluid creates a complex fracture network in the process of. 该模型还可以被用于解决在裂缝网络中流动的流体以及裂缝的弹性变形的完全耦合问题,其与传统的虚拟3D压裂模型可具有相似的假设和控制方程。 The model may also be used to address a fluid flowing in the fracture network and the problem of elastic deformation of the fully coupled cracks, with conventional fracturing virtual 3D models may have similar assumptions and equations. 栗送的流体和支撑剂的每种组分的迀移方程都可以被求解。 Gan Li feeding each component fluid and proppant shift equations can be solved.

[0049] 传统的平面压裂模型可以对裂缝网络的各个方面进行建模。 [0049] The conventional planar fracture model may model the various aspects of the fracture network. 提供的UFM还可以包括模拟水力压裂裂缝与预先存在的天然裂缝间的相互作用的能力,即确定当它们交叉并且随后沿着天然裂缝扩展时水力压裂裂缝扩展穿过天然裂缝还是被天然裂缝捕获。 UFM may further include providing an analog ability to interact between the hydraulic fracture naturally pre-existing fractures that intersect and then determine if they are the hydraulic fractures are extended through the natural fractures or natural fracture along the extended natural fractures capture. 水力压裂裂缝在与天然裂缝的交叉点上的离向可促进复杂裂缝网络的发展。 Hydraulic fractures at the intersection of natural fractures and to facilitate the development of in vitro complex fracture network.

[0050] 交叉模型可以从Renshaw和Po 1 lard (例如参见Renshaw,CE ·和Po 1 lard, DD1995,An Experimentally Verified Criterion for Propagation across Unbounded Frictional Interfaces in Brittle,Linear Elastic Materials · Int · J.Rock Mech.Min· Sci .&Geomech.Abst;r ·,32:237-249( 1995),其全部内容由此被包含于此)界面交叉标准延伸,应用于任意的交叉角度,并且可以被发展(例如参见Gu,H.和Weng,X.Criterion for Fractures Crossing Frictional Interfaces at Non-orthogonal Angles.44th US Rock symposium,Salt Lake City,Utah,June 27-30,2010 (此后被称作"Gu和Weng 2010"),其全部内容由此通过参引方式被包含于此)并且经过实验数据的查验(例如参见,Gu,H.,Weng,X.,Lund,J.,Mack,M.,Ganguly,U.和Suarez-Rivera R.2011.Hydraulic Fracture Crossing Natural Fracture at Non-〇rthogonal Angles, A Criterion,Its Validation and Applications.2011年1 月24-26日美国德克萨斯州伍德兰兹市的SPE [0050] Cross model from Renshaw and Po 1 lard (see, e.g. Renshaw, CE · and Po 1 lard, DD1995, An Experimentally Verified Criterion for Propagation across Unbounded Frictional Interfaces in Brittle, Linear Elastic Materials · Int · J.Rock Mech. min · Sci & Geomech.Abst; r ·, 32:. 237-249 (1995), the entire contents of which are incorporated herein) extending across the interface standard, applied to an arbitrary intersection angle, and may be developed (see, e.g. Gu , H. and Weng, X.Criterion for Fractures Crossing Frictional Interfaces at Non-orthogonal Angles.44th US Rock symposium, Salt Lake City, Utah, June 27-30,2010 (hereafter referred to as "Gu and Weng 2010"), comprising the entire contents of which are incorporated by way of reference thereto) through the inspection and the experimental data (see, e.g., Gu, H., Weng, X., Lund, J., Mack, M., Ganguly, U. and Suarez -Rivera R.2011.Hydraulic Fracture Crossing Natural Fracture at Non-〇rthogonal Angles, a Criterion, Its Validation and Applications. 2011 Nian 24-26 January Woodlands, Texas City, SPE 力压裂会议和展览上提供的论文SPE 139984(此后被称作"Gu et al. 201Γ ),其全部内容由此通过参引方式被包含于此),而且整合在UFM中。 Fracturing conference paper SPE 139984 and provided on display (hereinafter referred to as "Gu et al. 201Γ), the entire contents of which are incorporated by reference embodiment), and integrated in the UFM.

[0051]为了正确地模拟多条或复杂的裂缝的扩展,压裂模型可以考虑相邻的水力压裂裂缝分支之间的相互作用,其通常被称作"应力阴影"效应。 [0051] In order to correctly simulate extended or a plurality of complex fracture, fracture model may consider the interaction between the adjacent branches of the hydraulic fracture, which is generally referred to as "stress shadow" effect. 当单个平面水力压裂裂缝在有限的流体净压力下被打开时,其可以在周围岩石上施加与净压力成比例的应力场。 When a single plane hydraulic fractures is opened in a limited net pressure fluid, which can be applied with a pressure proportional to the net stress field in the surrounding rock.

[0052]在具有恒定有限高度的无限长垂直裂缝的极限情况中,可以提供由开放的裂缝所施加的应力场的解析表达式。 [0052] In the limit of infinite vertical fracture in the case of a constant finite height, the analytical expression of the stress field may be provided by the open fractures imposed. 例如参见Warpinski,NF·和Teufel,LW,Influence of Geologic Discontinuities on Hydraulic Fracture Propagation,JPT,Feb.,209-220 (1987)(此后称为"Warp inski 和Teufel")以及Warp inski,N · R ·,和Branagan,P · T ·, Altered-Stress Fracturing. SPE JPT,September,1989,990-997( 1989),其全部内容由此通过参引方式被包含于此。 See, e.g. Warpinski, NF · and Teufel, LW, Influence of Geologic Discontinuities on Hydraulic Fracture Propagation, JPT, Feb., 209-220 (1987) (hereinafter referred to as "Warp inski and Teufel") and Warp inski, N · R · , and Branagan, P · T ·, Altered-Stress Fracturing. SPE JPT, September, 1989,990-997 (1989), contains the entire contents of which are incorporated by way of reference thereto. 净压力(或者更准确地为产生指定裂缝开口度的压力)可以在垂直于裂缝的方向上在最小的局部应力上方施加压应力,其在压裂面上等于净压力,但是随着与裂缝的距离的增大而快速减少。 Net pressure (or more precisely to the specified degree of opening of the pressure generating cracks) can be applied in the direction perpendicular to the local stress fractures above the minimum compressive stress, which is equal to the net pressure in the fracture surface, but with cracks and increasing the distance and rapid decrease.

[0053]在超过一个裂缝高度的距离处,诱导应力可能只是净压力的一小部分。 [0053] In more than one fracture height distance, the net pressure induced stresses may only be a small part. 因此,术语"应力阴影"可以用于描述围绕裂缝的区域中应力的增加。 Thus, the term "stress shadow" can be used to increase the stress in the description of the area surrounding the fracture. 如果第二水力压裂裂缝被产生为平行于已有的开放裂缝,并且如果第二水力压裂裂缝落在"应力阴影"内(即与已有裂缝的距离小于裂缝高度),则第二裂缝实际上可能经受大于初始原处应力的闭合应力。 If the second hydraulic fracture open existing fractures generated parallel to, and if the second hydraulic fracture fall "stress shadow" of the inner (i.e., less than the distance existing fracture fracture height), the second fracture in fact, it may be subjected to a stress greater than the initial stress of the closed place. 因此,可能需要更高的压力来扩展裂缝,和/或裂缝与相应的单个裂缝相比具有更窄的宽度。 Thus, higher pressures may be needed to extend the cracks and / or fracture and a width narrower compared to the respective single crack.

[0054] 应力阴影研究的一个应用可以涉及设计及优化从水平井眼开始同时扩展的多个裂缝之间的裂缝间隔。 [0054] Application of a stress fracture shadow may involve multiple fractures spacing between design and optimization starts from the horizontal wellbore while expanding. 在极低渗透的页岩地层中,裂缝可以密集间隔分布用于储层的有效泄油。 In low permeability shale formations, the fractures may closely spaced distribution for effective drainage reservoir. 然而,应力阴影效应可防止裂缝在其它裂缝的近邻中扩展(例如参见Fisher,MK, JRHeinze,CDHarris,BMDavidson,CAWright和KPDunn,0ptimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping. 2004年9月26-29日在休斯顿SPE技术年会和展览上提供的SPE90051,其全部内容由此通过参引方式被整体地包含于此)。 However, stress may prevent crack propagation shadow effects in the other neighborhood of the fracture (e.g. see Fisher, MK, JRHeinze, CDHarris, BMDavidson, CAWright and KPDunn, 0ptimizing horizontal completion techniques in the Barnett Shale using microseismic fracture mapping. September 26, 2004 - provide in Houston SPE annual technical Conference and exhibition on the 29th SPE90051, in its entirety by reference manner is thus entirely incorporated herein).

[0055] 过去已经对平行的裂缝之间的干扰进行了研究(例如参见Warpinskiand Teufel; Britt,LK和Smith,MB,Horizontal Well Completion,Stimulation Optimization, and Risk Mitigation. 2009年9月23-25日查尔斯顿市SPE东区会议提供的论文SPE 125526;Cheng,Y.2009.Boundary Element Analysis of the Stress Distribution around Multiple Fractures: Implications for the Spacing of Perforation Clusters of Hydraulically Fractured Horizontal Wells.2009年9月23-25日查尔斯顿市SPE东区会议提供的论文SPE 125769;Meyer,BR和Bazan,LW,A Discrete Fracture Network Model for Hydraulically Induced Fractures:Theory,Parametric and Case Studies. 2011年1月24-26日美国德克萨斯州伍德兰兹市的SPE水力压裂会议和展览上提供的论文SPE140514; Roussel,Ν· P ·和Sharma,Μ·Μ,Optimizing Fracture Spacing and Sequencing in Horizontal-Well Fracturing,SPEPE,May,2011,pp. 173-184,其全部内容由此通过参引方式被包含于此 [0055] in the past has been the interference between the parallel cracks were studied (see, for example Warpinskiand Teufel;. Britt, LK and Smith, MB, Horizontal Well Completion, Stimulation Optimization, and Risk Mitigation 2009 Nian 23-25 ​​September Charles Dayton SPE provide the Eastern Conference papers SPE 125526; Cheng, Y.2009.Boundary Element Analysis of the Stress Distribution around Multiple Fractures:. Implications for the Spacing of perforation Clusters of Hydraulically Fractured Horizontal Wells 2009 Nian 23-25 ​​September Charles Dayton SPE provide the Eastern Conference papers SPE 125769; Meyer, BR and Bazan, LW, a Discrete Fracture Network Model for Hydraulically Induced Fractures:. Theory, Parametric and Case Studies 2011 Nian 24-26 January in Texas Woodlands City of SPE hydraulic fracturing Conference and exhibition available on paper SPE140514; Roussel, Ν · ​​P · and Sharma, Μ · Μ, Optimizing fracture Spacing and Sequencing in Horizontal-Well fracturing, SPEPE, May, 2011, pp. 173-184, the entire contents of which is incorporated by reference in a manner whereby to be embraced therein . 这些研究可以包括静态条件下的平行裂缝。 These studies may include parallel fractures under static conditions.

[0056] 应力阴影的一种效应可以是在多个平行裂缝的中间区域中的裂缝可以具有更小的宽度,这是由于来自邻近裂缝的增强的压应力(例如参见Germanovich,LN,和Astakhov D.,Fracture Closure in Extension and Mechanical Interaction of Parallel Joints·J.Geophys·Res·,109,B02208,doi:10·1029/2002JB002131(2004);01son,J·Ε·, Multi-Fracture Propagation Modeling:Applications to Hydraulic Fracturing in Shales and Tight Sands.42nd US Rock Mechanics Symposium and2nd US-Canada Rock Mechanics Symposium,San Francisco,CA,June 29-July 2,2008,其全部内容通过参引方式被包含于此)。 An effect [0056] fracture stress shadow may be a plurality of parallel fractures in the intermediate region may have a smaller width, which is enhanced due to the compressive stress from the adjacent fracture (see, e.g. Germanovich, LN, and Astakhov D ., Fracture Closure in Extension and Mechanical Interaction of Parallel Joints · J.Geophys · Res ·, 109, B02208, doi: 10 · 1029 / 2002JB002131 (2004); 01son, J · Ε ·, Multi-Fracture Propagation Modeling: Applications to Hydraulic Fracturing in Shales and Tight Sands.42nd US Rock Mechanics Symposium and2nd US-Canada Rock Mechanics Symposium, San Francisco, CA, June 29-July 2,2008, in its entirety by reference are incorporated herein way). 当多个裂缝同时扩展时,进入裂缝的流率分配可能是动态过程并且可能受到裂缝的净压力的影响。 When multiple fractures while expanding, the flow rate into the cracks may be assigned a dynamic process and may be influenced by the net pressure of the fracture. 净压力可以高度依赖于裂缝的宽度,并且由此,应力阴影效应对流率分布和裂缝尺寸的影响需要进一步的研究。 The net pressure may be highly dependent on the width of cracks, and thus, the stress distribution and the shadow effect of convective impact fracture size requires further study.

[0057]同时扩展的多个裂缝的动力学特性也可能依赖于初始裂缝的相对位置。 [0057] Also more fractures extended dynamics may also be dependent on the relative position of the initial crack. 如果裂缝是平行的,例如在多个裂缝与水平井眼垂直的情况中,裂缝可彼此排斥,导致裂缝向外弯曲。 If cracks are parallel, for example in the case of a plurality of horizontal wellbore and fractures the vertical crack can repel each other, resulting in cracks bent outward. 然而,如果多个裂缝以雁列的样式分布时,例如对于从不垂直于裂缝平面的水平井眼起始的裂缝,相邻裂缝之间的相互作用可使得它们的端部彼此吸引并且甚至连接(例如参见Olson,JEFracture Mechanics Analysis of Joints and Veins.PhD dissertation, Stanford University,San Francisco,California(1990);Yew,CH,Mear,ME,Chang, CC,和Zhang,XC0n Perforating and Fracturing of Deviated Cased Wellbores.1993 年10月3-6日德克萨斯州休斯顿第68届SPE技术年会和展览上提供的论文SPE 26514;Weng, X.,Fracture Initiation and Propagation from Deviated Wellbores·1993年10月3-6 日德克萨斯州休斯顿第68届SPE技术年会和展览上提供的论文SPE 26597,其全部内容由此通过参引方式被包含于此)。 However, if a plurality of slits to form echelon distribution, for example, horizontal wellbore fracture initiation is never perpendicular to the fracture plane, the interaction between adjacent cracks may be such that their ends are attracted to each other and connected to even (see, e.g. Olson, JEFracture Mechanics Analysis of Joints and Veins.PhD dissertation, Stanford University, San Francisco, California (1990); Yew, CH, Mear, ME, Chang, CC, and Zhang, XC0n Perforating and Fracturing of Deviated cased Wellbores .1993 3-6 October papers available on the Houston, Texas, the 68th SPE annual technical Conference and exhibition SPE 26514; Weng, X., Fracture Initiation and Propagation from Deviated Wellbores · October 1993 3- 6 provided on the Houston, Texas, the 68th SPE annual technical Conference and exhibition paper SPE 26597, the entire contents of which are incorporated herein by reference mode).

[0058]当水力压裂裂缝与朝向不同方向的次生裂缝相交叉时,其可在次生裂缝上施加与净压力成比例的附加闭合应力。 [0058] When the hydraulic fracture and secondary fracture intersecting different directions, which may be applied with a pressure proportional to the net additional closure stress on the secondary fracture. 该应力可以被得到并且被考虑到在对开裂地层的压力依赖漏失进行分析的裂缝开启压力的计算中(例如参见Nolte,K.,Fracturing Pressure Analysis for nonideal behavior.JPT,Feb. 1991,210-218(SPE 20704) (1991)(此后被称作"Noltel991"),其全部内容由此通过参引方式被包含于此)。 The stresses can be obtained and is calculated taking into account the opening pressure in the pressure-dependent leakage of crack formation fracture analysis (see, e.g. Nolte, K., Fracturing Pressure Analysis for nonideal behavior.JPT, Feb. 1991,210-218 (SPE 20704) (1991) (hereinafter referred to as "Noltel991"), the entire contents of which are incorporated by reference embodiment).

[0059]对于更加复杂的裂缝,可以存在上面讨论的各种裂缝的相互作用的组合。 [0059] For more complex fractures, there may be a combination of various interaction cracks discussed above. 为了正确地说明这些相互作用并且保持计算效率使其能够结合到复杂裂缝网络模型中,可以构建合适的建模框架。 In order to properly illustrate the efficiency of these interactions is calculated and it remains capable of binding to a complex fracture network model can be constructed suitable modeling framework. 基于增强的2D位移不连续法(2D DDM)的方法可以用于计算在指定裂缝上以及在其余的复杂裂缝网络的岩石中的诱发应力(例如参见018〇11,1^.,?^(1;[(31:;[1^ Fracture Swarms-The Influence of Sub critical Crack Growth and the Crack-Tip Process Zone on Joints Spacing in Rock. In The Initiation,Propagation and Arrest of Joints and Other Fractures,ed.JWCosgrove和T.Engelder,Geological Soc · Special Publications,London,231,73-87(2004)(此后被称作"01son2004"),其全部内容由此通过参引方式被包含于此)。裂缝转向还可以基于由于应力阴影效应而在扩展的裂缝端部之前的改变的局部应力方向建立模型。给出了来自结合有裂缝相互作用建模的UFM模型的模拟结果。 The method of discontinuous processes (2D the DDM) based enhanced 2D displacement may be used to calculate the stresses induced on the specified crack in the rock, and the rest of the complex fracture networks (see, e.g. 018〇11,1 ^., ^? (1 ; [(31:;. [1 ^ Fracture Swarms-The Influence of Sub critical Crack Growth and the Crack-Tip Process Zone on Joints Spacing in Rock in The Initiation, Propagation and Arrest of Joints and Other Fractures, ed.JWCosgrove and T .Engelder, Geological Soc · Special Publications, London, 231,73-87 (2004) (hereinafter referred to as "01son2004"), the entire contents of which are incorporated by reference embodiment). Since the fracture may also be based steering stress model shadow effect in changing the direction of local stress fractures before the end of the extension. the results from the simulation are given in combination with the model UFM modeling of the interactions of cracks.

[0060] UFM模型描述 [0060] UFM model description

[0061] 为了模拟由多个相互交叉的裂缝组成的复杂裂缝网络的扩展,可以使用控制压裂过程的基础物理过程的方程。 [0061] In order to simulate a complex fracture network extended by a plurality of intersecting fractures composition, can control physical process equation based fracturing process used. 基本控制方程例如可以包括,控制裂缝网络中的流体流动的方程、控制裂缝变形的方程、以及裂缝扩展/相互作用标准。 The basic equations may include, e.g., fluid flow equations in the fracture network, equations fracture deformation, and crack propagation / interaction criteria.

[0062] 连续方程假定流体流动沿着裂缝网络扩展,具有以下质量守恒: [0062] The equation assumes a continuous flow of fluid along the fracture network expansion, having the following conservation of mass:

Figure CN105874158AD00111

[0063] ⑴ [0063] ⑴

[0064] 其中,q为水力压裂裂缝内沿着长度的局部流率,W为裂缝在位置S = s(X,y)处的横截面的平均宽度或开口度,Hn为裂缝中流体的高度,qL为穿过水力压裂裂缝壁进入基质的每单位高度的漏失体积率(压裂流体渗透进入周围的可渗透介质的速度),其通过Carter 漏失模型进行表达。 [0064] wherein, q is the hydraulic fracture length along the local flow rate, W is S = average fracture width at the position of the opening or the cross section of s (X, y) at, Hn of the fracture fluid height, qL to pass through the wall of the hydraulic fractures into the matrix per unit volume of the height of the dropout rate (permeation rate of the fracturing fluid into the surrounding permeable medium), which is expressed by Carter loss model. 裂缝端部作为尖端扩展,并且水力压裂裂缝在任意给定时刻t的长度被定义为l(t)。 As the crack tip end portion extended, and the hydraulic fracture at any given time t is defined as the length l (t).

[0065] 驱动流体的特性可以由幂律指数η'(流体流性指数)和稠度指数K'限定。 Driving fluid properties [0065] may be a power law index η '(fluid flow index) and the consistency index K' is defined. 流体流动可以是层流、湍流或者透过支撑剂填充区的达西流,并且相应地可以采用不同的定律描述。 Fluid flow may be laminar or turbulent flow through a proppant filled zone Darcy, and accordingly may use different law describes. 对于任意给定裂缝分支中的幂律流体的1D层流这种普遍的情况而言,可以使用泊肃叶定律(例如参见Nolte,l"l) : For any given law fluid flow layer in terms of 1D branch fracture power of this general case, it can be used to Poiseuille Law (for example, see Nolte, l "l):

Figure CN105874158AD00112

[0066] [0066]

[0067] 其中(2) [0067] wherein (2)

[0068] [0068]

[0069] 这里,w(z)表示裂缝宽度,其为当前位置s的深度的函数,α为系数,η'为幂律指数(流体稠度指数),Φ为形函数,dz为公式中沿裂缝高度的积分增量。 [0069] Here, w (z) denotes the crack width, which is a factor of the current position s a function of depth, α, η 'is the power law index (fluid consistency index), [Phi] is the shape function, dz of the formula along the crack the height of the integral gain.

[0070] 裂缝宽度可以通过弹性方程与流体压力关联。 [0070] fracture width may be associated with fluid pressure through the elastic equation. 岩石的弹性(其可以被认为是均质、 各向同性、线性的弹性材料)可以通过杨氏模量E和泊松比v限定。 Elastic rock (which may be considered homogeneous, isotropic, linearly elastic material) may be defined by v ratio of Young's modulus E and Poisson. 对于位于具有可变的最小水平应力〇11(1,7,2)和流体压力p的层状介质中的垂直裂缝来说,宽度特性(w)可以通过给出的解析解法确定: For located in a variable minimum horizontal stress 〇11 (1,7,2) and layered fluid medium pressure p in the vertical fracture, the width characteristics (w) may be determined by analysis Analytical Method:

[0071] w(x,y,z)=w(p(x,y) ,Η,ζ) (4) [0071] w (x, y, z) = w (p (x, y), Η, ζ) (4)

[0072 ]其中,W是在具有空间坐标χ、y、ζ (裂缝单元的中心的坐标)的点处的裂缝宽度;ρ (X,y)为流体压力,Η为裂缝单元高度,ζ为沿着裂缝单元在点(X,y)处的垂直坐标。 [0072] where, W is the fracture width having spatial coordinates χ, at y, ζ (coordinate fracture cell center) point; ρ (X, y) is the fluid pressure, Η to fracture cell height, ζ along the vertical coordinate at the fracture point unit (X, y).

[0073]由于裂缝的高度可以变化,控制方程组还可以包括例如在KreSSe2011中描述的高度增长计算。 [0073] for example, calculate the height of the growth due to KreSSe2011 described in fracture height can be varied, the control may also include equations.

[0074] 除了上面描述的方程,整体体积平衡条件也可以得到满足: [0074] In addition to the above-described equation, the overall volume of the equilibrium conditions can be satisfied:

Figure CN105874158AD00121

[0075] (5) [0075] (5)

[0076] 其中,gL为流体漏失速度,Q( t)为与时间相关的注入速率,H( s,t)为裂缝在空间点s(x,y)处并且在时间t的高度,ds为沿着裂缝长度用于积分的长度增量,dt为时间增量,din 为漏失高度的增量,扯为漏失高度,so为初滤失系数。 [0076] wherein, gL is the fluid loss rate, Q (t) is the time-dependent injection rate, H (s, t) is a crack in the spatial point s (x, y) at and height at time t, ds is incremental length for integrating along the fracture length, dt is the time increment, din height increment of leakage, loss of height pull, SO is the initial filtration coefficient. 方程(5)表示在时间t之内栗送的流体的总体积等于裂缝网络中的流体体积和直到时间t从裂缝渗漏的体积。 Equation (5) represents the time t of the total volume of fluid sent Li is equal to the volume of fluid in the fracture network and the time t until the volume of leakage from the cracks. 这里的L(t)表示HFN 在时间t的总长度并且So为初滤失系数。 Where L (t) represents the total length of the HFN at the time t and So is the initial filtration coefficient. 边界条件可能需要流率、净压力以及裂缝宽度在所有裂缝端部处为零。 Boundary conditions may be required flow rate, and the net pressure in the fracture width is zero at the end of all cracks.

[0077] 方程组1-5与初始和边界条件一起可以用于表述一组控制方程。 [0077] Equations 1-5 with initial and boundary conditions can be used together express a set of control equations. 将这些方程组合并且将裂缝网络离散成小单元就可以形成每个单元的流体压力P的非线性方程组,简化为f (P)=〇,其可以使用阻尼牛顿-拉夫逊方法进行解析。 The combination of these equations and the fracture network into small discrete units of nonlinear equations and form the fluid pressure P of each unit, reduces to f (P) = square, which may be used damped Newton - Raphson method parsing.

[0078] 在对水力压裂在天然开裂的储层中的扩展进行建模时可以考虑裂缝的相互作用。 [0078] In hydraulic fracturing when expanded natural cracking reservoir modeling the interaction of cracks can be considered. 这例如包括,水力压裂裂缝和天然裂缝之间的相互作用,还有水力压裂裂缝之间的相互作用。 This includes, for example, the interaction between the hydraulic fractures and natural fractures, as well as the interaction between the hydraulic fractures. 对于水力压裂裂缝和天然裂缝之间的相互作用,可以在UFM中执行半解析交叉准则,例如使用在Gu和Weng2010以及Gu et al.2011中描述的方法。 For the interaction between the hydraulic fractures and natural fractures may be performed in a semi-analytical cross UFM criteria, for example, and in Gu Gu et al.2011 Weng2010 and methods described herein.

[0079]对应力阴影的建模 [0079] The modeling of the stress shadow

[0080]对于平行裂缝,应力阴影可以通过相邻裂缝的应力叠加来表示。 [0080] For parallel fractures, stress can be represented by shading the fracture stress adjacent superimposed. 图2为2D裂缝200 关于具有X-轴和y-轴的坐标系的示意图。 Figure 2 is a schematic view 200 on a coordinate system having the X- and y- axis 2D fracture. 沿着2D裂缝的各个点,例如位于h/2处的第一端、 位于-h/2处的第二端以及中间点被延伸到观察点(x,y)。 2D at various points along the fracture, for example, located h / 2 at the first end, second end and an intermediate point located at -h / 2 is extended to the observation point (x, y). 每条线L从沿着2D裂缝的各个点以角度伸到观察点。 Each line L from various points along the fracture out into the 2D viewpoint angle.

[0081 ]具有内部压力P的2D裂缝周围的应力场例如可以使用在Warpinski和Teufel中描述的技术来计算。 2D fracture stress field around the [0081] having an internal pressure P may be used, for example, the techniques described in Warpinski and Teufel to calculate. 影响裂缝宽度的应力为σχ,并且可以通过下面的公式计算得出: Influence of stress crack width is σχ, and may be calculated by the following formula:

Figure CN105874158AD00131

[0087] 其中,σχ为χ方向上的应力,p为内部压力,灯丄山,!^为图2中的通过裂缝一半高度h/2规范化的坐标和距离。 [0087] wherein, σχ the stress in the direction χ, p is the internal pressure, lamp Shang Hill,! ^ As in FIG. 2 through the fracture half-height h / 2 of standardized coordinates and distances. 由于〇x在y方向以及X方向上都变化,因此在裂缝高度上的平均应力可以用在应力阴影的计算中。 Since all changes in the X-direction and the y-direction 〇x, the average stress on the fracture height may be used in the calculation of the stress in the shadow.

[0088] 上面给出的解析方程可以用于计算其中一条裂缝作用在相邻的平行裂缝上的平均有效应力并且可以被包括在作用在该裂缝上的有效闭合应力中。 [0088] The analytical equation given above can be used to calculate an average effective stress acting on a crack adjacent and parallel fractures may be included in the effective stress acting on the closure of the fracture.

[0089] 对于更复杂的裂缝网络,裂缝可能朝向不同的方向并且彼此相互交叉。 [0089] For more complex fracture networks, cracks may be oriented in different directions and intersect each other. 图3示出描绘应力阴影效应的复杂裂缝网络300。 Figure 3 shows a complex fracture network 300 depicts stress shadow effects. 该裂缝网络300包括从井眼304延伸并且与裂缝网络300中的其它裂缝305交叉的水力压裂裂缝303。 The fracture network 300 comprises a wellbore 304 extending from the fracture and the fracture network 300 with other hydraulic fracturing in the intersecting fracture 305 303.

[0090] -种更加通用的方法可以被用于计算裂缝网络的其余部分中的任意指定的裂缝分支上的有效应力。 [0090] - a more general kind of methods may be used to effectively fracture stress any given branch of the rest of the calculation of the fracture network. 在UFM中,裂缝之间的机械相互作用可以基于增强的2D位移不连续法(DDM)进行建模(Olson 2004),用于计算诱导应力(例如参见图3)。 In UFM, the mechanical interaction between the fracture can be modeled (Olson 2004) based on the enhanced 2D displacement discontinuity method (the DDM), used to calculate the induced stress (e.g., see FIG. 3).

[0091] 在2D中,平面应变、位移不连续方法(例如参见Crouch,SL和Starfield,AM, Boundary Element Methods in Solid Mechanics,George A11en&Unwin Ltd, London·Fisher,Μ·Κ· (1983)(此后被称作Crouch和Starfield 1983),其全部内容由此通过参引方式被包含于此),可以被用于描述作用在一个裂缝单元上的由所有裂缝单元的张开和剪切位移不连续(D#PD S)诱发的法向应力和剪切应力(〇"和〇8)。为了说明由于有限裂缝高度而产生的3D效应,可以使用Olson 2004来与如下的2D DDM的修正弹性方程相结合地为影响系数CU提供3D修正因子: [0091] In 2D, the plane strain, displacement discontinuity method (e.g. see Crouch, SL and Starfield, AM, Boundary Element Methods in Solid Mechanics, George A11en & Unwin Ltd, London · Fisher, Μ · Κ · (1983) (hereinafter referred to Crouch and Starfield 1983), the entire contents of which are incorporated by reference embodiment), it may be used to describe the effect of opening all cracks and shear displacement means in a discontinuous crack unit (D #PD S) induced normal stress and shear stress (square "and 〇8). to illustrate the 3D effect due to the limited height of the fracture generated, Olson 2004 to be used in combination with the resilient correction equation below ground 2D DDM to influence coefficient CU provides 3D correction factor:

Figure CN105874158AD00132

[0092] [0092]

[0093] [0093]

[0094] 其中,A为在方程(9)中描述的影响系数的矩阵,N为考虑了其相互作用的网络中的单元总数,i为所考虑的单元,j = 1,N为网络中的其它单元,它们对于单元i上的应力的影响也被计算;其中<^为20、平面应变弹性影响系数。 [0094] wherein, A is an influence coefficient matrix described in Equation (9), N is the total number of cells considering the network which interact in, i is the considered unit, j = 1, N for the network other units, their effect on the stress of the cell i is also calculated; wherein <^ 20, plane strain elastic influence coefficients. 这些表达式可以在Crouch和Starfield 1983中找到。 These expressions can be found in Crouch and Starfield 1983.

[0095]图3.1的Elem i和j示意性地描绘了方程(8)中的变量i和j。 Elem i [0095] FIGS. 3.1 and j is schematically depicted in equation (8) variables i and j. 应用于Elem j的不连续08和0"也在图3.1中进行描绘。Dn^以和裂缝宽度一样大,并且剪切应力〇8如图所示可以是(LElem j的位移不连续在Elem i上产生应力,如〇"和(^所描绘的。 Applies a discontinuous Elem j 0 and 08 "are also depicted in Figure 3.1 to .Dn ^ and fracture width as large, and the shear stress may be as shown in FIG 〇8 (LElem j displacement discontinuity Elem i the stress, such as square, "and (^ depicted.

[0096] Olson 2004所给出的3D修正因子可以表述如下: _ [0096] Olson 2004 given 3D correction factor can be expressed as follows: _

Figure CN105874158AD00141

(9) (9)

[0098]其中,h为裂缝高度,du为单元i和j之间的距离,α和β为拟合参数。 [0098] where, h is the height of the fracture, du between the distance units i and j, α and β are fitting parameters. 方程9示出3D修正因子可能导致当任意两个裂缝单元之间的距离增加时,彼此之间的相互作用发生衰减。 When Equation 9 shows a 3D correction factor may result when the distance between any two cracks unit increases, the interaction between them is attenuated. [0099]在UFM模型中,在每个时间步长,可以计算出由于应力阴影效应所引起的附加诱导应力。 [0099] In the model UFM, in each time step, we can calculate the additional stress due to the stress induced due to the shadow effect. 可以假设在任意时间,裂缝宽度等于法向位移不连续量(D n)并且在裂缝表面处的剪切应力为零,即Dn^WjAbO。 Can be assumed at any time, the fracture width is equal to the normal amount of displacement discontinuity (D n) and zero shear stress at the fracture surface, i.e., Dn ^ WjAbO. 将这两个条件代入方程8,可以得出剪切位移不连续量(D s) 和在每个裂缝单元上诱导的法向应力(ση)。 These two conditions into equation 8, can draw an amount of shear displacement discontinuity (D s) and induced at each fracture cell stress (ση) method.

[0100]应力阴影诱导的应力对裂缝网络扩展模式的影响可分两层来描述。 [0100] Effects of stress on the stress-induced fracture shadow network extension can be divided into two modes will be described. 首先,在压力和宽度迭代过程中,每个裂缝单元上的初始原处应力可以通过增加由于应力阴影效应而产生的附加法向应力而被修改。 First, the pressure and width of the iterative process, the initial situ stress cracks on each cell may be modified by adding additional stress method due to the stress generated by the shadow effect. 这可能直接影响裂缝压力和宽度分布,从而可导致裂缝生长发生改变。 This may directly affect stress and fracture width distribution, which can lead to a change in crack growth. 其次,通过包含应力阴影诱导的应力(法向应力和剪切应力),位于扩展端部前方的局部应力场也可以被改变,这可能使得局部主应力方向从初始的原处应力方向偏离。 Secondly, the shadow comprising a stress-induced stress (normal stress and shear stress), in the extended front end portion of the local stress field may also be changed, which may cause local principal stress direction deviates from the direction of the initial stress situ. 该改变后的局部主应力方向可以导致裂缝从其初始扩展平面发生转向并且可能进一步影响裂缝网络扩展模式。 Local principal stress direction after the change may cause an initial crack extension plane of steering and may occur from impact fracture network further extension mode.

[0101] 3D位移不连续方法(3D DDM) [0101] 3D displacement discontinuity method (3D DDM)

[0102]除了本文公开的增强的2D DDM方法外,一种基于3D DDM的方法可以用于各种应用。 [0102] In addition to the enhanced 2D DDM methods disclosed herein a 3D DDM-based approach can be used in various applications. 对于被离散成相连的小矩形单元的给定的水力压裂网络来说,任何给定的矩形单元可以承受所述由Dx、Dy和Dz表示的矩形单元的两个面之间的位移不连续,并且在岩石中任意一点(x,y,z)的诱导应力可以使用本文提出的3D DDM方法进行计算。 For a given hydraulic fracture network is discretized into small rectangles of connected units, any given unit can withstand a rectangle by the displacement between the two faces Dx, Dy and Dz of the rectangular unit represented discontinuous and any point (x, y, z) can be used to induce stress 3D DDM method proposed in the rock is calculated.

[0103]图17示出了在一个xy平面内的矩形单元1740的局部x,y,z坐标系的示意图1700。 [0103] FIG. 17 shows a rectangular section in a plane xy x 1740 partial schematic diagram y, z coordinate system 1700. 该图示出了一个绕坐标轴的裂缝平面。 The figure shows a fracture plane about the axis. 所述诱导位移和应力场可以表示如下: The induced displacement and stress fields can be represented as follows:

[0104] Ux= [2(lv)f,z-zf,xx]Dx-zf,xyDy-[ (l-2v)f,x+zf,xz]Dz (10) [0104] Ux = [2 (lv) f, z-zf, xx] Dx-zf, xyDy- [(l-2v) f, x + zf, xz] Dz (10)

[0105] Uy = -Zf,xyDx+[2(lv)f,z-Zf,yy]Dy-[ (l-2v)f,y+Zf,yz]Dz (11) [0105] Uy = -Zf, xyDx + [2 (lv) f, z-Zf, yy] Dy- [(l-2v) f, y + Zf, yz] Dz (11)

[0106] uz= [ (l-2v)f,x-zf,xz]Dx+[ (l-2v)f,y-zf,yz]Dy+[2(lv)f,z-zf,zz]Dz (12) [0106] uz = [(l-2v) f, x-zf, xz] Dx + [(l-2v) f, y-zf, yz] Dy + [2 (lv) f, z-zf, zz] Dz ( 12)

[0107] 〇XX=2G{ [2f ,xz_zf ,XXx]DX+[2vf,yZ-Zf,XXy]Dy+[f ,ZZ+( l_2v)f ,yy-zf ,XXz]Dz} (13) [0107] 〇XX = 2G {[2f, xz_zf, XXx] DX + [2vf, yZ-Zf, XXy] Dy + [f, ZZ + (l_2v) f, yy-zf, XXz] Dz} (13)

[0108] Oyy=2G{[2vf,xz-zf,xyy]Dx+[2f,yz-Zf,yyy]Dy+[f,zz+(l-2v)f, xx-zf,yyz]Dz} (14) [0108] Oyy = 2G {[2vf, xz-zf, xyy] Dx + [2f, yz-Zf, yyy] Dy + [f, zz + (l-2v) f, xx-zf, yyz] Dz} (14)

[0109] 〇zz = 2G{-zf,xZZDx-zf,yZZ]Dy+[f,zz-zf,xx Z]Dz} (15) [0109] 〇zz = 2G {-zf, xZZDx-zf, yZZ] Dy + [f, zz-zf, xx Z] Dz} (15)

[0110] Txy = 2G{[(lv)f,yz-zf,xxy]Dx+[(lv)f,xz-zf,xyy]Dy-[(l-2v)f, xy+zf,xyz]Dz} (16) [0110] Txy = 2G {[(lv) f, yz-zf, xxy] Dx + [(lv) f, xz-zf, xyy] Dy - [(l-2v) f, xy + zf, xyz] Dz} (16)

[0111] xyz = 2G { -[ vf, xy+zf, xyz ]Dx+ [ f, zz+Vf, xx~Zf, yyz ] Dy~Zf, yzzDz } (17) [0111] xyz = 2G {- [vf, xy + zf, xyz] Dx + [f, zz + Vf, xx ~ Zf, yyz] Dy ~ Zf, yzzDz} (17)

[01 12] TXZ=2G{ [ (f,ζζ+vf,yy-Zf,xxz]Dx-[vf,xy+zf,xyz]Dy-Zf,xzzDz} (18) [01 12] TXZ = 2G {[(f, ζζ + vf, yy-Zf, xxz] Dx- [vf, xy + zf, xyz] Dy-Zf, xzzDz} (18)

[0113]其中,a和b是矩形边长的一半长度,诱导位移和应力场可以如下表示: (19)[m 141 [0113] wherein, a and b are half the length of the long sides of the rectangle, induce displacement and stress fields can be represented as follows: (19) [m 141

Figure CN105874158AD00151

[0115] 其中,A是矩的面积,(x,y,z)是以所述单元为原点的坐标系,(ξ,ιΐ,0)是点在P处的坐标,并且v是泊松比。 [0115] where, A is the area moment, (x, y, z) is the origin of the cell coordinate system, (ξ, ιΐ, 0) at the point P is at coordinates, and v is the Poisson's ratio .

[0116] 对于三维空间中的任意给定的观察点P(X,y,z),具有生产率Q(ξ,η,〇)的点P(X,y, z)处的诱导应力可以通过叠加来自所有裂缝单元的应力并施加一个坐标变换来计算。 Point P (X, y, z) induced stress at the [0116] For any three-dimensional space in a given observation point P (X, y, z), having a productivity Q (ξ, η, square) may be obtained by superimposing All cells from stress cracks and applying a coordinate transformation calculation. 涉及3D DDM的不例性技术被提供在Crouch,SL和Starfield,AM (1990),Boundary Element Methods in Solid Mechanics,Unwin Hyman,London中,其全部内容由此通过参引方式被包含于此。 Example techniques not involving 3D DDM is provided in Crouch, SL and Starfield, AM (1990), Boundary Element Methods in Solid Mechanics, Unwin Hyman, London, the entire contents of which are incorporated by reference in manner.

[0117]多个扩展的水力裂缝之间的相互作用或在此所称的应力阴影效应,可以影响同一深度层或在不同深度层中扩展的裂缝的裂缝高度生长,这可能对于裂缝处理的成功具有影响。 Cracks Cracks [0117] The interaction between a plurality of extended hydraulic fracture stress shadow effects or as referred to herein, may affect the depth of the same layer or layers extend at different depths in the height of growth, which may be successfully treated for crack It has an impact.

[0118] 在本文所述的水力压裂模型中的至少一个实施例中,所述模型可以另外集成3D DDM用于计算包围扩展的水力裂缝的诱导3D应力场,并且可以将沿着垂直深度的诱导应力变化包含到压裂模型的裂缝高度计算中。 [0118] In at least one embodiment of the hydraulic fracturing model in the embodiment herein, the 3D model may be further integrated for calculating the DDM surrounded induced hydraulic fracture extension 3D stress field, and may be along a vertical depth comprising inducing stress fracture to fracture height calculation model.

[0119] 例如,对于如图18中的示意图1800所示出的两个平行裂缝1811.1、1811.2,取决于相对裂缝的高度,所述高度生长可能会被促进或抑制。 [0119] For example, for two parallel fractures schematic shown in FIG. 18 1800 1811.1,1811.2, depending on the relative height of the fracture, the height growth may be promoted or suppressed. 对于从不同深度起裂的裂缝,由于垂直应力阴影效应,相邻裂缝的存在可以帮助避免一个裂缝生长到被其他裂缝所占用的层中。 For different depths from the initiation of cracks due to the shadow effect vertical stress, the presence of adjacent cracks can help avoid a crack growth to be occupied by the other layers crack. 例如,由于在不同深度处的裂缝1811.1、1811.2之间的相互作用,裂缝1811.1可以在向上的方向上生长而裂缝1811.2可以在向下的方向上生长,如箭头所示。 For example, due to the interaction between the different depths of the cracks 1811.1,1811.2, and 1811.1 may crack crack growth in an upward direction 1811.2 can be grown on a downward direction, as indicated by arrows.

[0120]应力阴影模型的验证 Verify [0120] Stress shadow model

[0121] 对于双翼裂缝情形的UFM模型的验证例如可以使用Weng 2011或者Kresse 2011进行。 [0121] For validation of the model UFM fracture wings case, for example, may be used for Weng 2011 or Kresse 2011. 还可以使用应力阴影建模方法进行验证。 Stress can also be used to verify the shadow modeling. 例如,可以将使用2D DDM的结果与Itasca Consulting Group Inc.,2002,FLAC3D(FastLagrangian Analysis of Continua in3Dimensions),Version2 · 1,Minneapolis: ICG(2002)(此后被称作"Itasca,2002")中给出的Flac3D的进行比较。 For example, the results may be used with the 2D DDM Itasca Consulting Group Inc., 2002, FLAC3D (FastLagrangian Analysis of Continua in3Dimensions), Version2 · 1, Minneapolis: ICG (2002) (hereinafter referred to as "Itasca, 2002") in a Compare carried out Flac3D.

[0122] 增强的2D DDM与Flac3D的对比 Comparative [0122] enhanced 2D DDM and the Flac3D

[0123] Olson 2004提出的3D修正因子包括两个经验常数α和β。 [0123] Olson 2004 proposed 3D correction factor includes two empirical constants α and β. 可以通过将对具有无限长度和有限高度的平面应变裂缝的由数值方法(增强的2D DDM)获得的应力与由解析方法获得的应力进行对比而对α和β的值进行校准。 May be calibrated by the value α and β will have an infinite length and limited by the height of the plane of numerical methods (enhanced 2D DDM) obtained was compared to the stress obtained by the analysis method of the stress-strain cracks. 可以进一步通过将对具有有限长度和高度的两个平行直裂缝的2DDDM结果与例如使用FLAC3D进行完整的三维数值方法获得的结果进行对比而对该模型进行验证。 The results may be further 2DDDM for example, linear cracks of a complete three-dimensional FLAC3D result obtained by comparing numerical methods and will be verified by the model having two parallel finite length and height.

[0124] 验证问题在图4中示出。 [0124] verification problem is shown in FIG. 4. 图4的示意图400将用于两个平行直裂缝的增强2D DDM和Flac3D进行对比。 FIG schematic 4004 for enhancing the 2D DDM and two parallel linear cracks Flac3D comparison. 如图400所示,两个平行的裂缝407.1、407.2经受沿着x、y坐标轴的应力〇x、 〇y。 As shown in FIG. 400, two parallel crack along 407.1,407.2 subjected to x, y coordinate axes of stress 〇x, 〇y. 裂缝分别具有长度2Lxf以及压裂压力Pl、p2。 And cracks each having a length 2Lxf fracture pressure Pl, p2. 裂缝的间隔距离为s。 Crack distance is s.

[0125] 裂缝在Flac3D中可以被模拟成处于相同位置但是具有未连接的网格点的两个表面。 [0125] In the fracture can be modeled as Flac3D in the same position but having two points of the surface mesh unconnected. 恒定的内部流体压力可作为法向应力被施加到网格上。 Constant internal fluid pressure may be applied to the grid as a normal stress. 裂缝还可以经受远场应力σ χ和〇y。 Cracks can also be subjected to far-field stress σ χ and 〇y. 两个裂缝可以具有相同的长度和高度,其中高度/ 一半长度的比值为0.3。 Two crack may have the same length and height, wherein the ratio height / half the length of 0.3.

[0126] 可以比较沿着x-轴(y = 0)和y-轴(x = 0)的应力。 [0126] may be compared along the x- axis (y = 0) and the y- axis (x = 0) of the stress. 两条相距很近的裂缝(s/h = 0.5) 可以被模拟成如图5.1 -5.3所示的对比。 Two closely spaced fracture (s / h = 0.5) can be modeled as shown in FIG Comparative 5.1 -5.3. 这些图给出了拓展的2D DDM和FIac3D的对比:沿着X-轴(y=〇)和y-轴(χ=〇)的应力对比。 The figure shows a comparison of the 2D DDM and FIac3D expansion: along the X- axis (y = square) and (χ = square) Comparative stress y- axis.

[0127] 这些图分别包括曲线图500.1、500.2、500.3,分别示出延伸的裂缝的20 001和Flac3D的沿着y-轴的〇y,沿着y-轴的σχ,以及沿着X-轴的〇y。 [0127] These figures include 〇y graph 500.1,500.2,500.3, show a crack 20, 001 and extending along the y- axis Flac3D, σχ along the y- axis, and the axis along the X- the 〇y. 图5.1使用2D DDM和Flac3D绘制出%如(7-轴)与距离裂缝的规范化距离&-轴)之间的曲线图。 FIG. 2D DDM and 5.1% Flac3D plotted normalized distance as the distance & cracks (7-axis) - the graph between the shafts). 图5.2使用20 001和? Figure 5.2 using 20 001 and? 1&(:30 绘制出〇x/p(y_轴)与距离裂缝的规范化距离(X-轴)之间的曲线图。图5.3使用2D DDM和Flac3D绘制出〇y/p(y_轴)与距离裂缝的规范化距离(X-轴)之间的曲线图。裂缝端部的位置Lf被描绘成沿着线x/h。 1 & (: 30 drawn 〇x / p (y_ axis) versus the normalized distance between (X- axis) and the distance from the crack and FIG. 2D DDM 5.3 Flac3D drawn 〇y / p (y_ axis) between a graph (X- axis) and the normalized distance from the fracture. Lf position of the end portion of the fracture is depicted along line x / h.

[0128] 如图5.1-5.3所示,采用3D修正因子的增强的2D DDM方法所模拟出的应力与采用完全3D模拟得出的结果非常吻合,这意味着修正因子能够在应力场的裂缝高度上获得3D效果。 [0128] FIG 5.1-5.3, a stress correction factor using 3D enhanced 2D DDM method using simulated results with full 3D simulation results very consistent, which means that the correction factor can be highly fracture stress field get the 3D effect.

[0129] 与CSIR0模型的对比 [0129] Model contrast CSIR0

[0130] 结合有增强的2D DDM方法的UFM模型可以通过CSIR0相对于完全2D DDM模拟器进行验证(例如参见Zhang,X.,Jeffrey,RG,和Thiercelin,M.2007.Deflection and Propagation of Fluid-Driven Fractures at Frictional Bedding Interfaces: A Numerical Investigation.Journal of Structural Geology,29:396-410(此后被称作,1^1^2007"),其全部内容由此通过参引方式被包含于此)。这种方法例如可以用于裂缝非常高、2D DDM方法无法考虑裂缝高度的3D效果的这种受限的情况中。 [0130] combined with an enhanced 2D DDM UFM process model can be verified (for example, see Zhang, X., Jeffrey, RG, and Thiercelin, M.2007.Deflection and Propagation of Fluid- simulator for complete 2D DDM phase by CSIR0 Driven Fractures at Frictional Bedding Interfaces: A Numerical Investigation.Journal of Structural Geology, 29: 396-410 (hereinafter referred to as, 1 ^ 1 ^ 2007 "), whereby the entire contents of which are included by reference in this embodiment). this method may be used for very high fracture, 2D DDM method does not consider the case of such a fracture height of the 3D effect is limited.

[0131] 可以对两个邻近扩展的裂缝对彼此扩展路径的影响进行比较。 [0131] can be extended to two adjacent impact crack propagation path is compared to each other. 两个初始彼此平行的水力压裂裂缝的扩展(沿着局部最大应力方向的扩展)可以针对如下结构形式模拟,例如:1)起始点位于彼此的顶部并且彼此各向同性地偏移;以及2)各向异性的远场应力。 The initial extended parallel to each other two hydraulic fracture (extended along the local direction of maximum stress) may form the following structure for simulation, for example: 1) starting at the top of each other and offset from each other isotropically; and 2 ) far-field stress anisotropy. 裂缝扩展路径和每个裂缝内部的压力可以关于UFM和CSIR0编码对表1给出的输入数据进行对比。 Crack propagation path and the interior of each fracture can be compared to the input data given in Table 1 and on UFM CSIR0 coding.

[0132] [0132]

Figure CN105874158AD00161

两条初始平行的裂缝609.1、609.2在各向同性和各向异性应力场中的扩展路径的曲线图600.1、 600.2。 609.1,609.2 two parallel initial fracture propagation path in the graph isotropic and anisotropic stress field 600.1, 600.2. 裂缝609.1和609.2初始平行地接近于注入点615.1、615.2,但是随着它们从那里延伸出去而离向。 609.1 and 609.2 cracks parallel to the initial injection point close 615.1,615.2, but as they extend away therefrom and to leave. 与各向同性的情况相比,裂缝在应力各向异性情况下的曲率被描绘成更小。 Compared to the isotropic case, the curvature of cracks in the stress anisotropy is depicted case into smaller. 这可能是由于趋于使裂缝彼此分离的应力阴影效应与推动裂缝在最大水平应力(X-方向)上扩展的远场应力之间的竞争引起的。 This may be due to the cracks tending to separate from each other the stress and promote competition between the shadowing effect of the far-field stress crack propagation at the maximum horizontal stress (X- direction) caused. 远场应力的影响随着裂缝之间距离的增加而变得显著,在这种情况下,裂缝可能趋于平行于最大水平应力方向扩展。 Effect of far-field stress increases as the distance between the crack becomes significant, in this case, cracks may tend to extend parallel to the maximum horizontal stress direction.

[0136] 图7 . 1和7.2描绘了曲线图700.1、700.2,示出一对分别从两个不同的注入点711.1、 711.2开始的裂缝。 [0136] FIG. 7.1 and 7.2 depict a graph 700.1,700.2, shown from two different injection points of a pair of fracture 711.1, 711.2 started. 这些图示出当裂缝从间隔距离为dx = dy= (10.1m)的点开始时在各向同性和各向异性应力场中的对比。 These figures show the comparison of isotropic and anisotropic stress field at the beginning of the crack when the spaced distance of dx = dy = (10.1m) point. 在这些图中,裂缝709.1、709.2趋于朝向彼此扩展。 In these figures, 709.1,709.2 cracks tend to extend towards each other. 相似类型表现的例子已经在实验室研究中被发现(例如参见Zhang 2007)。 Examples of the performance of a similar type have been found in laboratory studies (see for example Zhang 2007).

[0137] 如上面所指出的,在UFM模型中采用的增强的2D DDM方法能够获得有限裂缝高度在裂缝相互作用和扩展模式上的3D效应,同时在计算上也是高效的。 [0137] As noted above, enhanced 2D DDM UFM model employed in the method of the 3D effect can be obtained in the limited fracture height and fracture extended mode of interaction, while also computationally efficient. 能够提供用于垂直水力压裂裂缝网络和裂缝扩展方向(模式)的应力场的良好评估。 It can provide a good estimate of the stress fields and fracture network for spreading direction (mode) of a vertical hydraulic fracture.

[0138] 案例 [0138] Case

[0139] 案例#1水平井中的平行裂缝 [0139] Case # 1 horizontal parallel fractures wells

[0140]图8为示意图800,示出平行的横断裂缝811.1、811.2、811.3分别从围绕水平井眼804的多个射孔簇815.1、815.2、815.3同时地扩展。 [0140] FIG. 8 is a schematic diagram 800 showing a parallel transverse crack 811.1,811.2,811.3 extended respectively from a plurality of simultaneously 815.1,815.2,815.3 perforation clusters around a horizontal wellbore 804. 裂缝811.1、811.2、811.3中的每一个提供不同的流率qi、q2、q3,其为在压力ρο下的总流量qt的一部分。 Each fracture 811.1,811.2,811.3 provide different flow rates qi, q2, q3, qt which is part of the total flow at a pressure of ρο.

[0141] 当对于所有的裂缝来说地层条件和射孔都相同时,如果在射孔簇之间的井眼中的摩擦压力占比很小,那么裂缝可能具有大致相同的尺寸。 [0141] When the formation and perforation conditions are the same for all the cracks, if the proportion of the eyes of the friction pressure between the well perforation clusters is small, cracks may have substantially the same size. 这可以假定成裂缝被分隔开足够远并且应力阴影效应可被忽略。 This can be assumed to be spaced far enough cracks and stress shadow effect can be ignored. 当裂缝之间的间隔位于应力阴影影响的区域内时,裂缝可能不仅在宽度上受影响,而且还在其它裂缝尺寸上受影响。 When the crack is located between the spaced areas of stress shadow effects, cracks may not only affected in width, but also in other affected fracture dimensions. 为了对此进行描述,可以考虑具有五条平行裂缝的简单情况。 To describe this, consider the simple case of a five parallel cracks.

[0142] 在该例子中,裂缝被假定为具有恒定的高度100ft(30.5m)。 [0142] In this example, the crack is assumed to have a constant height 100ft (30.5m). 裂缝之间的间隔为65ft (19.8m)。 65ft interval between cracks (19.8m). 其它输入参数在表2中给出。 Other input parameters are given in Table 2.

[0143] [0143]

Figure CN105874158AD00171

[0144] 表2案例#1的输入参数 Input Parameters [0144] Table 2 Case # 1

[0145] 对于这种简单情况,传统的用于多条裂缝的Perkins-Kern-Nordgren(PKN)模型(例如参见Mack, MG和Warpinski,NR·,Mechanics of Hydraulic Fracturing. Chapter6,Reservoir Stimulation,3rd Ed.,eds.Economides,MJand Nolte,KG John Wiley&Sons(2000))可以通过结合方程6给出的应力阴影计算而被修正。 [0145] For this simple case, the conventional Perkins-Kern-Nordgren (PKN) model for multiple fractures (see, for example Mack, MG and Warpinski, NR ·, Mechanics of Hydraulic Fracturing. Chapter6, Reservoir Stimulation, 3rd Ed ., eds.Economides, MJand Nolte, KG John Wiley & Sons (2000)) may be corrected by shading the stress analysis calculations 6 binding equation. 闭合应力的增加可以通过将方程6计算的应力在整个裂缝上进行平均来近似。 Increase in closure stress may be approximated by averaging the stress equation 6 is calculated over the entire crack. 注意到这种简化的PKN模型由于应力阴影效应而不能模拟裂缝转向。 Noting this simplified model PKN shadow effect due to the stress can not simulate the fracture steering. 这种简单模型的结果可以与结合有沿着整个裂缝路径还有裂缝转向逐点进行的应力阴影计算的UFM模型进行比较。 The result of this simple model can be combined with the steering along the entire path of the fracture stress of the shadow as well as the fracture model UFM calculated point by point comparison.

[0146] 图9示出从两种模型计算出的五条裂缝的裂缝长度的模拟结果。 [0146] FIG. 9 shows a simulation result of the crack length is calculated from the two models five cracks. 图9为描绘五条平行裂缝在注入过程中长度(y-轴)随着时间(t)变化的曲线图900。 FIG 9 is a graph depicting five parallel crack length (Y- axis) during the injection process as a graph of time (t) 900 changes. 线917.1-917.5是UFM模型产生的。 917.1-917.5 line is generated by the model UFM. 线919.1-919.5是简化的PKN模型产生的。 919.1-919.5 PKN line is a simplified model generated.

[0147] 图9中UFM模型得到的五条裂缝的裂缝几何特征和宽度的轮廓在图10中示出。 [0147] FIG. 9 UFM fracture model and geometric features obtained profile width of five crack 10 is shown in FIG. 图10 为描绘围绕井眼1004的裂缝1021.1-1021.5的示意图1000。 FIG 10 is a graph depicting a schematic view of the wellbore surrounding the crack 1021.1-1021.5 1004 1000.

[0148] 裂缝1021.3为五条裂缝中间的一条,并且裂缝1021.1和1021.5为最边上的两条。 [0148] 1021.3 intermediate fracture of a five cracks, fractures and 1021.1 and 1021.5 for the two most edge. 由于裂缝1021.2、1021.3以及1021.4由于应力阴影效应而比外边的两条裂缝具有更小的宽度,因此它们可能具有更大的流阻,容纳更少的流率,并且具有更短的长度。 Fracture due to cracks 1021.2,1021.3 and 1021.4 two shadow effect due to the stress than the outside has a smaller width, so they may have a greater flow resistance, containing a lesser flow rate, and having a shorter length. 因此,应力阴影效应在动态条件下不仅仅影响裂缝宽度而且还影响裂缝长度。 Therefore, the stress shadow effects under dynamic conditions influence not only the width but also the crack fracture length.

[0149] 应力阴影效应可以通过许多参数对裂缝的几何特征产生影响。 [0149] Stress can influence the shadow effect fracture geometric features by many parameters. 为了示出这些参数中的一些的影响,对于变化的裂缝间隔、射孔摩擦以及应力各向异性的情况下计算出的裂缝长度在表3中不出。 In order to show the effect of some of these parameters, for the change in fracture interval, perforating frictional stress anisotropy and the calculated crack length not in Table 3.

[0150] 图11.1和11.2示出由UFM预测的在大射孔摩擦和大裂缝间隔(例如,大约120ft (36.6m))情况下的裂缝几何特征。 [0150] 11.1 and 11.2 in large friction and large cracks perforating interval (e.g., approximately 120ft (36.6m)) in the case of geometric features fracture is shown by the predicted UFM. 图11.1和11.2为描绘围绕井眼1104的五条裂缝1123.1_ 1123.5的示意图1100.1和1100.2。 11.1 and 11.2 about a wellbore depicting five cracks 1123.1_ 1123.5 1104 1100.1 and 1100.2 schematic. 当射孔摩擦大时,能够提供均匀地将流率分配到全部的射孔簇里的巨大转移力。 When a large perforation friction, is possible to provide evenly distributed to all of the flow rate of perforation clusters in great force transfer. 因此,可以克服应力阴影并且如图11.1所示由此产生的裂缝长度可以变得近似相等。 Thus, the shadow can overcome stress and the resulting fracture length as shown in FIG 11.1 may become approximately equal. 当裂缝间隔大时,应力阴影效应可以消散,并且与如图11.2所示的裂缝具有大致相同的尺寸。 When the intervals between the cracks, the stress can be dissipated shadow effect, and have substantially the same dimensions and crack 11.2 shown in FIG.

[0151] [0151]

Figure CN105874158AD00181

[0152] 表3各种参数对裂缝几何特征的影响 [0152] Table 3 Effect of various parameters on the geometrical characteristics of the fracture

[0153] 案例#2复杂裂缝 [0153] Case # 2 complex fracture

[0154] 在图12的例子中,UFM模型可以被用于模拟页岩地层中水平井的4-级水力压裂处理。 [0154] In the example of FIG. 12, UFM model may be used to simulate the 4-stage hydraulic fracturing treatment of shale formation in horizontal well. 例如参见Cipolla,C,Weng,X.,Mack,M.,Ganguly,U.,Kresse,0.,Gu,H.,Cohen,C和Wu, R., Integrating Microseismic Mapping and Complex Fracture Modeling to Characterize Fracture Complexity · 2011年1月24-26日美国德克萨斯州伍德兰兹市的SPE水力压裂会议和展览上提供的论文SPE 140185(此后被称作"Cip〇lla2011"),其全部内容由此通过参引方式被包含于此。 See, e.g. Cipolla, C, Weng, X., Mack, M., Ganguly, U., Kresse, 0., Gu, H., Cohen, C, and Wu, R., Integrating Microseismic Mapping and Complex Fracture Modeling to Characterize Fracture Complexity · paper SPE 140185 2011 Nian 24-26 January provided the Woodlands, Texas City, SPE hydraulic fracturing Conference and exhibition (hereafter referred to as "Cip〇lla2011"), in its entirety by the this embodiment is included by reference herein. 该井可以被下套管并且固井,并且每一级栗送通过三或四个射孔簇。 The wells may be cased and cementing, and each send a Li by three or four perforation clusters. 四个级中的每一个级可以包括大约25,000bbls(4000m 3)的流体和440,0001bs (2e+6kg)的支撑剂。 Each of the four stages in a stage may comprise about 25,000bbls (4000m 3) and a fluid 440,0001bs (2e + 6kg) proppant. 大量数据可在井上获得,包括提供最小和最大水平应力的估测的先进的声波测井。 Inoue large amount of data can be obtained, including providing an estimated minimum and maximum horizontal stress advanced acoustic logging. 微地震测绘数据对于各个级都是可用的。 Microseismic mapping data for each level are available. 例如参见〇&11以18,入,1&以^,6., LeCalvez,J·,Lassek,J·,和Bentley,D·,Contacting More of the Barnett Shale Through an Integration of Real-Time Microseismic Monitoring,Petrophysics,and Hydraulic Fracture Design · 2007年10月12-14日美国加利福尼亚的阿纳海姆市的2007SPE技术年会和展览上提供的论文SPE 110562。 See, for example square & 11 to 18, the 1 & to ^, 6., LeCalvez, J ·, Lassek, J ·, and Bentley, D ·, Contacting More of the Barnett Shale Through an Integration of Real-Time Microseismic Monitoring, Petrophysics, and Hydraulic Fracture Design · 12-14 October 2007 in Anaheim, California 2007SPE annual technical Conference and exhibition available on paper SPE 110562. 该例子在图12中示出。 The example shown in FIG. 12. 图12为描绘围绕井眼1204的各级微震事件1223的微震测绘图。 Figure 12 depicts the microseismic events around the 1204 levels borehole microseismic mapping diagram 1223.

[0155] 由先进的声波测井得到的应力各向异性表明井的前段比尾段具有更高的应力各向异性。 [0155] obtained by a stress anisotropy advanced acoustic logging wells indicate that the preceding higher stress anisotropy ratio of the tail section. 先进的3D地震分析可以表明占优势的天然裂缝走向从前段的NE-SW向横向的尾段的NW-SE改变。 Advanced 3D seismic analysis may indicate the dominant natural fracture strike NW-SE change from the preceding paragraph of NE-SW direction transverse to the tail section. 例如参见Rich, JP和Ammerman,M· ,Unconventional Geophysics for Unconventional Plays.2010年2月23-25日美国宾夕法尼亚州匹兹堡市非传统气体会议提供的论文SPE131779,其全部内容由此通过参引方式整体被包含于此。 See, eg, Rich, JP and Ammerman, M ·, Unconventional Geophysics for Unconventional Plays. Paper SPE131779 2010 Nian 23-25 ​​February in Pittsburgh, Pennsylvania, meetings of non-conventional gas in its entirety by reference in its entirety thus be herein.

[0156] 模拟结果可能基于UFM模型而不结合完全的应力阴影计算(例如参见Cipol la 2011),包括剪切应力和裂缝转向(例如参见Weng 2011)。 [0156] The simulation results may not bind completely shade calculating stress (see, e.g. Cipol la 2011) based on the model UFM, including shear stress and fracture steering (e.g., see Weng 2011). 该模拟可以以本文提供的完全应力模型升级。 The simulation model can be completely stress upgrade provided herein. 图13.1-13.4分别示出模拟的围绕井眼1304的裂缝网络1306在全部四级上的平面视图,以及它们分别与微地震测量结果1323.1-1323.4的对比。 FIG 13.1-13.4 illustrate simulated wellbore fracture network 1304 around 1306 in all four planar view, and their comparison with the results of the measurement are 1323.1-1323.4 microseismic.

[0157] 从图13.1-13.4中的模拟结果可以看出,对于级1和2,紧密间隔的裂缝没有显著地离向。 [0157] As can be seen from the simulation results in FIG 13.1-13.4 for Class 1 and 2, no cracks closely spaced significantly from the. 这可能是因为在井眼的前段具有高的应力各向异性。 This may be because a high stress anisotropy in the anterior segment of the wellbore. 对于级3和4,应力各向异性较低,能够看到由于应力阴影效应而具有更大的裂缝离向。 For Class 3 and 4, lower stress anisotropy, due to the stress can be seen to have a shadow effect from the larger cracks.

[0158] 案例#3多级例子 [0158] Case # 3 multilevel examples

[0159]案例#3是一个例子,示出前级的应力阴影如何能够影响下个处理级的水力压裂网络的扩展模式,导致四级处理情况的水力压裂网络产生的全部图像发生变化。 [0159] Case # 3 is an example of how stress is shown hatched previous stage can influence the hydraulic fracture network expansion mode next processing stage, resulting in all four image processing in a case of hydraulic fracturing to produce a change in the network.

[0160]该案例包括四个水力压裂处理级。 [0160] The case comprises four hydraulic fracturing treatment stage. 井被下套管并固井。 Well is cased and cemented. 级1和2被栗送通过三个射孔簇,级3和4被栗送通过四个射孔簇。 Level 1 and Li 2 are sent through three clusters of perforation, perforation stages 3 and 4, four clusters are sent by Li. 岩石组构为各向同性的。 Isotropic rock fabric. 输入参数在下面的表4中列出。 Input parameters are listed in Table 4 below. 没有考虑或考虑了来自前级的应力阴影的整个水力压裂网络的顶视图在图13.1-13.4 中示出。 We did not consider or consider the entire network from a preceding hydraulic fracture stress shaded top view shown in FIG 13.1-13.4.

[0161] [0161]

Figure CN105874158AD00191

[0162] 表4案例#3的输入参数 [0162] TABLE 4 Case # 3 input parameters

[0163] 图14.1-14.4为描绘压裂操作过程中在各个级的裂缝网络1429的示意图1400.1-1400.4。 [0163] FIG 14.1-14.4 depicting a schematic view of the fracturing operations during the various stages of the fracture network 1429 of 1400.1-1400.4. 图14.1示出处理之前的离散的裂缝网络(DFN) 1429。 Figure 14.1 illustrates the discrete fracture networks prior to the process (DFN) 1429. 图14.2描绘出第一处理级之后的模拟DFN 142LDFN 1429具有由于第一处理级而从其开始扩展的水力压裂裂缝(HFN) 1431。 Figure 14.2 depicts DFN 142LDFN 1429 after analog processing stage having a first stage and since the first process (HFN) 1431 extended from the start of hydraulic fractures. 图14.3示出描绘有分别在四个级扩展、但是没有考虑前级影响的模拟HFN1431.1-1431.4的DFN。 Figure 14.3 shows a diagram depicting respectively extended in four stages, but does not consider the influence of the previous stage of the analog DFN HFN1431.1-1431.4. 图14.4示出描绘有在四个级扩展但是考虑了前级的压裂、应力阴影和HFN的HFN1431.1、1431.2'-1431.419DFN。 Figure 14.4 shows the expansion is drawn in four stages before it is contemplated stage fracturing, the stress of shadow and HFN HFN1431.1,1431.2'-1431.419DFN.

[0164] 当各个级单独地生成时,它们可能如图14.3所示无法看到彼此。 [0164] When the respective stages independently generated, they may not see each other as shown in FIG. 14.3. 当前级的应力阴影和HFN都如图14.4所示被考虑进去时,扩展模式可能改变。 The current stress level and shadow as shown in FIG 14.4 HFN are taken into account when the extended mode may change. 如图14.3和14.4所示,第一级产生的水力压裂裂缝1431.1对于各种情况都是相同的。 As shown in FIG. 14.3 and 14.4, the first stage of the hydraulic fracture 1431.1 generated is the same for all cases. 第二级1431.2扩展模式可能受第一级的应力阴影以及新的DFN (包括级1的HFN 14 31 . 1)的影响,导致扩展模式变化成HFN 1431.2' AFN1431. Γ可以开始跟随在级1产生的HFN 1431.1同时两者相互依赖。 Influence of the second stage may be an extended stressed 1431.2 shadow first stage and the new DFN (including stage HFN 14 31. 1 1 a), resulting in extended mode is changed to HFN 1431.2 'AFN1431. Γ may follow stage generates a start the HFN 1431.1 while the two are interdependent. 第三级1431.3可以跟随在第二级处理1431.2、1431.2'产生的水力压裂,并且由于如1431.3与1431.3'的对比所指示的级2的应力阴影效应而不会扩展很远。 1431.3 third stage may be followed in a second stage process 1431.2,1431.2 'generated by hydraulic fracturing, and since as 1431.3 and 1431.3' shadow effects of stress as indicated by comparison of the level 2 does not extend very far. 当级4(1431.4)可能时,其可能趋于从级3转向离开,但是当其与前级的HFN 1431.3'相遇时可能跟随前级的HFN 1431.3'并且被描绘为图14.4中的HFN 1431.4'。 When Level 4 (1431.4) possible, which may tend to shift away from the stage 3, but when combined with the preceding stage HFN 1431.3 'may encounter when following the previous stage of HFN 1431.3' and is depicted in FIG 14.4 HFN 1431.4 ' .

[0165] 提出一种用于计算复杂水力压裂网络中的应力阴影的方法。 [0165] A method is proposed for calculating the complex hydraulic fracture stress shadow in a network. 该方法可包括具有对有限裂缝高度进行修正的增强2D或3D位移不连续法。 The method may include a correction for the finite fracture height enhancement 2D or 3D displacement discontinuity method. 该方法可以用于估算复杂裂缝网络中不同裂缝分支之间的相互作用以用于解决基本的3D裂缝问题。 The method may be used to estimate the complex interaction between different crack fracture network branch to the basic 3D Solution cracks. 这种应力阴影计算可以结合到UFM-一一种复杂裂缝网络中。 This stress may be incorporated into the shade calculating UFM- eleven kinds of complex fracture network. 两条裂缝的简单情况的结果显示裂缝彼此之间既可能吸引也可能排斥,取决于它们初始的相对位置,并且可以与独立的2D非平面水力压裂模型相媲美。 The results of the simple case of two cracks appear between cracks are likely to attract each other may both repulsion, depending on their initial relative position, and can be comparable with non-independent 2D planar hydraulic fracture model.

[0166] 水平井的多条平行裂缝的模拟可以用于确认两条最外边的裂缝可更加显著,而由于应力阴影效应,内部的裂缝具有减小的裂缝长度和宽度的特性。 [0166] a plurality of parallel fractures analog horizontal wells may be used to confirm the outermost two cracks can be more significant, and the shadowing effect due to the stress, cracks inside the fracture length and width having a characteristic reduced. 这种特性还可能取决于其他参数,例如射孔摩擦和裂缝间隔。 This characteristic may also depend on other parameters, such as friction and crack perforation spacing. 当裂缝间隔大于裂缝高度时,应力阴影效应可能消散并且在多条裂缝之间具有不明显的差别。 When the fracture interval is greater than the height of the fracture, the stress may be dissipated and shadow effects have insignificant differences between the multiple fractures. 当射孔摩擦大时,可以提供足够的离向以在射孔簇之间均匀地分配流量,并且尽管有应力阴影效应,裂缝尺寸仍然可以变得大致相同。 When a large perforation friction, may provide sufficient to distribute the flow evenly from the between perforation clusters, and despite the shadow effect of stress, fracture dimensions still may become substantially the same.

[0167] 当创建复杂裂缝时,如果地层具有小的应力各向异性,裂缝相互作用可能导致裂缝发生显著的离向,它们趋向于彼此排斥。 [0167] When creating complex fractures, if the formation has a small stress anisotropy, interactions may lead to cracks cracks from occurring to a significant, they tend to repel each other. 另一方面,对于大的应力各向异性,可能具有有限的裂缝离向,其中,应力各向异性抵消由于应力阴影产生的裂缝转向效应,并且裂缝被迫使向着最大应力的方向前进。 On the other hand, for the large stress anisotropy, it may have limited the fracture from which offset the stress anisotropy stress crack shadows steering effect, forced to crack and the maximum stress in the direction of advance. 不考虑裂缝离向的量,应力阴影对裂缝宽度可具有影响,其可能影响分配到多个射孔簇中的注入速率,以及整个裂缝网络覆盖的区域和支撑剂放置。 Irrespective of the amount of the fracture from the stress may have on the crack width shadow effects which may affect the distribution of the rate of injection of the plurality of perforation clusters, and the entire area covered by the network of fractures and proppant placement.

[0168] 图15为描绘在井场执行压裂操作的方法1500的流程图,井场例如是图1.1的井场100。 [0168] FIG. 15 is a graph depicting a method of fracturing operation performed at the wellsite flowchart 1500, for example wellsite 1.1 wellsite 100 of FIG. 井场地下地层周围设置,地层具有贯穿它的井眼和位于其中的裂缝网络。 Space is provided surrounding formation downhole, through its network formation having a fracture and a wellbore positioned therein. 裂缝网络具有如图1.1和1.2所示的天然裂缝。 Natural fracture network as shown in FIG fractures 1.2 and 1.1. 该方法(1500)可以包括(1580)通过将具有支撑剂的注入流体注入裂缝网络以形成水力压裂网络来增产所述井场而执行增产操作。 The method (1500) may include (1580) the fracture network by injecting injection fluid having proppant to form a network of hydraulic fracture stimulation of the stimulation operations performed wellsite. 在某些情况下, 这种增产可以在井场或通过模拟进行。 In some cases, this stimulation may be carried out by simulation or the wellsite.

[0169] 该方法包括(1582)获得井场数据和地下地层的地质力学模型。 [0169] The method comprises (1582) obtained data wellsite geomechanical model of the underground formation. 井场数据可以包括对模拟有用的关于井场的任何数据,例如天然裂缝的天然裂缝参数、裂缝网络的图像等等。 Wellsite data may comprise useful data on any analog wellsite, for example, natural fracture parameters natural fractures, fracture networks like image. 天然裂缝参数例如可以包括密度定向、分布以及力学特性(例如摩擦系数、粘结力、裂缝韧度等等)。 Natural fracture orientation parameters may include, for example, density, distribution, and mechanical properties (e.g., coefficient of friction, adhesive strength, fracture toughness, etc.). 裂缝参数可以通过对井眼成像记录直接观察获得、通过3D微地震估算、蚂蚁追踪、 声波各向异性、地质层曲率、微地震事件或图像等等获得。 By direct observation of fracture parameters of borehole images obtained recorded, estimated by 3D seismic micro ant tracking, sonic anisotropic geological layers of curvature, micro-seismic events or the like to obtain an image. 获得裂缝参数的技术的例子在PCT/US2012/48871和US2008/0183451中给出,它们的全部内容在此通过参引方式被包含于此。 Examples of technical parameters of the fracture are given in PCT / US2012 / 48871 and US2008 / 0183451, the entire contents of which is herein incorporated by reference in manner.

[0170] 图像例如可以通过观察井眼成像记录、通过井眼测量结果估计裂缝尺寸、获得微地震图像和/或类似方法来获得。 [0170] The image may be, for example, by observing borehole images recorded by estimating fracture dimensions borehole measurements, seismic images obtained micro / or the like and be obtained. 裂缝尺寸可以通过评估地震测量、蚂蚁追踪、声波测量、地质测量和/或类似方法估测。 Crack size can be seismic measurements, ant tracking, sonic measurements, Geological Survey / or the like and the estimated by evaluating. 其他井场数据还可以通过各种来源(例如井场测量、历史数据、 假设)等生成。 Other wellsite data may also be generated by various sources (e.g. wellsite measurements, historical data, assumptions) and the like. 这种数据例如可以包括完井数据、地质结构数据、岩石物性数据、地质力学数据、测井测量数据和其它形式的数据。 Such data may include well completion data, geological structure data, petrophysical data, geomechanical data, logging data and other measured data, such as forms. 地球力学模型可以通过使用传统技术获得。 Earth mechanical model can be obtained using conventional techniques.

[0171] 该方法(1500)还包括(1584)生成随着时间变化的水力压裂裂缝生长模式,例如在增产操作过程中。 [0171] The method (1500) further comprises (1584) to generate a time-varying hydraulic fracturing crack growth mode, for example during the stimulation operation. 图16.1-16.4描绘了一种生成水力压裂裂缝生长模式的例子(1584)。 It depicts an example of FIG 16.1-16.4 (1584) for generating hydraulic fracturing crack growth patterns. 如图16.1所示,在其初始状态,具有天然裂缝1623的裂缝网络1606.1围绕地下地层1602设置,地下地层1602具有贯穿它的井眼1604。 FIG 16.1, in its initial state, with a natural fracture network fractures 1623 1606.1 1602 disposed around the subterranean formation, the subterranean formation 1602 with a wellbore 1604 therethrough. 随着支撑剂从井眼1604被注入到地下地层1602,来自支撑剂的压力产生围绕井眼1604的水力压裂裂缝1691。 As the proppant is injected from the wellbore into the subterranean formation 1604 1602, pressure from the proppant to generate hydraulic fractures around the wellbore 1691 1604. 该水力压裂裂缝1691沿着LjPL 2延伸进入地下地层(图16.2),并且随着时间变化遇到裂缝网络1606.1中的其它裂缝,如图16.2-16.3所示。 The hydraulic fracture LjPL 2 1691 extends into a subsurface formation (FIG. 16.2), and with the other fractured time encountered in the fracture network 1606.1, as shown in FIG 16.2-16.3. 与其它裂缝接触的点为交叉点1625。 Other points of contact with the fracture of intersection 1625.

[0172] 该生成(1584)可以包括(1586)使水力压裂裂缝从井眼延伸并且进入地下地层的裂缝网络以形成包括天然裂缝和水力压裂裂缝的水力压裂网络,如图16.2所示。 [0172] The generating (1584) may include (1586) that the hydraulic fracture extending from the wellbore and into the subterranean formation fracture network to form a hydraulic fracture network comprising natural fractures and hydraulic fractures, 16.2 shown in FIG. . 裂缝生长模式基于天然裂缝参数和地下地层上的最小应力和最大应力。 Minimum stress crack growth model based on the parameters and the natural fracture the subterranean formation and the maximum stress. 该生成还包括:(1588)确定水力压裂裂缝的水力压裂参数(例如,压力P、宽度w、流率q等);(1590)确定支撑剂通过水力压裂网络的传输参数;以及(1592)例如通过所确定的水力压裂参数、所确定的传输参数和地质力学模型来确定水力压裂的裂缝尺寸(例如,高度)。 The generating further comprises: (1588) determining the hydraulic fracturing hydraulic fracture parameters (e.g., pressure P, the width w, q the flow rate and the like); (1590) determined by the transmission parameters proppant hydraulic fracture network; and ( 1592), for example, by a hydraulic fracture parameters determined transmission parameters and geomechanical model to the determined hydraulic fracturing determining fracture dimensions (e.g., height). 水力压裂参数可以在所述延伸之后确定。 Hydraulic fracturing parameters may be determined after the extension. 该确定(1592)还可以通过支撑剂传输参数、井场参数和其它参数进行。 The determination (1592) can also be carried out by the proppant transport parameters, and other parameters wellsite.

[0173] 该生成(1584)可包括基于例如在Koutsabeloulis 和Zhang,3DReservoir Geomechanics Modeling in Oil/Gas Field Production,2009年5月9-11 日在沙特阿拉伯的阿尔科巴尔市举办的萨特阿拉伯地区的技术研讨会和展览上提供的论文SPE 126095, 2009SPE中描述的地质力学模型对岩石特性进行建模。 [0173] The generation (1584) may include, for example, based on Koutsabeloulis and Zhang, 3DReservoir Geomechanics Modeling in Oil / Gas Field Production, in the city of Al Khobar in Saudi Arabia, held in May 2009 9-11 Sartre Arab region paper SPE 126095 technical seminars and exhibitions on offer, geomechanical model 2009SPE description of rock properties modeling. 该生成还可包括通过使用作为诸如UFM的输入建模软件的井场数据、裂缝参数和/或图像建立压裂操作的模型,以在裂缝网络中生成连续的诱导水力压裂裂缝图像。 The generating may further comprise a modeling software such as input UFM wellsite data, the fracture parameters and / or the model image by using a fracturing operations to fracture network generate successive image induced hydraulic fractures.

[0174] 该方法(1500)还包括:(1594)在水力压裂裂缝上执行应力投影以确定水力压裂裂缝之间(或与其它裂缝)之间的应力干涉,和(1598)基于应力投影和/或所确定的水力压裂裂缝之间的应力干涉而重复该生成(1584)。 [0174] The method (1500) further comprises: (1594) performed on a hydraulic fracture stress between projection to determine a stress interference between the hydraulic fractures (cracks or other), and (1598) based on the stress Projection interference between stress and / or the determined hydraulic fractures and repeating the generating (1584). 可以执行该重复以考虑可影响裂缝生长的裂缝干涉。 This repetition can be performed to account for the interference may affect fracture crack growth. 应力投影可包括执行例如用于每条水力压裂裂缝的2D或3D DDM以及随着时间更新裂缝生长模式。 Performing stress projections may for example comprise hydraulic fractures each 2D or 3D DDM mode and crack growth updated over time. 裂缝生长模式可以根据应力投影垂直于局部主应力方向扩展。 Crack growth mode can be extended to a local stress principal stress directions from vertical projection. 裂缝生长模式可包括天然和水力压裂裂缝对裂缝网络的影响(见图16.3)。 Crack growth and impact mode may include natural fracture network of hydraulic fractures (see Figure 16.3).

[0175] 可以对井场的多个井眼执行应力投影。 [0175] Stress may be performed for a plurality of projection wellbore wellsite. 各个井眼的应力投影可以被组合以确定裂缝的相互作用,如从每个井眼所确定的那样。 Each projection wellbore stress may be combined to determine the interaction of fracture, each as determined from the wellbore. 该生成对为多个井眼中的一个或多个所执行的每个应力投影都可以重复。 Each projection stress that generates one or more of a plurality of wellbore executed may be repeated. 该生成对从多个井眼提供的增产所执行的应力投影也可以重复。 This may be repeated stress generated projection performed from the plurality of stimulation provided by the wellbore. 还可以以各种数据组合在相同的井眼上执行多种模拟,并且如期望地进行比较。 Simulation may also be performed in the same variety of wellbore data in various combinations, as desired and compared. 历史数据或其它数据也可以被输入到该生成中,以为最终结果中的考虑提供多个信息源。 Historical data or other data may also be input to the generation, consider that the final result of providing a plurality of information sources.

[0176] 该方法还包括:(1596)如果水力压裂裂缝遇到另一条裂缝,则确定在水力压裂裂缝和遇到的裂缝之间的交叉特性,和(1598)如果水力压裂裂缝遇到一条裂缝,则基于交叉特性重复该生成(1584)(例如参见图16.3)。 [0176] The method further comprises: (1596) if another hydraulic fracture encounters a crack, it is determined that the intersection between the characteristics of the hydraulic fractures and cracks encountered, and (1598) If the case of hydraulic fracture to a crack generated based on characteristics of the cross-repeated (1584) (e.g., see FIG. 16.3). 交叉特性例如可以使用?〇71^2012/059774的技术确定,其全部内容在此被整体包含于此。 Cross characteristics can be used, for example? 〇71 ^ 2012/059 774 technology to determine, the entire contents of which are incorporated herein in entirety.

[0177] 确定交叉特性可包括执行应力投影。 [0177] CROSS characteristic determination may include performing stress shadowing. 当水力压裂裂缝遇到裂缝时,根据井下条件, 裂缝生长模式可不变或发生改变。 When the hydraulic fracture encounters cracks, downhole conditions, crack growth mode can be constant or changed. 当压裂压力大于作用在遇到的裂缝上的应力时,裂缝生长模式可沿着遇到的裂缝扩展。 When the stress on the fracture pressure is greater than the effect of the fracture face, crack growth along the crack extension mode may encounter. 该裂缝生长模式可沿着遇到的裂缝持续扩展直到到达天然裂缝的端部。 The crack growth mode may continue to expand until it reaches the end of the natural fracture along the fracture face. 该裂缝生长模式在天然裂缝的端部可改变方向,且裂缝生长模式在天然裂缝的端部上沿垂直于最小应力的方向延伸,如图16.4所示。 The crack growth at the end of the extension mode may change the direction of the natural fracture and crack growth mode at the end portion of the natural fracture along a direction perpendicular to a minimum stress, 16.4 shown in FIG. 如图16.4所示,水力压裂裂缝依据局部应力σ#Ρσ 2在新的路径1627上延伸。 As shown in FIG 16.4, based on local hydraulic fracture stress σ # Ρσ 2 extending on the new path 1627.

[0178] 可选地,该方法(1500)还可包括(1599)验证裂缝生长模式。 [0178] Alternatively, the process (1500) may further comprise (1599) verified crack growth mode. 该验证可通过将得到的生长模式与其它数据、例如如图7.1和7.2所示的微地震图像进行对比而实现。 The verification may be with other data, for example, as compared 7.1 and 7.2 micro seismic images shown achieved by the growth pattern obtained.

[0179] 该方法可以以任意的顺序执行并且按照期望进行重复。 [0179] The method may be performed in any order and repeated as desired. 例如,生成步骤(1584)-(1599)可以随时间重复,例如通过随着裂缝网络变化而进行迭代。 For example, the step of generating (1584) - (1599) may be repeated over time, such as the network changes iterate through cracks. 可以执行该生成(1584) 以更新在该生成过程中执行的迭代模拟来考虑多个裂缝的相互作用和影响,因为裂缝网络随着时间而被激发。 It may be performed to generate (1584) to update the iteration of the simulation performed in consideration of the generation process to affect the interaction and more fractures, fracture networks over time because of being excited.

[0180] 该方法1500可以被用于具有射孔和裂缝(例如如图8所示的裂缝811.1-811.3)的各种井场条件。 [0180] The method 1500 may be used for a variety of conditions wellsite (811.1-811.3 cracks as shown in FIG. 8) having perforations and fractures. 在图8的例子中,裂缝811.1-811.3可定位于地层中大约相同的深度处。 In the example of FIG. 8, may be positioned in the formation of cracks 811.1-811.3 approximately the same depth. 在一些情况下,裂缝可在不同的深度处,例如如图18-20所示。 In some cases, cracks may be at different depths, for example 18-20 shown in FIG.

[0181] 图18-20示出了平行的横断裂缝1811.1、1811.2的各种示例性示意图1800、1900、 2000,所述平行的横断裂缝1811.1、1811.2分别从围绕地层1802中的倾斜井眼1804的多个射孔簇1815.1、1815.2同时地扩展。 [0181] Figures 18-20 illustrate various exemplary schematic transverse cracks parallel 1811.1,1811.2 1800, 1900, 2000, parallel to the transverse cracks 1811.1,1811.2 respectively, from the formation surrounding the borehole inclination 1802 1804 multiple perforation clusters 1815.1,1815.2 simultaneously expanded. 每个裂缝1811.1、1811.2沿着地层1802分别在不同的深度D1-D6 处横贯地层1817.1、1817.2、1817.3、1817.4、1817.5、1817.6。 1802, respectively, each slit 1811.1,1811.2 1817.1,1817.2,1817.3,1817.4,1817.5,1817.6 traverses formations at different depths along the D1-D6 formation. 地层1802 可具有各种组成的一个或多个地层,例如页岩、砂、岩石等。 Formation 1802 may have one or more of the formation of various compositions, such as shale, sand, rocks and the like. 该地层1802具有总体应力of,并且每个地层1817.1-1817.6分别具有相应的应力of l-of6。 1802 has an overall stress of the formation of, and each has a corresponding formation 1817.1-1817.6 stress of l-of6.

[0182] 图18和19可以使用如上所述的应力投影产生。 [0182] FIGS. 18 and projection 19 may be generated using a stress as described above. 在图18的例子中,裂缝1811.1延伸通过地层1817.2-1817.4,而裂缝1811.2延伸通过地层1817.3-1817.5。 In the example of FIG. 18, the crack extends through the formation 1817.2-1817.4 1811.1, 1811.2 extending through the crack formation 1817.3-1817.5. 在图19的例子中,裂缝1811.2'延伸通过地层1817.2-1817.5。 In the example of FIG. 19, the crack 1811.2 'extends through the formation 1817.2-1817.5. 如图19所示,裂缝可以具有给定的垂直长度并延伸给定的距离通过一个或多个地层,并从其接收相应的应力效应。 19, the crack may have a given length and extending perpendicular to a given distance from the formation through one or more, and receives the corresponding stress effect.

[0183] 在图19的例子中,裂缝1811.1、1811.2'是在不考虑压力投影的影响时得到的。 Obtained when [0183] In the example of FIG. 19, the crack 1811.1,1811.2 'without considering the influence of pressure is projected. 在这种情况下,裂缝1811.1和1811.2'的高度生长受围绕裂缝的相应地层的应力时的垂直原处应力分布的影响。 In this case, affect the vertical stress distribution at the time of the original stress fracture around a respective receiving formation fracture 1811.1 and 1811.2 apos height growth. 裂缝1811.1具有在射孔簇1815.1上方的垂直长度L1,和射孔簇1815.1 下方的垂直长度L2。 Crack 1811.1 1815.1 cluster having a perforation above the vertical length L1, and the vertical length L2 of the lower perforation clusters 1815.1. 裂缝1811.2 '具有在射孔簇1815.2上方的垂直长度L3,和射孔簇1815.2 下方的垂直长度L4。 1811.2 crack 'above the perforation cluster 1815.2 having a vertical length L3, and the vertical length L4 of the bottom perforation clusters 1815.2.

[0184] 图20可以通过如上所述的使用3D DDM的应力投影产生。 [0184] FIG. 20 may be projected as described above using a stress generated by the 3D DDM. 在图20的例子中,裂缝1811. Γ延伸通过地层1817.1-1817.4,而裂缝1811.2"延伸通过地层1817.3-1817.6。图20 示出了一旦考虑了垂直应力投影的影响时图19的裂缝的截面图。裂缝1811.1更多向上生长,裂缝1811.2由于应力投影的影响而更多向下生长。 In the example of FIG. 20, extend through the formation fracture 1811. Γ 1817.1-1817.4, 1811.2 fracture and "extended. FIG. 20 shows a cross-sectional view of FIG. 19 cracks when considering the influence upon the vertical projection through the formation of stress 1817.3-1817.6 . 1811.1 more cracks grow upwards, due to the influence of stress cracks 1811.2 and more growth projected downward.

[0185] 在这种情况下,该裂缝的高度生长受垂直原处应力分布加上相邻裂缝的应力阴影的影响。 [0185] In this case, the fracture height growth by vertical situ stress distribution coupled with the impact stress fractures adjacent to the shadow. 裂缝1811. Γ在射孔簇1815.1上方具有延长的垂直长度L1'并在射孔簇1815.1下方具有减小的垂直长度L2'。 1811. Γ fracture has extended over the vertical length of the perforation cluster 1815.1 L1 'and having a reduced vertical length L2 at the bottom perforation clusters 1815.1'. 裂缝1811.2"在射孔簇1815.2上方具有减小的垂直长度L3'并在射孔簇1815.2下方具有延长的垂直长度L4'。图20中所示的生长反映出由于裂缝间的相互作用产生的离向生长,如图18中的箭头示意性的描绘。 1811.2 crack "over 1815.2 perforation clusters have a reduced vertical length L3 'and has an extended vertical length L4 below the perforation cluster 1815.2' growth shown in Figure 20 since reflected from the interaction between the crack to the growth arrows in FIG. 18 schematically depicted.

[0186] 如图19-20,其中裂缝在不同的深度并受到不同的应力,裂缝的高度生长可以随着相对裂缝高度而变化。 [0186] FIG. 19-20, in which cracks at different depths and subjected to different stresses, fracture height growth can vary with the relative height of the fracture. 裂缝是从不同的地层起裂的,并且由于垂直应力投影效应,相邻裂缝的存在可以帮助避免一个裂缝生长到被另一个裂缝所占据的地层中。 Crack formation is different from the crack initiation, and the shadow effect due to vertical stress, the presence of cracks can help avoid adjacent a formation fracture growth to another occupied by the fracture.

[0187] 本文所述的压力投影可以考虑相同或不同深度的裂缝之间的相互作用。 [0187] As used herein may be considered said pressure projection interaction between the same or different depths of cracks. 例如在图8中,中间裂缝可能由其任一侧的裂缝压缩并如参考图10所描述的变得更小和更窄。 For example in Figure 8, the intermediate may crack on either side of the fracture by compressing and 10 as described with reference to FIG become smaller and more narrow described. 本文提供的UFM模型可以用于描述这些相互作用。 UFM model provided herein may be used to describe these interactions. 在另一实例中,如图18-20所示,两个裂缝可以彼此相互压缩,并将裂缝分开。 In another example, as shown, two cracks 18-20 may be compressed to each other, and the cracks are separated. 在这个例子中,裂缝1811.1向上延伸,并且在右侧的裂缝由于井眼的倾斜而向下生长。 In this example, 1811.1 crack extends upwardly, and the cracks in the right side of the inclined borehole grown downward.

[0188] 图21示出方法2100的另一个版本,其可考虑在不同深度的裂缝的影响。 [0188] Figure 21 shows another version of the method 2100, which may be considered the impact of the cracks of different depths. 该方法2100可以考虑无论在相同或不同深度处的水力压裂裂缝之间的应力干涉,来评估每个裂缝的高度生长。 The method 2100 may be considered in terms of stress interference between the hydraulic fractures are the same or different depths, and to evaluate each fracture height growth. 该方法2100可以用于在具有如所示(例如在图18-20)的具有围绕其的裂缝网络的井眼的井场执行压裂操作。 The method 2100 may be used to perform the fracturing operation such as illustrated with (e.g., in Figures 18-20) about a wellsite having a wellbore fracture network of which FIG. 在这个版本中,该方法2100可以根据先前参考图15所描述的方法1500的一部分或全部来执行,但具有额外的应力投影2195、修改的确定1596'、和修改的重复1598'。 In this version, the method 2100 may be performed in accordance with part or all of the method described previously with reference to FIG. 15 of 1500, but with an additional stress projection 2195, 1596 to determine the modified ', and repeating the modified 1598'.

[0189] 可以基于水力压裂裂缝的垂直生长来执行额外的应力投影2195,以考虑在不同深度的水力压裂裂缝的影响。 [0189] Additional stresses may be performed 2195 based on the vertical projection hydraulic fracture growth, to consider the influence of hydraulic fractures at different depths. 当裂缝在不同深度(例如参见图18-20)时,额外的应力投影2195 可以使用3D DDM来执行。 When cracks at different depths (e.g., see FIGS. 18-20), the additional stress projection 2195 may be used to perform 3D DDM. 该额外的应力投影2195可以在执行1594之后并在修改的确定1596'之前执行。 This additional stress and projection 2195 may be 'performed prior to modification is determined after performing 1596 1594. 在一些情况下,额外的应力投影2195可以与执行应力投影1594同时执行。 In some cases, additional stress projection 2195 may be performed simultaneously with the execution stress projection 1594. 例如,在所述执行1594是使用3D DDM完成时,可以在没有额外的应力投影2195的情况下考虑深度。 For example, the 1594 is used when performing 3D DDM is completed, may be considered without depth without the additional stress of the projection 2195. 在一些情况下时,执行1594可以使用另外的技术完成,例如2D DDM,并使用3D DDM 在有额外的应力投影2195的情况下考虑裂缝的深度。 When some cases, performed 1594 can be used to complete other techniques, such as 2D DDM, and considering the use of 3D DDM crack depth in the case of additional stress projection 2195. 3D DDM可以考虑相邻裂缝和相关的垂直应力的影响,并产生调整后的垂直生长和/或长度。 3D DDM may be considered relevant and the adjacent vertical stress fracture of the impact, and a vertical growth adjusted and / or length.

[0190] 确定1596'和重复1598'可以被修改以考虑额外的应力投影2195(如果已执行)。 [0190] OK 1596 'and 1598 repeat' may be modified to account for the additional stress projection 2195 (if performed). 修改的确定1596'包括,根据所述执行1594和额外的应力投影2195来确定水力压裂裂缝和所遇到的裂缝之间的交叉特性。 Determining modified 1596 'comprises, between the cross characteristic hydraulic fractures and fracture encountered determined in accordance with the 2195 and 1594 perform additional stress projection. 修改的重复1598'包括基于1594确定应力干涉、2195额外的应力投影以及1596'确定交叉特性来重复所述裂缝生长模式。 Repeat modified 1598 '1594 comprises determining stress interference, additional stress projection 2195 and 1596' based on characteristics determined cross repeating the crack growth mode.

[0191] 额外的调节2197可以基于应力投影1594和/或2195执行。 [0191] Additional regulatory projection 2197 may be performed based on stress 1594 and / or 2195. 例如,通过在注入期间(或压裂期间)调节至少一个增产参数,例如栗送压力,流体粘性等,可以偏移裂缝生长。 For example, by adjusting at least one stimulation parameter during injection (or during fracturing), for example Li sending pressure, fluid viscosity, etc., may be offset crack growth. 裂缝生长可以使用针对调节的栗送参数修改的UFM模型来模拟。 Crack growth model UFM can be simulated using a modified transmission parameter for adjusting Li.

[0192] 该方法的一个或多个部分,基于1594-1599的一部分或全部可以重复例如执行增产操作1580。 [0192] one or more portions of the method, based on part or all of 1594-1599 may be repeated, for example, stimulation operations 1580 performed. 例如,基于应力投影1594和/或2195,和/或所得的裂缝生长,所述增产可以被调节以获得所需的裂缝生长(例如参见图20)。 For example, the stress on the projection 1594 and / or 2195 and / or the resulting crack growth, the stimulation may be adjusted to obtain the desired crack growth (e.g. see FIG. 20). 所述增产可以被修改,例如,通过调节栗送压力、流体粘性和/或其它注入参数,以获得所需的井场操作和/或所需的裂缝生长。 The increase may be modified, e.g., by adjusting the Li sending pressure, fluid viscosity and / or other well-field operation implantation parameters, to obtain the desired and / or needed for crack growth.

[0193] 图15和/或21的方法的一部分或全部的各种组合可以以各种顺序执行。 Various combinations of part or all of the methods [0193] FIGS. 15 and / or 21 may be performed in various orders.

[0194] [0194]

[0195] 尽管本公开已经参照示例性实施例和其执行方式进行了描述,但是本公开不限于或者不限定于这些示例性实施例和/或执行方式。 [0195] Although the present disclosure has been described with reference to exemplary embodiments and the implementation thereof, but the present disclosure is not limited to or limited to these exemplary embodiments and / or implementation. 相反,本公开的系统和方法容许在不脱离本公开的精神或范围的情况下的各种修改、变化和/或增强。 Instead, the system and method of the present disclosure without departing from the allowable from the spirit or scope of the disclosure that various modifications, variations and / or enhancements. 因此,本公开明显地将全部的这些修改、变化和增强包括在其范围之内。 Accordingly, the present disclosure obviously all such modifications, variations and enhancements include within their scope.

[0196] 应该注意到在任何这种实际实施例或者多种执行方式的研发中,可以做出具体的判定以实现研发者的具体目标,例如符合系统相关且商业关联的要求,其将在一种执行方式到另一种之间变化。 [0196] It should be noted that in the development or implementation of various embodiments of any such actual embodiment, the determination may be made in particular to achieve the developers' specific goals, such as compliance with system-related and business related requirements, which will be a implementation vary from species to another. 此外,应当意识到这种研发努力可能是复杂并且耗时的,但是对于享有本公开的利益的本领域的普通技术人员来说是常规的工作。 In addition, it should be realized that such a development effort might be complex and time consuming, but to enjoy the benefit of this disclosure by one of ordinary skill in the art it is routine work. 此外,这里使用/公开的实施例还包括引用之外的一些要素。 Further, as used herein, / embodiment disclosed also includes elements other than reference.

[0197] 在该说明书中,每个数值都应当以被术语"大约"修饰来读一次(除非已经明显地如此修饰),然后按没有如此修饰地再次读,除非在上下文中另有说明。 [0197] In this specification, each numerical value should be in the term "about" is read again (unless already clearly so modified) and then read again to press the not so modified unless otherwise indicated in context. 同样,在本说明书中,应该理解的是,被列出或描述成有用的、合适的任何范围或类似物意味着位于该范围之内的任何和每个值、包括端点都被认为是已经作出了声明。 Also, in the present specification, it should be understood that the listed or described as being useful, suitable, or the like mean any range and each located at any value within this range, inclusive have been made are considered a statement. 例如,"从1到10的范围"被理解为表示沿着大约1和大约10之间的连续区间的可能的数。 For example, "a range of from 1 to 10" is understood to mean the number of possible along the continuum between about 1 and about 10. 因此,即使位于范围内的具体数据点,或者甚至在范围内没有数据点,都是明确确定的或者仅指代一些具体的点,可以理解为发明者意识和理解到该范围内的任何和全部数据点都被认为是具体指明,并且发明者掌握整个范围以及位于该范围内的全部点的知识。 Thus, even if specific data points located within the range, or even no data points within the range, are explicitly identified or refer to only some specific points, can be understood as the inventors appreciate and understand that within the range of any and all data points are considered to be specifically identified, and the inventors knowledge to grasp the entire range and all points located within the range.

[0198] 本文做出的说明仅仅提供与本公开相关的信息并且不构成现有技术,并且可以描述说明本发明的一些实施例。 [0198] DESCRIPTION made herein merely provide information related to the present disclosure and may not constitute prior art, and may be described illustrate some embodiments of the present invention. 本文引用的全部参考文件通过参引方式整体被纳入到当前的申请中。 All references cited herein are incorporated as a whole to the current embodiment by reference herein.

[0199] 尽管上面已经详细描述了少量示例性实施例,本领域技术人员可以容易地意识到示例性实施例可以进行许多修改而不会实质上脱离执行井眼增产操作的系统和方法。 [0199] Although the above has been described with a small number of exemplary embodiments in detail, those skilled in the art can readily appreciate that the exemplary embodiments may be many modifications without substantially departing from the wellbore system and method for performing the stimulation operations. 因此,全部的这些改变都是被包括在如后面的权利要求限定的本公开的范围内。 Accordingly, all such modifications are to be included within the scope of the present disclosure as defined in the following claims. 在权利要求书中,功能性限定表述用于覆盖这里描述的执行列举的功能的结构并且不仅仅是结构性等价物,而且还是等价性结构。 In the claims, the expression defining the functionality described herein to cover structures as performing the recited function and not only structural equivalents, but also equivalent structures. 因此,尽管钉子和螺丝可能不是结构性等价物,因为钉子采用柱面将木质部件固定到一起,而螺丝采用螺旋面,但是在固定木质部件的条件下,钉子和螺丝可以是等价性结构。 Thus, although a nail and a screw may not be structural equivalents in that a nail using a cylindrical secure wooden parts together, whereas a screw employs a helical surface, but under the condition of fastening wooden parts, a nail and a screw may be equivalent structures. 本申请的明确目的在于不援引35U.SC§112第6段对这里的权利要求作任何限定,除非在权利要求中明确地将词语"用于…的装置"和相关的功能一起使用。 The purpose of the present application is not expressly 35U.SC§112 invoke paragraph 6 for any of the claims herein defined, for use with "means for ..." and related features in the claims unless explicitly words.

Claims (24)

  1. 1. 一种在井场执行压裂操作的方法,井场位于地下地层附近,井眼贯穿地下地层,裂缝网络位于地下地层中,所述裂缝网络包括天然裂缝,井场通过将具有支撑剂的注入流体注入到裂缝网络中而被增产,所述方法包括: 获得包括天然裂缝的天然裂缝参数的井场数据以及获得地下地层的地质力学模型; 生成裂缝网络的随着时间变化的水力压裂裂缝生长模式,所述生成包括: 使水力压裂裂缝从井眼延伸并进入地下地层的裂缝网络中,以形成包括天然裂缝和水力压裂裂缝的水力压裂网络; 在所述延伸之后确定水力压裂裂缝的水力压裂参数; 确定支撑剂通过水力压裂网络的传输参数;以及从所确定的水力压裂参数、所确定的传输参数和地质力学模型确定水力压裂裂缝的裂缝尺寸;以及在水力压裂裂缝上执行应力投影,以确定不同深度处的水力压裂裂缝 1. A method for performing well fracturing operation in the field, well field located subterranean formation, a wellbore penetrating a subterranean formation, the subterranean formation fracture networks located in the fracture network comprising natural fractures, the well site by having a proppant injection fluid is injected into the fracture network is stimulation, said method comprising: obtaining a natural fracture parameters include natural fractures and the well site data obtained geomechanical model of the underground formation; generating a fracture network changes over time hydraulic fracture growth pattern, the generating comprising: hydraulic fracture extending into the fracture network of the subterranean formation from the wellbore to form a hydraulic fracture network comprising natural fractures and hydraulic fractures; determining, after said extending hYDRAULIC hydraulic fracturing crack fracture parameters; determining a transmission parameter by hydraulic fracturing proppant network; and hydraulic fracture parameters determined from the transmission parameters and geomechanical model the determined fracture dimensions determined hydraulic fractures; and performing stress shadowing on the hydraulic fractures, to determine the hydraulic fractures at different depths 间的应力干涉;以及基于所确定的应力干涉重复所述生成。 Interference between stress; and repeating the interference is generated based on the determined stress.
  2. 2. 如权利要求1所述的方法,其中,执行应力投影包括执行三维位移不连续方法。 2. A method as claimed in claim 1, wherein the performing comprises performing a three-dimensional projection stress displacement discontinuity method.
  3. 3·如权利要求1所述的方法,其中,执行应力投影包括:执行第一应力投影以确定水力压裂裂缝之间的干涉以及执行第二应力投影以确定不同深度处的水力压裂裂缝之间的干涉。 3. The method according to claim 1, wherein, performing the stress projection comprising: performing a first projection to determine a stress interference between the hydraulic fractures and performing a second projection to determine a stress of hydraulic fractures at different depths between the intervention.
  4. 4. 如权利要求1所述的方法,其中,执行应力投影包括:执行二维位移不连续方法并且执行三维位移不连续方法。 4. The method according to claim 1, wherein, performing the stress projection comprising: performing two-dimensional displacement discontinuity method and performing three-dimensional displacement discontinuity method.
  5. 5. 如权利要求1所述的方法,还包括:如果所述水力压裂裂缝遇到另一个裂缝,则确定在所遇到的另一个裂缝处的交叉特性,其中,所述重复包括基于所确定的应力干涉和交叉特性重复所述生成。 5. The method according to claim 1, further comprising: if the fracture encounters another hydraulic fracture, the fracture characteristics at the intersection encountered in another it is determined, wherein, based on the repeating comprises stress interference and cross-determined repeating the generating characteristics.
  6. 6. 如权利要求5所述的方法,其中,水力压裂裂缝生长模式是不被所述交叉特性改变和被所述交叉特性改变中的一种。 6. The method according to claim 5, wherein the hydraulic fracture growth pattern is not changed and the cross characteristic change in one property is the intersection.
  7. 7. 如权利要求5所述的方法,其中,水力压裂网络的压裂压力比作用在遇到的裂缝上的应力更大,所述裂缝生长模式沿着遇到的裂缝扩展。 7. A method as claimed in claim 5, wherein the fracture pressure of the hydraulic fracture network is larger than the acting face of the fracture stress, the crack propagation along the crack growth mode encountered.
  8. 8. 如权利要求1所述的方法,其中,所述裂缝生长模式沿着遇到的裂缝持续扩展,直到达到天然裂缝的端部。 8. The method of claim 1, wherein, until the end of the natural fracture crack growth mode for extended along the crack encountered claim.
  9. 9. 如权利要求1所述的方法,其中,所述裂缝生长模式在天然裂缝的端部改变方向,裂缝生长模式在天然裂缝的端部处沿垂直于最小应力的方向延伸。 9. The method as claimed in claim 1, wherein the crack growth mode changes direction at the end portion of the natural fracture, crack growth mode at the end of the natural fracture stress in a direction perpendicular to the smallest extension.
  10. 10. 如权利要求1所述的方法,其中,所述裂缝生长模式根据应力投影垂直于局部主应力扩展。 10. The method according to claim 1, wherein the crack growth in extended mode in accordance with the local stress perpendicular projection principal stress.
  11. 11. 如权利要求1所述的方法,其中,所述应力投影包括对每个水力压裂裂缝执行位移不连续法。 11. The method as claimed in claim 1, wherein the stress comprises a projection performed for each hydraulic fracture displacement discontinuity method.
  12. 12. 如权利要求1所述的方法,其中,应力投影包括围绕井场的多个井眼执行应力投影并且使用在所述多个井眼上执行的应力投影而重复所述生成。 12. The method as claimed in claim 1, wherein the stress comprises performing projection projector stress field around a plurality of wells and wellbores using a stress projection executing on the plurality of repeating the generation and the wellbore.
  13. 13. 如权利要求1所述的方法,其中,所述应力投影包括在井眼中以多个增产级执行应力投影。 13. The method as claimed in claim 1, wherein the stress comprises performing projection to a plurality of stimulation projection stress level in the wellbore.
  14. 14. 如权利要求1所述的方法,还包括:通过将裂缝生长模式与裂缝网络的增产的至少一种模拟进行对比来验证裂缝生长模式。 14. The method according to claim 1, further comprising: verifying by comparing crack growth mode analog converting at least one stimulation mode of crack growth and fracture network.
  15. 15. 如权利要求1所述的方法,其中,所述延伸包括:基于天然裂缝参数和地下地层上的最小应力和最大应力使水力压裂裂缝沿着水力压裂裂缝生长模式延伸。 15. The method according to claim 1, wherein said extension comprising: hydraulic fracture based on the minimum stress and fracture parameters natural subterranean formation and the maximum stress crack growth mode extends along the hydraulic fracturing.
  16. 16. 如权利要求1所述的方法,其中,确定裂缝尺寸包括:评估地震测量、蚂蚁追踪、声波测量、地质测量及它们的组合中的一种。 16. The method according to claim 1, wherein the determining fracture dimensions comprises: measuring one of seismic assessment, ant tracking, sonic measurements, geological survey, and combinations thereof.
  17. 17. 如权利要求1所述的方法,其中,所述井场数据还包括:地质学数据、岩石物理数据、 地质力学数据、测井测量数据、完井数据、历史数据及它们的组合中的至少一种。 17. The method according to claim 1, wherein the wellsite data further comprises: geological data, petrophysical data, geomechanical data, log measurement data, well completion data, historical data, and combinations thereof at least one.
  18. 18. 如权利要求1所述的方法,其中,所述天然裂缝参数通过观测井眼成像记录、从井眼测量估算裂缝尺寸、获得微地震图像及它们的组合中之一而生成。 18. The method as claimed in claim 1, wherein the natural fracture parameters recorded by observing borehole imaging, fracture dimensions estimated from borehole measurements, seismic images obtained one micro and combinations thereof are generated.
  19. 19. 一种在井场执行压裂操作的方法,井场位于地下地层附近,井眼贯穿地下地层,裂缝网络位于地下地层中,所述裂缝网络包括天然裂缝,井场通过将具有支撑剂的注入流体注入到裂缝网络中而被增产,所述方法包括: 获得包括天然裂缝的天然裂缝参数的井场数据以及获得地下地层的地质力学模型; 生成裂缝网络的随着时间变化的水力压裂裂缝生长模式,所述生成包括: 使水力压裂裂缝从井眼延伸并进入地下地层的裂缝网络中,以形成包括天然裂缝和水力压裂裂缝的水力压裂网络; 在所述延伸之后确定水力压裂裂缝的水力压裂参数; 确定支撑剂通过水力压裂网络的传输参数;以及从所确定的水力压裂参数、所确定的传输参数和地质力学模型确定水力压裂裂缝的裂缝尺寸;以及在水力压裂裂缝上执行应力投影,以确定水力压裂裂缝之间的应力干 19. A method of fracturing operation performed at the wellsite, wellsite located subterranean formation, a wellbore penetrating a subterranean formation, the subterranean formation fracture networks located in the fracture network comprising natural fractures, the well site by having a proppant injection fluid is injected into the fracture network is stimulation, said method comprising: obtaining a natural fracture parameters include natural fractures and the well site data obtained geomechanical model of the underground formation; generating a fracture network changes over time hydraulic fracture growth pattern, the generating comprising: hydraulic fracture extending into the fracture network of the subterranean formation from the wellbore to form a hydraulic fracture network comprising natural fractures and hydraulic fractures; determining, after said extending hYDRAULIC hydraulic fracturing crack fracture parameters; determining a transmission parameter by hydraulic fracturing proppant network; and hydraulic fracture parameters determined from the transmission parameters and geomechanical model the determined fracture dimensions determined hydraulic fractures; and performing stress shadowing on the hydraulic fractures, to determine the stress between the hydraulic fractures dry ; 在水力压裂裂缝上执行额外的应力投影,以确定不同深度处的水力压裂裂缝之间的应力干涉; 如果水力压裂裂缝遇到另一个裂缝,则基于所确定的应力干涉确定水力压裂裂缝和遇到的裂缝之间的交叉特性;以及基于所确定的应力干涉和交叉特性重复所述生成。 ; Perform additional stress on the hydraulic fractures in the projection, to determine the stress interference between the hydraulic fractures at different depths; hydraulic fracture if the fracture encounters another, based on the determined stress interference determined HYDRAULIC cROSS characteristic between the crack and the crack fracture encountered; and cross-interference and stress characteristics based on the determined repeating the generating.
  20. 20. 如权利要求19所述的方法,还包括验证裂缝生长模式。 20. The method according to claim 19, further comprising verifying crack growth mode.
  21. 21. -种在井场执行压裂操作的方法,井场位于地下地层附近,井眼贯穿地下地层,裂缝网络位于地下地层中,所述裂缝网络包括天然裂缝,所述方法包括: 通过将具有支撑剂的注入流体注入到裂缝网络中而增产井场; 获得包括天然裂缝的天然裂缝参数的井场数据以及获得地下地层的地质力学模型; 生成裂缝网络的随着时间变化的水力压裂裂缝生长模式,所述生成包括: 使水力压裂裂缝从井眼延伸并进入地下地层的裂缝网络中,以形成包括天然裂缝和水力压裂裂缝的水力压裂网络; 在所述延伸之后确定水力压裂裂缝的水力压裂参数; 确定支撑剂通过水力压裂网络的传输参数;以及从所确定的水力压裂参数、所确定的传输参数和地质力学模型确定水力压裂裂缝的裂缝尺寸;以及在水力压裂裂缝上执行应力投影,以确定不同深度处的水力压裂裂缝之 21. - species fracturing operation performed at the wellsite methods well site is located in a subterranean formation, a wellbore penetrating a subterranean formation, the subterranean formation fracture networks located in the natural fracture network comprises a fracture, the method comprising: having injection fluid is injected into the fracture proppant stimulation network and wellsite; natural fracture parameters obtained include natural fractures wellsite data, and obtaining the geomechanical model subterranean formation; generating a fracture network as hydraulic fracture growth time mode, the generating comprising: hydraulic fracture extending into the fracture network of the subterranean formation from the wellbore to form a hydraulic fracture network comprising natural fractures and hydraulic fractures; after determining the hydraulic fracture extending hydraulic fracture parameters of the fracture; the transmission parameter determined by the proppant hydraulic fracture network; and hydraulic fracture parameters determined from the transmission parameters and geomechanical model the determined hydraulic fractures fracture dimensions determined; and a hydraulic a projection on the fracture stress performed to determine the hydraulic fractures at different depths 的应力干涉;以及基于所确定的应力干涉重复所述生成;以及基于所述应力投影调节所述增产。 The stress interference; and repeating the interference is generated based on the determined stress; and based on the yield stress of the regulating projection.
  22. 22. 如权利要求20所述的方法,还包括:验证所述水力压裂裂缝生长模式。 22. The method of claim 20, further comprising: verifying the hydraulic fracturing crack growth mode.
  23. 23. 如权利要求20所述的方法,还包括:如果水力压裂裂缝遇到另一个裂缝,则确定水力压裂裂缝和遇到的另一个裂缝之间的交叉特性,其中,所述重复包括基于所确定的应力干涉和交叉特性重复所述生成。 23. The method according to claim 20, further comprising: a hydraulic fracture if the fracture encounters another, it is determined that the intersection between the characteristics of the hydraulic fractures and other fractures encountered, wherein the repeating comprises repeating the stress generated based on the interference and cross-determined characteristic.
  24. 24. 如权利要求21所述的方法,其中,所述调节包括:改变包括栗送速率和流体粘性的至少一个增产参数。 24. The method according to claim 21, wherein said adjusting includes: changing the transmission rate include Li fluid viscosity and yield at least one parameter.
CN 201480072188 2013-11-06 2014-11-06 Modeling of interaction of hydraulic fractures in complex fracture networks CN105874158A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US201361900479 true 2013-11-06 2013-11-06
PCT/US2014/064205 WO2015069817A1 (en) 2013-11-06 2014-11-06 Modeling of interaction of hydraulic fractures in complex fracture networks

Publications (1)

Publication Number Publication Date
CN105874158A true true CN105874158A (en) 2016-08-17

Family

ID=53042054

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201480072188 CN105874158A (en) 2013-11-06 2014-11-06 Modeling of interaction of hydraulic fractures in complex fracture networks

Country Status (3)

Country Link
CN (1) CN105874158A (en)
CA (1) CA2929849A1 (en)
WO (1) WO2015069817A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226813A (en) * 2016-09-08 2016-12-14 南京特雷西能源科技有限公司 Fracturing fracture net rebuilding method and device based on microearthquake

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618652B2 (en) 2011-11-04 2017-04-11 Schlumberger Technology Corporation Method of calibrating fracture geometry to microseismic events
WO2018017110A1 (en) * 2016-07-22 2018-01-25 Halliburton Energy Services, Inc. Liquid gas treatment fluids for use in subterranean formation operations
WO2018084870A1 (en) * 2016-11-07 2018-05-11 Halliburton Energy Services, Inc. Real-time well bashing decision

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916359A (en) * 2005-11-28 2007-02-21 长庆石油勘探局 Method for building new slot to implement refracturing
US20070294034A1 (en) * 2006-06-15 2007-12-20 Tom Bratton Method for designing and optimizing drilling and completion operations in hydrocarbon reservoirs
US20080183451A1 (en) * 2007-01-29 2008-07-31 Xiaowei Weng Simulations for Hydraulic Fracturing Treatments and Methods of Fracturing Naturally Fractured Formation
CN101371005A (en) * 2006-01-27 2009-02-18 普拉德研究及开发股份有限公司 Hydraulic fracturing method for stratum
US20100004906A1 (en) * 2006-09-20 2010-01-07 Searles Kevin H Fluid Injection Management Method For Hydrocarbon Recovery
US20130140031A1 (en) * 2010-12-30 2013-06-06 Schlumberger Technology Corporation System and method for performing optimized downhole stimulation operations

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272407A1 (en) * 2006-05-25 2007-11-29 Halliburton Energy Services, Inc. Method and system for development of naturally fractured formations
US8392165B2 (en) * 2009-11-25 2013-03-05 Halliburton Energy Services, Inc. Probabilistic earth model for subterranean fracture simulation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1916359A (en) * 2005-11-28 2007-02-21 长庆石油勘探局 Method for building new slot to implement refracturing
CN101371005A (en) * 2006-01-27 2009-02-18 普拉德研究及开发股份有限公司 Hydraulic fracturing method for stratum
US20070294034A1 (en) * 2006-06-15 2007-12-20 Tom Bratton Method for designing and optimizing drilling and completion operations in hydrocarbon reservoirs
US20100004906A1 (en) * 2006-09-20 2010-01-07 Searles Kevin H Fluid Injection Management Method For Hydrocarbon Recovery
US20080183451A1 (en) * 2007-01-29 2008-07-31 Xiaowei Weng Simulations for Hydraulic Fracturing Treatments and Methods of Fracturing Naturally Fractured Formation
US20130140031A1 (en) * 2010-12-30 2013-06-06 Schlumberger Technology Corporation System and method for performing optimized downhole stimulation operations

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226813A (en) * 2016-09-08 2016-12-14 南京特雷西能源科技有限公司 Fracturing fracture net rebuilding method and device based on microearthquake

Also Published As

Publication number Publication date Type
WO2015069817A1 (en) 2015-05-14 application
CA2929849A1 (en) 2015-05-14 application

Similar Documents

Publication Publication Date Title
Mayerhofer et al. What is stimulated reservoir volume?
Chong et al. A completions guide book to shale-play development: A review of successful approaches toward shale-play stimulation in the last two decades
Vermylen et al. Hydraulic fracturing, microseismic magnitudes, and stress evolution in the Barnett Shale, Texas, USA
Roussel et al. Optimizing fracture spacing and sequencing in horizontal-well fracturing
US20120179444A1 (en) System and method for performing downhole stimulation operations
Fisher et al. Integrating fracture mapping technologies to optimize stimulations in the Barnett Shale
Wu et al. Simultaneous multifracture treatments: fully coupled fluid flow and fracture mechanics for horizontal wells
Weng et al. Modeling of hydraulic fracture network propagation in a naturally fractured formation
Warpinski et al. Stimulating unconventional reservoirs: maximizing network growth while optimizing fracture conductivity
Cipolla et al. Seismic-to-simulation for unconventional reservoir development
Frantz et al. Evaluating barnett shale production performance-using an integrated approach
Rahman et al. A shear‐dilation‐based model for evaluation of hydraulically stimulated naturally fractured reservoirs
Cipolla et al. Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity
US20130140031A1 (en) System and method for performing optimized downhole stimulation operations
Zhang et al. Initiation and growth of a hydraulic fracture from a circular wellbore
US7565278B2 (en) Method, system and apparatus for simulating fluid flow in a fractured reservoir utilizing a combination of discrete fracture networks and homogenization of small fractures
Waters et al. The effect of mechanical properties anisotropy in the generation of hydraulic fractures in organic shales
Xu et al. Wiremesh: a novel shale fracturing simulator
Barree et al. A practical guide to hydraulic fracture diagnostic technologies
Wu et al. Modeling of interaction of hydraulic fractures in complex fracture networks
Roussel et al. Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions
Kresse et al. Numerical modeling of hydraulic fracturing in naturally fractured formations
US20100307755A1 (en) Method and apparatus for efficient real-time characterization of hydraulic fractures and fracturing optimization based thereon
Roussel et al. Role of stress reorientation in the success of refracture treatments in tight gas sands
Cipolla et al. Engineering guide to the application of microseismic interpretations

Legal Events

Date Code Title Description
C06 Publication
C10 Entry into substantive examination
WD01