CN105869384A - 一种光伏ccd光控智能家居系统 - Google Patents

一种光伏ccd光控智能家居系统 Download PDF

Info

Publication number
CN105869384A
CN105869384A CN201610393639.XA CN201610393639A CN105869384A CN 105869384 A CN105869384 A CN 105869384A CN 201610393639 A CN201610393639 A CN 201610393639A CN 105869384 A CN105869384 A CN 105869384A
Authority
CN
China
Prior art keywords
signal
led
circuit
light
humidifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610393639.XA
Other languages
English (en)
Inventor
朱明德
李成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610393639.XA priority Critical patent/CN105869384A/zh
Publication of CN105869384A publication Critical patent/CN105869384A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C23/00Non-electrical signal transmission systems, e.g. optical systems
    • G08C23/04Non-electrical signal transmission systems, e.g. optical systems using light waves, e.g. infrared
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks
    • H04L12/2807Exchanging configuration information on appliance services in a home automation network
    • H04L12/2809Exchanging configuration information on appliance services in a home automation network indicating that an appliance service is present in a home automation network

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种光伏CCD光控智能家居系统,包括接收天线、信号处理电路、电源电路、白光LED;所述智能加湿器是单片机,用于控制所述音频编码解码器进行语音数据的采集和压缩编码,并将采集数据通过串口发送到LED驱动电路,所述LED驱动电路根据指令发出通断信号;光电检测模块控制所述PD光敏管接收光信号并输送到所述智能加湿器,所述智能加湿器将接收的数据发送给所述音频编码解码器进行解码输出。该系统实现复杂度和成本低、通信距离远,可以兼顾照明与实时语音对讲,同时系统还可以传输除语音外的其他数据。

Description

一种光伏CCD光控智能家居系统
技术领域
本发明涉及光通信技术领域,尤其是一种光伏CCD光控智能家居系统。
背景技术
太阳能(solar energy),是指太阳的热辐射能(参见热能传播的三种方式),主要表现就是常说的太阳光线。在现代一般用作发电或者为热水器提供能源。自地球上生命诞生以来,就主要以太阳提供的热辐射能生存,而自古人类也懂得以阳光晒干物件,并作为制作食物的方法,如制盐和晒咸鱼等。在化石燃料日趋减少的情况下,太阳能已成为人类使用能源的重要组成部分,并不断得到发展。太阳能的利用有光热转换和光电转换两种方式,太阳能发电是一种新兴的可再生能源。广义上的太阳能也包括地球上的风能、化学能、水能等。
太阳能是由太阳内部氢原子发生氢氦聚变释放出巨大核能而产生的,来自太阳的辐射能量。
人类所需能量的绝大部分都直接或间接地来自太阳。植物通过光合作用释放氧气、吸收二氧化碳,并把太阳能转变成化学能在植物体内贮存下来。煤炭、石油、天然气等化石燃料也是由古代埋在地下的动植物经过漫长的地质年代演变形成的一次能源。地球本身蕴藏的能量通常指与地球内部的热能有关的能源和与原子核反应有关的能源。
在现有的无线技术当中,除去基于电磁波传输信息的传统射频通信外, 还有基于光的无线通信,其中,有基于红外激光等的通信技术,还有基于可见光的无线通信技术。可见光通信技术,是利用发光的二极管发出的肉眼觉察不到的高速明暗闪烁信号来传输信息的。将需要传输的数据加载到光载波信号上,并进行调制,然后利用光电转换器件接收光载波信号并解调以获取信息。可见光通信系统能够覆盖灯光所能达到的范围,不需要电线连接。光通信技术具有极大的发展前景,将为光通信提供一种全新的高速数据接入方式。
发明内容
本发明的发明目的是,克服现有技术方法的不足,提供了一种实现复杂度和成本低、通信距离远,可以兼顾照明与实时语音对讲的系统, 同时系统还可以传输除语音外的其他数据。
为实现上述发明目的,提出了如下技术方案:
一种光伏CCD光控智能家居系统,包括;中央处理器、现场可编程门阵列电路、光电检测电路、光控锁模块、光钥匙模块、接收天线、信号处理电路、电源电路、白光LED、可见光传输链路、智能加湿器、音频编码解码器、音频输入输出端、电源电路;
所述信号调制设备负责调制生成原始的电信号;所述LED 灯是单色的 LED;所述光探测器是可见光波段响应较好的 CCD光电转换器件;所述接收天线是可变倍数的光学镜头;所述信号处理电路与光探测器相适应,用于视频电信号的处理,以及确定接收光斑的形状、大小和平均接收光功率;所述探照灯和所述接收天线之间是大气信道,光源发出的光通过大气信道进行传输;
所述远距离可见光通信系统设备主要包括发射端和接收端;发射端可使用OOK、PPM 等调制方式,光源将调制好的光信号以高速、明暗变化的规律进行发射,采用大功率低束散角阵列 LED 作为光源,由于调制速率在一百比特量级,可以采用单片机配合 C++软件编程进行发射端的软硬件设计,实现字符串的发送;接收端,采用 CCD 作为光探测器,硬件设备使用高帧频100fps 以上、高灵敏度、高响应度 CCD 相机;相机以与光源相同帧频进行拍摄,并且设计软件对CCD 相机进行数据的采集和处理,将调制信号的规律呈现出来,得到相应的灰度值,从而完成信息的传递过程,实现字符串的接收;所述充电插口设置于闭合门的侧端;
述电源电路内设置有太阳能电池板、稳压电路、电源控制器及直流供电电路;所述手中央处理器连接光钥匙模块;所述光钥匙模块内设置有智能移动终端,基于智能移动终端操作系统,设计基于虚拟串口的秘钥发送智能移动终端的软件模块,通过智能移动终端的软件模块发送出秘钥信息,秘钥信息由智能移动终端的 min-USB 口输出;所输出的秘钥信息,基于智能移动终端OTG 功能,经过外部驱动模块加载到LED灯上,通过LED来完成秘钥信息的传送;所述可见光传输链路包括LED驱动电路、LED灯、透镜、PD光敏管和光电检测模块;所述智能加湿器是单片机,用于控制所述音频编码解码器进行语音数据的采集和压缩编码,并将采集数据通过串口发送到LED驱动电路,所述LED驱动电路根据指令发出通断信号;光电检测模块控制所述PD光敏管接收光信号并输送到所述智能加湿器,所述智能加湿器将接收的数据发送给所述音频编码解码器进行解码输出。
可选地,所述基于光通信的门禁语音通话系统的上下行链路均使用1W普通白光LED, 采用开关键控-非归零码(OOK-NRZ)调制方式。
所发送密钥为 TTL 电平信号,即+5V 表示高电平“1”,0V 表示低电平“0”;基于TTL 信号电平特点,选用低成本、小体积 PNP 型贴片三极管 S8550 及其相关外围器件,构成了LED驱动电路;光钥匙是基于单片机 STC12C2052AD 设计的一种发送端;光钥匙可以发送不同的密钥,所述光钥匙模块不是一个简单的一对一的装置,而是一个一对多的装置。
所述LED驱动电路中,来自单片机的音频数据通过跨导放大电路放大并转换成电流信号, 通过Bias-T 叠加直流后加载到LED灯上。 LED的发散角一般较大, 在LED灯前端加距离可调的准直透镜, 调节光线的发散角度, 以便用于不同距离的照明和通信。
所述PD光敏管是接收面积为5mm×5mm,的PD光敏管。PD光敏管面积越大接收的光功率越大,但响应带宽会越小。PD光敏管前端加面积较大的非球面准直透镜增大接收光功率。PD光敏管将光信号转换成电流信号输出, 目前的可见光PD光敏管响应灵敏度峰值大多在红光波段, 所述PD光敏管灵敏度在LED光谱峰值450nm处不到0.3A\W 。当通信距离较远时,PD光敏管接收的光功率较小, 因此输出的电流信号很小,一般只有几×10mA 。
为了进行后续的数据处理, 需要对PD光敏管输出的电流进行放大。
所述光电检测模块中,第1级的低噪跨阻放大器将电流信号转换成电压信号, 再经过第2级电压放大器后电压幅度可达到2~3V , 经电压比较器后输出3.3V的TTL信号,输入到单片机进行处理。
所述音频编码解码器是一款低功耗、 高保真和体积小的 WM8960音频编解码器, 其集成了麦克风、耳机接口和放大器,因此大大减少了外部电路元器件的数量和电路体积。麦克风输入的模拟音频数据经24bit的ADC采样后进行音频编码,解码后的数据经过24bit的DAC后输出到耳机或扬声器。系统中,编解码器通过数字接口传输音频数据,通过控制接口接收控制数据。该编码器的采样率可以设置为8~48kHz,左、右声道的数据均为16bit, 因此语音信号的速率为256~1536kbit/s,当通信速率大于1536kbit/s时就能保证清晰的语音传输。
所述基于光通信的门禁语音通话系统采用强度调制和直接检测(IM/DD),即LED发射光功率随传输信号变化, 接收端的光电探测器件,如光电二极管(PD)、雪崩二极管(APD)和摄像镜头等,接收强弱变化的光强并转化成电流信号。由于当收发端之间存在直射链路时,直射链路功率占总接收功率的97.6% ,当通信终端的PD位于LED光源之后时,几乎可以忽略发送端光线对自身接收端的干扰影响。因此,上下行链路均使用白光LED进行通信。
该发明的有益效果:
应用人工智能专家系统、知识工程、模式识别、人工神经网络等方法和技术,进行智能化、集成化、协调化、设计和实现的新一代的计算机管理系统。智能加湿器可以根据室内的温度来自动调节湿度,当空气中的水气量一定时,提高温度,湿度则会降低;可以自行设定相对湿度值,当环境的相对湿度值低于设定值时,系统将自动加湿;当环境的相对湿度值高于设定值时, 声光报警器发出报警信号。用户可以根据所在环境自行设置湿度限值,采集的相对湿度值、 温度值和湿度限值,都可以在液晶显示屏上显示。有高中低水位开关, 在没有水的情况下, 则LED亮, 提示用户加水, 以防止干烧。
另外,智能加湿器能够通过GSM通信模块实现了远程控制,用户可以在回家之前启动智能加湿器,改善室内空气湿度,在离开家以后关闭,即使忘记出门之前关闭智能加湿器,也可以通过手机发出控制指令,关闭智能加湿器,这样能够合理规划智能加湿器的使用时间,延迟使用寿命以及节约能源。所述湿度采集传感器是SHT21传感器,此时不在需要温度传感器;该传感器能够对环境的温度和湿度进行监测,湿度精度±2%(相对湿度20%~80%), 温度精度±0.3℃(环境温度25~42℃)。传感器经过标定,既能提供I2C数字接口,也能提供PWM模拟输出模式。因为数字通信可大大降低功耗,在正常工作状态下,功耗可在3μW以内,在延长测量间隔的情况下,功耗还可进一步降低。使用 SHT21 过程中, A/D电路进行数字化信号转换。除此之外,SHT21的分辨率还可以通过指令进行8/12bit 到12/14bit的改变,便于检测电量状态,同时输出校验和,有助于提高通信的可靠性。
所述微控制器是采用单片机 ,其CPU由控制器和运算器组成, 主要进行运算及指令识别。存储器为8K可擦写闪存, 工作电源为+5V 。其内部有振荡器的反相放大器, 石英晶体和陶瓷谐振器共同构成自激振荡器。引脚简单可靠, 功能强大, 使用方便, 并具有低功耗空闲和掉电模式。
所述温度传感器是DS18B20传感器,DS18B20传感器具有一线接口, 使用简单方便, 在实际使用中无需外部元件, 直接利用数据总线供电, 测量温度范围较大。因此, 使用范围较广, 用途较大。WIFI容易被电磁干扰,传输的方向不可控,密码容易被截获。然而可见光通信是一种点对点的传输模式,具有保密性好的优点。远距离可见光通信系统,在发射端采用了OOK调制方式,OOK 带宽需求低,而且硬件实现最为简单,解码时候只需要通过直接检测的方法,通过判断光的有无来确定接收到的信息时0或者1;使得发射端成本合理;在接收端,采用 CCD 作为光探测器,硬件设备使用高帧频(100fps 以上)、高灵敏度、高响应度 CCD 相机;相机以与光源相同帧频进行拍摄,并且设计软件对CCD 相机进行数据的采集和处理,将调制信号的规律呈现出来,得到相应的灰度值,从而完成信息的传递过程,实现字符串的接收。选择 CCD 作为光探测器,其灵敏度和响应度比传统的 PIN 光电二极管高很多。对比于传统光电二极管,采用 CCD 相机可以使光源的位置可以在图像中清晰的显示出来,这样,只要能够判断出信号的位置,将来可以使用多个光源,在接收端的接受能力之内,成倍的提高传输速率。并且 CCD 作为光探测器还可以同时用于APT 通信系统当中。
光钥匙和智能移动终端相结合,可以很好的运用Android系统开发手机AAP光密钥软件,Android系统是基于 Linux 的一个开源的操作系统,主要是使用在移动终端(手机和平板)中。Android系统和其他的系统平台相比,有很大的优势。它的优势最主要的体现在它的开放性。Android系统是完全开源的系统,所有的爱好者和厂商都可以参与到 Android系统的开发中来,这就为 Android 系统的发展打下了很好基础。Android 系统已经成为了全球装机量第一大的系统。Android 系统的另一大优势就是基于谷歌公司的平台,谷歌公司的地图、搜索、邮箱等服务产品,能够无缝的应用到 Andriod 系统中去。
本发明的所述的现场可编程门阵列电路,内部包括可配置逻辑模块CLB、输入输出模块IOB和内部连线三个部分;FPGA利用小型查找表(16×1RAM)来实现组合逻辑,每个查找表连接到一个D触发器的输入端,触发器再来驱动其他逻辑电路或驱动I/O,由此构成了既可实现组合逻辑功能又可实现时序逻辑功能的基本逻辑单元模块,这些模块间利用金属连线互相连接或连接到I/O模块;FPGA的逻辑是通过向内部静态存储单元加载编程数据来实现的,存储在存储器单元中的值决定了逻辑单元的逻辑功能以及各模块之间或模块与I/O间的联接方式,并最终决定了FPGA所能实现的功能,FPGA允许无限次的编程;为更好的实现本发明,能够满足在光照度不够使太阳能进行发电或夜间时候依然满足对整个系统进行供电
在使用时,多余的电能将被存储在蓄电池组内,而出现太阳能光照不够或阴雨天气或夜间时,蓄电池组将进行释电,并通过电源控制器的输出电路输送至直流供电电路内,对中央处理器及现场可编程门阵列电路进行供电,达到24小时全天候的使整个系统工作。
基于光通信的门禁语音通话系统采用OOK-NRZ调制编码方式,降低系统实现复杂度。在发射端LED和接收端PD光敏管前加上透镜,可以减小LED光线的发散角和增加PD光敏管的接收光强,从而增大通信距离。
为了实现低成本和低功耗的要求, 用单片机作为主控制,控制音频编码解码器,并进行数据的传输。本系统可实现最高2.5Mbit\s的通信速率,最远通信距离可达40m,系统复杂度低、实现简单、设备体积小、功耗低、成本低和性能稳定,具有较好的实用性。
附图说明
图1是本发明的系统结构示意图;
图2是LED驱动电路结构示意图;
图3是光电检测模块结构示意图;
图4是音频编码解码器结构示意图。
具体实施方式
下面结合附图对本发明的一种基于光通信的门禁语音系统作进一步详尽描述:
1、如图1所示,一种光伏CCD光控智能家居系统,包括:中央处理器、现场可编程门阵列电路、光电检测电路、光控锁模块、光钥匙模块、接收天线、信号处理电路、电源电路、白光LED、可见光传输链路、智能加湿器、音频编码解码器、音频输入输出端、电源电路;
所述信号调制设备负责调制生成原始的电信号;所述LED 灯是单色的 LED;所述光探测器是可见光波段响应较好的 CCD光电转换器件;所述接收天线是可变倍数的光学镜头;所述信号处理电路与光探测器相适应,用于视频电信号的处理,以及确定接收光斑的形状、大小和平均接收光功率;所述探照灯和所述接收天线之间是大气信道,光源发出的光通过大气信道进行传输;
所述远距离可见光通信系统设备主要包括发射端和接收端;发射端可使用OOK、PPM 等调制方式,光源将调制好的光信号以高速、明暗变化的规律进行发射,采用大功率低束散角阵列 LED 作为光源,由于调制速率在一百比特量级,可以采用单片机配合 C++软件编程进行发射端的软硬件设计,实现字符串的发送;接收端,采用 CCD 作为光探测器,硬件设备使用高帧频100fps 以上、高灵敏度、高响应度 CCD 相机;相机以与光源相同帧频进行拍摄,并且设计软件对CCD 相机进行数据的采集和处理,将调制信号的规律呈现出来,得到相应的灰度值,从而完成信息的传递过程,实现字符串的接收;所述充电插口设置于闭合门的侧端;所述光钥匙模块内设置有智能移动终端,基于智能移动终端操作系统,设计基于虚拟串口的秘钥发送智能移动终端的软件模块,通过智能移动终端的软件模块发送出秘钥信息,秘钥信息由智能移动终端的 min-USB 口输出;所输出的秘钥信息,基于智能移动终端OTG功能,经过外部驱动模块加载到LED灯上,通过LED来完成秘钥信息的传送;所述可见光传输链路包括LED驱动电路、LED灯、透镜、PD光敏管和光电检测模块;所述智能加湿器是单片机,用于控制所述音频编码解码器进行语音数据的采集和压缩编码,并将采集数据通过串口发送到LED驱动电路,所述LED驱动电路根据指令发出通断信号;光电检测模块控制所述PD光敏管接收光信号并输送到所述智能加湿器,所述智能加湿器将接收的数据发送给所述音频编码解码器进行解码输出。
所述的现场可编程门阵列电路,内部包括可配置逻辑模块CLB、输入输出模块IOB和内部连线三个部分;FPGA利用小型查找表(16×1RAM)来实现组合逻辑,每个查找表连接到一个D触发器的输入端,触发器再来驱动其他逻辑电路或驱动I/O,由此构成了既可实现组合逻辑功能又可实现时序逻辑功能的基本逻辑单元模块,这些模块间利用金属连线互相连接或连接到I/O模块;FPGA的逻辑是通过向内部静态存储单元加载编程数据来实现的,存储在存储器单元中的值决定了逻辑单元的逻辑功能以及各模块之间或模块与I/O间的联接方式,并最终决定了FPGA所能实现的功能,FPGA允许无限次的编程;为更好的实现本发明,能够满足在光照度不够使太阳能进行发电或夜间时候依然满足对整个系统进行供电。
在使用时,多余的电能将被存储在蓄电池组内,而出现太阳能光照不够或阴雨天气或夜间时,蓄电池组将进行释电,并通过电源控制器的输出电路输送至直流供电电路内,对中央处理器及现场可编程门阵列电路进行供电,达到24小时全天候的使整个系统工作。
优选地,所述基于光通信的门禁语音通话系统的上下行链路均使用1W普通白光LED, 采用开关键控-非归零码(OOK-NRZ)调制方式。
所述湿度采集传感器是SHT21传感器,此时不在需要温度传感器;该传感器能够对环境的温度和湿度进行监测,湿度精度±2%(相对湿度20%~80%), 温度精度±0.3℃(环境温度25~42℃)。传感器经过标定,既能提供I2C数字接口,也能提供PWM模拟输出模式。因为数字通信可大大降低功耗,在正常工作状态下,功耗可在3μW以内,在延长测量间隔的情况下,功耗还可进一步降低。使用 SHT21 过程中, A/D电路进行数字化信号转换。除此之外,SHT21的分辨率还可以通过指令进行8/12bit 到12/14bit的改变,便于检测电量状态,同时输出校验和,有助于提高通信的可靠性。
所述微控制器是采用单片机 ,其CPU由控制器和运算器组成, 主要进行运算及指令识别。存储器为8K可擦写闪存, 工作电源为+5V 。其内部有振荡器的反相放大器, 石英晶体和陶瓷谐振器共同构成自激振荡器。引脚简单可靠, 功能强大, 使用方便, 并具有低功耗空闲和掉电模式。
所述温度传感器是DS18B20传感器,DS18B20传感器具有一线接口, 使用简单方便, 在实际使用中无需外部元件, 直接利用数据总线供电, 测量温度范围较大。因此, 使用范围较广, 用途较大。
所述远距离可见光通信系统具体包括:
调制器,用于可见光通信发射端需要将基带信号调制到光载波上,调制器的作用就是要根据不同的调制方式,如 OOK 调制、PPM 调制等,将信息先调制成电信号。调制器硬件上可以采用常用的 51 单片机系列,为了达到更高的速度和精度的要求,还可以选择 FPGA等。
LED 驱动,用于将电信号转化为光信号。LED 驱动模块用于完成对LED 光源的驱动功能,同时将调至好的电信号转化为光信号加载到 LED 光源上。如 51 单片机,其触发方式是 TTL 触发,完成对 LED 光源驱动。
LED,是可见光通信系统的发射装置,为了满足通信系统的需求,应尽可能选择功率大、束散角小、白光 LED 光源。此外,选择阵列形式 LED 光源可以增大光功率,而对束散角一般达到4度。
LED控制器,用来控制光源和相机的设备,完成辅助功能。
大气信道,光源将调至好的信号光发射出去,通过大气信道传输,传输过程中将受到大气信道的影响。
相机镜头,相机镜头即是接收天线,主要完成光信号的捕捉接收功能,镜头能够进行变焦,变化接收视场角,可以放大或者缩小目标。为了便于和 CCD相机相互配合,配置了电动变焦镜头和编码器,可以实现电脑控制自动变焦。
CCD 相机,CCD 是感光元器件,主要是将光信号转化为电信号再成像。
CCD 相机需能够匹配光源的速率, CCD 相机能够完成高帧频采集。CCD 相机通过千兆以太网连接到电脑上,并通过程序完成图像数据的采集和处理。
成像处理过程,用于将接收到的已调光信号进行接收成像,分析其灰度光强度,解调出原始信息,完成信息接收。
如图2所示,所述LED驱动电路中,来自单片机的音频数据通过跨导放大电路放大并转换成电流信号, 通过Bias-T 叠加直流后加载到LED灯上。 LED的发散角一般较大, 在LED灯前端加距离可调的准直透镜, 调节光线的发散角度, 以便用于不同距离的照明和通信。
优选地,所述PD光敏管是接收面积为5mm×5mm,的PD光敏管。PD光敏管面积越大接收的光功率越大,但响应带宽会越小。PD光敏管前端加面积较大的非球面准直透镜增大接收光功率。PD光敏管将光信号转换成电流信号输出, 目前的可见光PD光敏管响应灵敏度峰值大多在红光波段, 所述PD光敏管灵敏度在LED光谱峰值450nm处不到0.3A\W 。当通信距离较远时,PD光敏管接收的光功率较小, 因此输出的电流信号很小,一般只有几×10mA 。
为了进行后续的数据处理, 需要对PD光敏管输出的电流进行放大。
如图3所示,所述光电检测模块中,第1级的低噪跨阻放大器将电流信号转换成电压信号, 再经过第2级电压放大器后电压幅度可达到2~3V , 经电压比较器后输出3.3V的TTL信号, 输入到单片机进行处理。
如图4所示,所述音频编码解码器是一款低功耗、 高保真和体积小的 WM8960音频编解码器, 其集成了麦克风、耳机接口和放大器,因此大大减少了外部电路元器件的数量和电路体积。麦克风输入的模拟音频数据经24bit的ADC采样后进行音频编码,解码后的数据经过24bit的DAC后输出到耳机或扬声器。系统中,编解码器通过数字接口传输音频数据,通过控制接口接收控制数据。该编码器的采样率可以设置为8~48kHz,左、右声道的数据均为16bit, 因此语音信号的速率为256~1536kbit/s,当通信速率大于1536kbit/s时就能保证清晰的语音传输。
所述基于光通信的门禁语音通话系统采用强度调制和直接检测(IM/DD),即LED发射光功率随传输信号变化, 接收端的光电探测器件,如光电二极管(PD)、雪崩二极管(APD)和摄像镜头等,接收强弱变化的光强并转化成电流信号。由于当收发端之间存在直射链路时,直射链路功率占总接收功率的97.6% ,当通信终端的PD位于LED光源之后时,几乎可以忽略发送端光线对自身接收端的干扰影响。因此,上下行链路均使用白光LED进行通信。所述远距离可见光通信系统具体包括:
调制器,用于可见光通信发射端需要将基带信号调制到光载波上,调制器的作用就是要根据不同的调制方式,如 OOK 调制、PPM 调制等,将信息先调制成电信号。调制器硬件上可以采用常用的 51 单片机系列,为了达到更高的速度和精度的要求,还可以选择 FPGA等。
LED 驱动,用于将电信号转化为光信号。LED 驱动模块用于完成对LED 光源的驱动功能,同时将调至好的电信号转化为光信号加载到 LED 光源上。如 51 单片机,其触发方式是 TTL 触发,完成对 LED 光源驱动。
LED,是可见光通信系统的发射装置,为了满足通信系统的需求,应尽可能选择功率大、束散角小、白光 LED 光源。此外,选择阵列形式 LED 光源可以增大光功率,而对束散角一般达到4度。
LED控制器,用来控制光源和相机的设备,完成辅助功能。
大气信道,光源将调至好的信号光发射出去,通过大气信道传输,传输过程中将受到大气信道的影响。
相机镜头,相机镜头即是接收天线,主要完成光信号的捕捉接收功能,镜头能够进行变焦,变化接收视场角,可以放大或者缩小目标。为了便于和 CCD相机相互配合,配置了电动变焦镜头和编码器,可以实现电脑控制自动变焦。
CCD 相机,CCD 是感光元器件,主要是将光信号转化为电信号再成像。
CCD 相机需能够匹配光源的速率, CCD 相机能够完成高帧频采集。CCD 相机通过千兆以太网连接到电脑上,并通过程序完成图像数据的采集和处理。
成像处理过程,用于将接收到的已调光信号进行接收成像,分析其灰度光强度,解调出原始信息,完成信息接收。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,这些均属于本发明的保护之内。

Claims (5)

1.一种光伏CCD光控智能家居系统,其特征在于,包括;中央处理器、现场可编程门阵列电路、光电检测电路、光控锁模块、光钥匙模块、接收天线、信号处理电路、电源电路、白光LED、可见光传输链路、智能加湿器、音频编码解码器、音频输入输出端、电源电路;
所述信号调制设备负责调制生成原始的电信号;所述LED 灯是单色的 LED;所述光探测器是可见光波段响应较好的 CCD光电转换器件;所述接收天线是可变倍数的光学镜头;所述信号处理电路与光探测器相适应,用于视频电信号的处理,以及确定接收光斑的形状、大小和平均接收光功率;所述探照灯和所述接收天线之间是大气信道,光源发出的光通过大气信道进行传输;所述智能加湿器包括微控制器、加湿器开关以及光接收模块,所述光接收模块从LED灯组中接收LED通信信号,对所述LED通信信号处理后获得控制指令,并将所述控制指令输送到微控制器,所述微控制器根据所述控制指令生成加湿器开关的执行指令,所述加湿器开关是电磁继电器,所述电磁继电器与加湿器的加湿装置连接;
所述智能加湿器还包括水位传感器、温度传感器、湿度采集传感器、声光报警器以及显示电路,当所述智能加湿器根据控制指令开始工作时,微控制器向所述水位传感器、温度传感器、湿度采集传感器发出执行指令,获得加湿器内的水量数据信号、室温信号以及室内湿度信号,微处理器对所述水量数据信号、室温信号以及室内湿度信号进行放大、测量、A/D转换之后传送到加湿判断电路,控制加湿器按设定参数工作,同时把数据反馈给所述显示电路进行数据的可视化处理,最终达到对环境进行智能加湿的目的;
当环境的相对湿度值高于设定值时或者加湿器水量不足时,所述声光报警器发出报警信号;
所述远距离可见光通信系统设备主要包括发射端和接收端;发射端可使用OOK、PPM 等调制方式,光源将调制好的光信号以高速、明暗变化的规律进行发射,采用大功率低束散角阵列 LED 作为光源,由于调制速率在一百比特量级,可以采用单片机配合 C++软件编程进行发射端的软硬件设计,实现字符串的发送;接收端,采用 CCD 作为光探测器,硬件设备使用高帧频100fps 以上、高灵敏度、高响应度 CCD 相机;相机以与光源相同帧频进行拍摄,并且设计软件对CCD 相机进行数据的采集和处理,将调制信号的规律呈现出来,得到相应的灰度值,从而完成信息的传递过程,实现字符串的接收;所述充电插口设置于闭合门的侧端;
所述电源电路分别连接中央处理器和现场可编程门阵列电路;所述电源电路内设置有太阳能电池板、稳压电路、电源控制器及直流供电电路;所述可见光传输链路包括LED驱动电路、LED灯、透镜、PD光敏管和光电检测模块;所述智能加湿器是单片机,用于控制所述音频编码解码器进行语音数据的采集和压缩编码,并将采集数据通过串口发送到LED驱动电路,所述LED驱动电路根据指令发出通断信号;光电检测模块控制所述PD光敏管接收光信号并输送到所述智能加湿器,所述智能加湿器将接收的数据发送给所述音频编码解码器进行解码输出。
2.根据权利要求1所述的一种基于光通信的门禁语音系统,其特征在于,所述的现场可编程门阵列电路,内部包括可配置逻辑模块CLB、输入输出模块IOB和内部连线三个部分;FPGA利用小型查找表(16×1RAM)来实现组合逻辑,每个查找表连接到一个D触发器的输入端,触发器再来驱动其他逻辑电路或驱动I/O,由此构成了既可实现组合逻辑功能又可实现时序逻辑功能的基本逻辑单元模块,这些模块间利用金属连线互相连接或连接到I/O模块;FPGA的逻辑是通过向内部静态存储单元加载编程数据来实现的,存储在存储器单元中的值决定了逻辑单元的逻辑功能以及各模块之间或模块与I/O间的联接方式,并最终决定了FPGA所能实现的功能,FPGA允许无限次的编程。
3.根据权利要求2所述的一种基于光通信的门禁语音系统,其特征在于,所述LED驱动电路中,来自单片机的音频数据通过跨导放大电路放大并转换成电流信号, 通过Bias-T叠加直流后加载到LED灯上。
4.根据权利要求1所述的一种基于光通信的门禁语音系统,其特征在于,
基于光通信的门禁语音通话系统采用强度调制和直接检测(IM/DD),即LED发射光功率随传输信号变化, 接收端的光电探测器件,如光电二极管(PD)、雪崩二极管(APD)和摄像镜头等,接收强弱变化的光强并转化成电流信号;
由于当收发端之间存在直射链路时,直射链路功率占总接收功率的97.6% ,当通信终端的PD位于LED光源之后时,几乎可以忽略发送端光线对自身接收端的干扰影响。
5.根据权利要求4所述的一种基于光通信的门禁语音系统,其特征在于,所述光电检测模块中,第1级的低噪跨阻放大器将电流信号转换成电压信号, 再经过第2级电压放大器后电压幅度可达到2~3V,经电压比较器后输出3.3V的TTL信号, 输入到单片机进行处理。
CN201610393639.XA 2016-06-06 2016-06-06 一种光伏ccd光控智能家居系统 Pending CN105869384A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610393639.XA CN105869384A (zh) 2016-06-06 2016-06-06 一种光伏ccd光控智能家居系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610393639.XA CN105869384A (zh) 2016-06-06 2016-06-06 一种光伏ccd光控智能家居系统

Publications (1)

Publication Number Publication Date
CN105869384A true CN105869384A (zh) 2016-08-17

Family

ID=56676800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610393639.XA Pending CN105869384A (zh) 2016-06-06 2016-06-06 一种光伏ccd光控智能家居系统

Country Status (1)

Country Link
CN (1) CN105869384A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201589370U (zh) * 2009-12-31 2010-09-22 邬志坚 家用加湿器控制器
CN204166419U (zh) * 2014-11-06 2015-02-18 顾明 一种智能酒店控制管理系统
CN105610659A (zh) * 2016-03-21 2016-05-25 文成县刀锋科技有限公司 一种太阳能节能lifi通信的家庭网络装置
CN105634604A (zh) * 2016-03-21 2016-06-01 文成县刀锋科技有限公司 一种长距离光子lifi节能通信系统
CN105634601A (zh) * 2016-03-10 2016-06-01 文成县刀锋科技有限公司 一种基于光通信的门禁语音通话系统
CN105634602A (zh) * 2016-03-10 2016-06-01 文成县刀锋科技有限公司 一种远距离可见光通信系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201589370U (zh) * 2009-12-31 2010-09-22 邬志坚 家用加湿器控制器
CN204166419U (zh) * 2014-11-06 2015-02-18 顾明 一种智能酒店控制管理系统
CN105634601A (zh) * 2016-03-10 2016-06-01 文成县刀锋科技有限公司 一种基于光通信的门禁语音通话系统
CN105634602A (zh) * 2016-03-10 2016-06-01 文成县刀锋科技有限公司 一种远距离可见光通信系统
CN105610659A (zh) * 2016-03-21 2016-05-25 文成县刀锋科技有限公司 一种太阳能节能lifi通信的家庭网络装置
CN105634604A (zh) * 2016-03-21 2016-06-01 文成县刀锋科技有限公司 一种长距离光子lifi节能通信系统

Similar Documents

Publication Publication Date Title
CN106151917A (zh) 一种光伏节能智能通讯手电筒
CN106066096A (zh) 一种多网络远程光控的智能加热淋浴系统
CN106195887A (zh) 一种光伏节能智能吸附雾霾路灯
CN106123113A (zh) 一种室内无线ccd控制智能净化器
CN106091257A (zh) 一种多网融合远程光控的智能净化器
CN105897529A (zh) 一种基于远距离lifi节能光控家庭网络系统
CN105915285A (zh) 一种基于多网融合的智能节能窗帘
CN105892373A (zh) 一种远程lbs定位导航的物联网控制系统
CN105939175A (zh) 一种潜海ccd光通信装置
CN106100731A (zh) 一种远程lbs定位导航的插排控制系统
CN106686799A (zh) 一种室内短距离通讯智能探照系统
CN106161605A (zh) 光通信智能移动互联控制空调加湿系统
CN106211427A (zh) 一种地下专用ccd光通信照明系统
CN106168402A (zh) 一种光伏ccd光控智能空调制热系统
CN106091177A (zh) 一种基于移动互联控制的家用智能净化系统
CN106099552A (zh) 一种光伏ccd光控智能插座
CN106211428A (zh) 一种多网融合远程通讯的探照系统
CN106168095A (zh) 一种光伏语音预警自动控制窗户
CN106094537A (zh) 一种室内无线ccd控制智能控制装置
CN106160858A (zh) 一种光伏节能ccd光控智能去污器
CN106179747A (zh) 一种多网融合远程通讯的智能去雾霾系统
CN106059664A (zh) 一种远程lbs定位导航的自动窗帘控制系统
CN105869384A (zh) 一种光伏ccd光控智能家居系统
CN106094536A (zh) 一种地下专用ccd光通信智能移动互联控制系统
CN106168401A (zh) 一种光伏ccd光控智能加湿器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160817