CN105872969A - Method for constructing overall-finished housing indoor fire protection system - Google Patents

Method for constructing overall-finished housing indoor fire protection system Download PDF

Info

Publication number
CN105872969A
CN105872969A CN201610226833.9A CN201610226833A CN105872969A CN 105872969 A CN105872969 A CN 105872969A CN 201610226833 A CN201610226833 A CN 201610226833A CN 105872969 A CN105872969 A CN 105872969A
Authority
CN
China
Prior art keywords
sensor
sensor network
module
data
network nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610226833.9A
Other languages
Chinese (zh)
Inventor
时建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610226833.9A priority Critical patent/CN105872969A/en
Publication of CN105872969A publication Critical patent/CN105872969A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Alarm Systems (AREA)
  • Fire Alarms (AREA)

Abstract

The invention provides a method for constructing an overall-finished housing indoor fire protection system. The method adopts a wireless sensor network to carry out fire hazard monitoring; the wireless sensor network particularly comprises sensor network nodes and a monitoring center server; the sensor network nodes are arranged at measured positions and are connected with the monitoring center server by a local area network; the monitoring center server provides a data service or sends out early-warning information to a remote user by a network; and each sensor network node comprises a sensor network positioning module for carrying out positioning by adopting an ellipse positioning method, a sensor constraining module for constraining an expense and energy of a sensor, a self power supply module which supplies energy by adopting a dye-sensitized photocell, and a data correction module. The overall-finished housing indoor fire protection system constructed by the method provided by the invention has a long service life and high monitoring accuracy; a positioning speed of the sensor network nodes is improved; the expenses and energy of the sensors are constrained; and monitoring cost is saved to the greatest extent.

Description

A kind of fully-decorated residence indoor fire safety system constituting method
Technical field
The present invention relates to fire-fighting domain, be specifically related to a kind of fully-decorated residence indoor fire safety system constituting method.
Background technology
Fire refers to the disaster that the most out of control burning is caused.In various disasters, fire be most frequently, One of major casualty threatening common people's safety and social development the most at large, currently, automatic fire alarm system is mainly visited with temperature-sensitive Surveying and smoke detection is main, cardinal principle is to be judged by the data message being gathered detector, if it exceeds set in advance Fixed threshold value, then send abnormal alarm.Along with monitoring the time passage and sensing data volume growth, sensor management, There is bigger difficulty in the tissue of sensing data, and the data collected for sensor network nodes must surveyed in conjunction with it Positional information in amount coordinate system is the most meaningful.
Additionally, the working sensor energy consumption that used of monitoring is big and is easily subject to the impact of the environment such as temperature, sensor is caused to be surveyed The data precision obtained reduces, and have impact on precision and the cost of fire monitoring further.
Summary of the invention
For the problems referred to above, the present invention provide a kind of can quickly alignment sensor network node, simultaneously to the expense of sensor and Energy carries out retraining, monitoring the wireless senser disaster hidden-trouble monitoring network that degree of accuracy is high.
The purpose of the present invention realizes by the following technical solutions:
A kind of fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to carry out disaster hidden-trouble monitoring, has Body includes sensor network nodes, LAN, monitoring center's server and short message alarm module, described sensor network nodes cloth Put at tested position and be connected by LAN with monitoring center server, monitoring center's server by network to long-distance user Data, services it is provided or sends early warning information, it is possible to sending early warning note by short message alarm module, it is characterized in that, described sensing Device network node includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The invention have the benefit that
1, positioning sensor network nodes is the premise of accurate measurements, arranges and uses the sensor network of oval positioning mode fixed Position module, simplifies location Calculation, accelerates the locating speed of sensor network nodes, set up rapidly the prison to disaster hidden-trouble Survey system;
2, by setting sensor constraints module, for expense and the energy of sensor are retrained, it is possible to disaster hidden-trouble Monitoring cost is saved to greatest extent on the premise of effectively monitoring;
3, after general sensor node uses a period of time, self-contained power depletion and lost efficacy, be arranged under illumination condition to Sensor continues the coloring matter sensitization type light cell of energy supply, extends the service life of disaster hidden-trouble monitoring device;
4, it is provided for the data correction module that the data of sensor acquisition are corrected, improves the monitoring to disaster hidden-trouble quick Sensitivity.
Accompanying drawing explanation
The invention will be further described to utilize accompanying drawing, but the embodiment in accompanying drawing does not constitute any limitation of the invention, for Those of ordinary skill in the art, on the premise of not paying creative work, it is also possible to obtains the attached of other according to the following drawings Figure.
Fig. 1 is the connection diagram of each intermodule of the present invention.
Detailed description of the invention
The invention will be further described with the following Examples.
Embodiment 1
Seeing Fig. 1, the present embodiment one fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to enter Row disaster hidden-trouble is monitored, and specifically includes sensor network nodes, LAN, monitoring center's server and short message alarm module, institute State sensor network nodes be arranged in tested position and be connected by LAN with monitoring center server, monitoring center's server There is provided data, services by network to long-distance user or send early warning information, it is possible to sending early warning note by short message alarm module, It is characterized in that, described sensor network nodes includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The present embodiment accelerates the locating speed of sensor network nodes, is arranged under illumination condition the color continuing energy supply to sensor Element sensitizing type light cell extends the service life of monitoring device;Sensor network route meet bandwidth, time delay, delay jitter, Packet loss constraints, fb、fd、fdj、fplValue be all 1, monitoring cost relative reduction 10%;According to sensor The correction factor m value of type selecting is 0.01, and monitoring accuracy improves 2% relatively.
Embodiment 2
Seeing Fig. 1, the present embodiment one fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to enter Row disaster hidden-trouble is monitored, and specifically includes sensor network nodes, LAN, monitoring center's server and short message alarm module, institute State sensor network nodes be arranged in tested position and be connected by LAN with monitoring center server, monitoring center's server There is provided data, services by network to long-distance user or send early warning information, it is possible to sending early warning note by short message alarm module, It is characterized in that, described sensor network nodes includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The present embodiment accelerates the locating speed of sensor network nodes, is arranged under illumination condition the color continuing energy supply to sensor Element sensitizing type light cell extends the service life of monitoring device;Sensor network route be unsatisfactory for bandwidth, time delay, delay jitter, Packet loss constraints, fb、fd、fdj、fplValue be all 0.2, monitoring cost relative reduction 15%;According to sensing The correction factor m value of device type selecting is 0.02, and monitoring accuracy improves 3% relatively.
Embodiment 3
Seeing Fig. 1, the present embodiment one fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to enter Row disaster hidden-trouble is monitored, and specifically includes sensor network nodes, LAN, monitoring center's server and short message alarm module, institute State sensor network nodes be arranged in tested position and be connected by LAN with monitoring center server, monitoring center's server There is provided data, services by network to long-distance user or send early warning information, it is possible to sending early warning note by short message alarm module, It is characterized in that, described sensor network nodes includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The present embodiment accelerates the locating speed of sensor network nodes, is arranged under illumination condition the color continuing energy supply to sensor Element sensitizing type light cell extends the service life of monitoring device;Sensor network route be unsatisfactory for bandwidth, time delay, delay jitter, Packet loss constraints, fb、fd、fdj、fplValue be all 0.4, monitoring cost relative reduction 8%;According to sensor The correction factor m value of type selecting is 0.03, and monitoring accuracy improves 5% relatively.
Embodiment 4
Seeing Fig. 1, the present embodiment one fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to enter Row disaster hidden-trouble is monitored, and specifically includes sensor network nodes, LAN, monitoring center's server and short message alarm module, institute State sensor network nodes be arranged in tested position and be connected by LAN with monitoring center server, monitoring center's server There is provided data, services by network to long-distance user or send early warning information, it is possible to sending early warning note by short message alarm module, It is characterized in that, described sensor network nodes includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The present embodiment accelerates the locating speed of sensor network nodes, is arranged under illumination condition the color continuing energy supply to sensor Element sensitizing type light cell extends the service life of monitoring device;Sensor network route be unsatisfactory for bandwidth, time delay, delay jitter, Packet loss constraints, fb、fd、fdj、fplValue be all 0.6, monitoring cost relative reduction 15%;According to sensing The correction factor m value of device type selecting is 0.04, and monitoring accuracy improves 4% relatively.
Embodiment 5
Seeing Fig. 1, the present embodiment one fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to enter Row disaster hidden-trouble is monitored, and specifically includes sensor network nodes, LAN, monitoring center's server and short message alarm module, institute State sensor network nodes be arranged in tested position and be connected by LAN with monitoring center server, monitoring center's server There is provided data, services by network to long-distance user or send early warning information, it is possible to sending early warning note by short message alarm module, It is characterized in that, described sensor network nodes includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and arranges sensor network nodes during location Coordinate be that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the first reference mode Coordinate, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell;
Further, described fully-decorated residence indoor fire safety system constituting method also include data correction module and with signal processing The power detecting module that module connects;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
Further, before gathering data, the clock using TPSN algorithm to realize wireless sensor network synchronizes, and is specially Local clock at node to be synchronized adds clock jitter, and the clock completing node synchronizes.
The present embodiment accelerates the locating speed of sensor network nodes, is arranged under illumination condition the color continuing energy supply to sensor Element sensitizing type light cell extends the service life of monitoring device;Sensor network route be unsatisfactory for bandwidth, time delay, delay jitter, Packet loss constraints, fb、fd、fdj、fplValue be all 0.9, monitoring cost relative reduction 12%;According to sensing The correction factor m value of device type selecting is 0.04, and monitoring accuracy improves 4% relatively.
Last it should be noted that, above example is only in order to illustrate technical scheme, rather than to scope Restriction, although having made to explain to the present invention with reference to preferred embodiment, it will be understood by those within the art that, Technical scheme can be modified or equivalent, without deviating from the spirit and scope of technical solution of the present invention.

Claims (3)

1. a fully-decorated residence indoor fire safety system constituting method, it uses wireless sensor network to carry out disaster hidden-trouble monitoring, specifically Including sensor network nodes, LAN, monitoring center's server and short message alarm module, described sensor network nodes is arranged Being connected by LAN at tested position and with monitoring center server, monitoring center's server is carried to long-distance user by network Supply data, services or send early warning information, it is possible to sending early warning note by short message alarm module, it is characterized in that, described sensor Network node includes:
(1) location in sensors network module, is used for obtaining sensor network nodes own location information, and it includes being sequentially connected with Task-driven submodule, locator module and signal processing submodule, described task-driven submodule is by LAN and monitoring Central server connects, and task-driven submodule drives locator module to obtain the own location information of ad-hoc network of sensors node, After the own location information of the described signal processing submodule described ad-hoc network of sensors node of reading, own location information is delivered to institute State monitoring center's server;Described locator module uses oval positioning mode to position, and sets sensor network nodes during location Coordinate is that (x, y), the coordinate of reference mode is (xn,yn), n=A, B, C, D, with (xA,yA) as the seat of the first reference mode Mark, with (xm,ym) as the coordinate of the second reference mode, positioning equation is:
( x - x m ) 2 + ( y - y m ) 2 + ( x - x A ) 2 + ( y - y A ) 2 = d A m
Wherein, m=B, C, D, dAmFor sensor network nodes to the first reference mode, the distance of the second reference mode and, ask Solve equation the position obtaining sensor;
(2) sensor constraints module, for retraining expense and the energy of sensor, is expressed as undirected by sensor network Cum rights connects figure W=(N, L), and N represents that number of network node, L represent two-way link collection, and constraint function is:
f = 1 [ Σ l ∈ L c ( l ) + Σ n ∈ N c ( n ) ] [ Σ l ∈ L p ( l ) + Σ n ∈ N p ( n ) ] ( Af b + Bf d + Cf d j + Df p l )
Wherein, fb、fd、fdj、fplBe respectively bandwidth, time delay, delay jitter, packet loss penalty, A, B, C, D is respectively fb、fd、fdj、fplWeight coefficient, [∑l∈Lc(l)+∑n∈NC (n)] it is expense restriction, [∑l∈Lp(l)+∑n∈NP (n)] it is energy constraint;
When sensor network route meets bandwidth, time delay, delay jitter, packet loss constraints, fb、fd、fdj、fpl Value be all 1, other situations fb、fd、fdj、fplValue all in the range of (0,1), expense restriction and energy are about Bundle should take minima under conditions of meeting bandwidth, time delay, delay jitter and packet loss constraint;
(3) self-powered module, for sensor energy supply, it pigment including continuing energy supply under illumination condition to sensor Sensitizing type light cell.
A kind of fully-decorated residence indoor fire safety system constituting method the most according to claim 1, is characterized in that, also include that data are repaiied Positive module and the power detecting module being connected with signal processing submodule;
Described data correction module is for being corrected the data of sensor acquisition, and the data after correction are sent to monitoring center's service Device, arranges correction factorWherein T0For local mean temperature, when T is sensor acquisition data Real time temperature, m is the correction factor selected according to sensor type, arranges the value of m in the range of (0,0.05), then
T≥T0Time, updating formula is:
Y x = Y · ( 1 - me - ( | T - T 0 T | + 0.001 ) )
T < T0Time, updating formula is:
Y x = Y · ( 1 + me - ( | T - T 0 T | + 0.001 ) )
Wherein, Y is by the one of sensor acquisition group of data, YxFor data after correction;
Described signal processing submodule reads the power information of the sensor network nodes of power detecting module detection, and then will sensing The power information of device network node sends to described monitoring center server.
A kind of fully-decorated residence indoor fire safety system constituting method the most according to claim 1, is characterized in that, before gathering data, The clock using TPSN algorithm to realize wireless sensor network synchronizes, when specially the local clock at node to be synchronized adds Clock deviation, the clock completing node synchronizes.
CN201610226833.9A 2016-04-12 2016-04-12 Method for constructing overall-finished housing indoor fire protection system Pending CN105872969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610226833.9A CN105872969A (en) 2016-04-12 2016-04-12 Method for constructing overall-finished housing indoor fire protection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610226833.9A CN105872969A (en) 2016-04-12 2016-04-12 Method for constructing overall-finished housing indoor fire protection system

Publications (1)

Publication Number Publication Date
CN105872969A true CN105872969A (en) 2016-08-17

Family

ID=56637635

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610226833.9A Pending CN105872969A (en) 2016-04-12 2016-04-12 Method for constructing overall-finished housing indoor fire protection system

Country Status (1)

Country Link
CN (1) CN105872969A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448019A (en) * 2016-11-14 2017-02-22 徐志勇 Unmanned aerial vehicle monitoring system for monitoring forest fire in real time

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914674A (en) * 1995-08-11 1999-06-22 Coleman; Kevin R. Detector and alarm apparatus and system
CN101751755A (en) * 2010-01-05 2010-06-23 重庆英卡电子有限公司 Forest fireproofing early warning system
CN102548035A (en) * 2012-02-28 2012-07-04 浪潮电子信息产业股份有限公司 Forest fire positioning and alarming system based on wireless sensor network
CN103021115A (en) * 2012-12-10 2013-04-03 深圳市广和通实业发展有限公司 Fire monitoring system
CN104504836A (en) * 2015-01-09 2015-04-08 广州市泰昌实业有限公司 Data information collecting device and method for natural gas fire alarm system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5914674A (en) * 1995-08-11 1999-06-22 Coleman; Kevin R. Detector and alarm apparatus and system
CN101751755A (en) * 2010-01-05 2010-06-23 重庆英卡电子有限公司 Forest fireproofing early warning system
CN102548035A (en) * 2012-02-28 2012-07-04 浪潮电子信息产业股份有限公司 Forest fire positioning and alarming system based on wireless sensor network
CN103021115A (en) * 2012-12-10 2013-04-03 深圳市广和通实业发展有限公司 Fire monitoring system
CN104504836A (en) * 2015-01-09 2015-04-08 广州市泰昌实业有限公司 Data information collecting device and method for natural gas fire alarm system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHYI-CHING LIANG ET AL.: "Localization Algorithm based on Improved Weighted Centroid in Wireless Sensor Networks", 《JOURNAL OF NETWORKS》 *
密荣荣等: "林区火灾监测报警系统设计及实现", 《测控技术》 *
王洪斌 等: "异步粒子群优化算法在QoS组播路由中的应用", 《传感器与微系统》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106448019A (en) * 2016-11-14 2017-02-22 徐志勇 Unmanned aerial vehicle monitoring system for monitoring forest fire in real time

Similar Documents

Publication Publication Date Title
CN109195099A (en) A kind of indoor orientation method merged based on iBeacon and PDR
CN102937610B (en) Underground methane monitoring and positioning system
CN104244175A (en) Mine environmental monitoring and rescue management system based on UWB technology
CN107170189A (en) Fireman's searching method in danger and equipment based on relative positioning
CN102979578A (en) Downhole multifunctional personnel location distress system
CN106297252A (en) A kind of industrial park air pollution surveillance system
Sharma et al. A Real Time Autonomous Soldier Health Monitoring and Reporting System Using COTS Available Entities
CN105872969A (en) Method for constructing overall-finished housing indoor fire protection system
CN104596511A (en) Positioning information source terminal device capable of being worn by firefighter
CN105897895A (en) Power anomaly data monitoring system based on wireless sensor network
CN106290772A (en) A kind of sewage monitoring system
CN105929301A (en) Intelligent monitoring device of substation grounding grid corrosion failure points
CN105959340A (en) Health monitoring device for reinforced concrete building structure
CN105959341A (en) Method for improving existing fire fighting system
CN105933395A (en) Underground chamber fire protection system construction method
CN105897897A (en) Fault monitoring device based on wireless sensor network
CN105872968A (en) Public transport monitoring system based on wireless sensor network
CN105763629A (en) Building pitched roof girder structure health monitoring device
CN203050782U (en) Underground multi-functional personnel positioning distress system
CN105933849A (en) Building structure health monitoring device
CN105933848A (en) Wireless sensor network-based power equipment monitoring system
CN106332173A (en) Distributed type node drift detection method and device
CN105933850A (en) Health monitoring device for connection structure between gravity dam and adverse geological bank slope
CN105933956A (en) Thermal insulation and water proof integrated building roof performance monitoring device
CN105915597A (en) Voltage monitoring system based on wireless sensor network

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20160817

RJ01 Rejection of invention patent application after publication