CN105869156B - A kind of infrared small target detection method based on fuzzy distance - Google Patents

A kind of infrared small target detection method based on fuzzy distance Download PDF

Info

Publication number
CN105869156B
CN105869156B CN201610177589.1A CN201610177589A CN105869156B CN 105869156 B CN105869156 B CN 105869156B CN 201610177589 A CN201610177589 A CN 201610177589A CN 105869156 B CN105869156 B CN 105869156B
Authority
CN
China
Prior art keywords
fuzzy distance
scale
pixel
infrared
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610177589.1A
Other languages
Chinese (zh)
Other versions
CN105869156A (en
Inventor
周欣
邓鹤
孙献平
刘买利
叶朝辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan Institute of Physics and Mathematics of CAS
Original Assignee
Wuhan Institute of Physics and Mathematics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan Institute of Physics and Mathematics of CAS filed Critical Wuhan Institute of Physics and Mathematics of CAS
Priority to CN201610177589.1A priority Critical patent/CN105869156B/en
Publication of CN105869156A publication Critical patent/CN105869156A/en
Application granted granted Critical
Publication of CN105869156B publication Critical patent/CN105869156B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10048Infrared image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20004Adaptive image processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Studio Devices (AREA)

Abstract

本发明为有效检测复杂背景下的红外小目标,公开了一种基于模糊距离的红外小目标检测方法,涉及数字图像处理技术领域。本发明首先针对小目标的出现会引起局部纹理发生较大变化这一特征,提出一种模糊距离概念,从而将局部纹理的变化转化为模糊距离的度量;其次针对小目标的尺寸会随成像距离的改变而发生相应变化这一特点,提出一种多尺度模糊距离及多尺度模糊距离图,能剔除大量背景杂波和噪声干扰;然后通过迭代运算,有效抑制残留背景和噪声,增强目标;最后利用自适应阈值检测目标,该检测方法简单且有效。

In order to effectively detect small infrared targets under complex backgrounds, the invention discloses a small infrared target detection method based on fuzzy distance, and relates to the technical field of digital image processing. The present invention first aims at the feature that the appearance of a small target will cause a large change in the local texture, and proposes a concept of fuzzy distance, thereby converting the change of the local texture into a measure of the fuzzy distance; secondly, the size of the small target will change with the imaging distance According to the characteristics of corresponding changes due to the change of the target, a multi-scale fuzzy distance and a multi-scale fuzzy distance map are proposed, which can eliminate a large number of background clutter and noise interference; then through iterative operations, the residual background and noise can be effectively suppressed and the target can be enhanced; finally Using adaptive threshold to detect objects, the detection method is simple and effective.

Description

一种基于模糊距离的红外小目标检测方法A Method of Infrared Small Target Detection Based on Fuzzy Distance

技术领域technical field

本发明涉及数字图像处理技术领域,具体是一种基于模糊距离的红外小目标检测方法。The invention relates to the technical field of digital image processing, in particular to an infrared small target detection method based on fuzzy distance.

背景技术Background technique

红外目标检测技术已在诸多民用领域得到广泛应用,如医学红外成像、遥感和森林火灾探测、预警探测等。检测性能好坏直接决定红外系统的有效作用距离及设备的复杂程度。远距离红外系统因成像距离远,从而导致目标尺寸小、强度弱,且易淹没在强噪声和背景杂波中。在这种情况下,有效检测出未知位置/速度/大小/形状的小目标面临很大难度,因而这类技术受到了持续而普遍的关注。Infrared target detection technology has been widely used in many civilian fields, such as medical infrared imaging, remote sensing and forest fire detection, early warning detection and so on. The detection performance directly determines the effective range of the infrared system and the complexity of the equipment. Due to the long imaging distance of the long-range infrared system, the target size is small, the intensity is weak, and it is easy to be submerged in strong noise and background clutter. In this case, it is very difficult to effectively detect small targets with unknown position/speed/size/shape, so this type of technology has received continuous and widespread attention.

现有的小目标检测技术可以简单分为检测前跟踪(Track before Detect,TBD)和跟踪前检测(Detect before Track,DBT)两类。TBD方法一般先搜索目标所有可能的运动轨迹,并完成目标能量累加,从而获得每条运动轨迹的后验概率,最后利用阈值判断真实的目标运动轨迹,如三维匹配滤波、三维方向滤波。TBD方法易于建立相对较完整的理论模型和处理方法,但计算复杂,硬件实现麻烦,在实际工程中应用较少(C.Q.Gao,D.Y.Meng,Y.Yang,Y.T.Wang,X.F.Zhou,A.G.Hauptmann,Infrared patch-image model for smalltarget detection in a single image,IEEE Transactions on Image Processing,22(12):4996-5009,2013)。DBT方法一般先根据单帧图像的短时灰度特性检测候选目标,然后根据目标的短时运动特性剔除虚假目标,从而获得目标真实的运动轨迹。与TBD方法相比,DBT算法简单,便于程序模块化实现,因而在实时目标检测领域中发挥重要作用(H.Deng,X.P.Sun,M.L.Liu,C.H.Ye,X.Zhou,Infrared small-target detection usingmultiscale gray difference weighted image entropy,IEEE Transactions onAerospace and electronic Systems,52(1):60-72,2016)。依据国际光学工程学会给出的小目标定义,小目标的尺寸一般不超过整幅图像大小的0.12%,因而目标的出现对整幅图像纹理结构影响较小,但对局部区域纹理结构影响较大。基于此特征,一些描述局部纹理变化算子被提出,能有效检测红外小目标,如多尺度灰度加权图像熵、稀疏环表示、概率主成分分析、局部对比度测度(C.L.Philip,H.Li,Y.T.Wei,T.Xia,and Y.Y.Tang,A localcontrast method for small infrared target detection,IEEE Transactions onGeoscience and Remote Sensing,51(1):574-581,2014)。本申请专利方法隶属于DBT方法。与常规DBT方法相比,本申请专利方法提出了一种模糊距离概念,能有效刻画目标内部、背景内部、目标与背景之间的距离,从而将因小目标的出现导致的局部纹理变化转化为模糊距离的度量,实现背景抑制、目标增强,有利于提高目标的检测概率,降低虚警概率。Existing small target detection techniques can be simply divided into two categories: Track before Detect (TBD) and Detect before Track (DBT). The TBD method generally first searches all possible motion trajectories of the target, and completes the accumulation of target energy to obtain the posterior probability of each motion trajectory, and finally uses the threshold to judge the real target motion trajectory, such as three-dimensional matched filtering and three-dimensional direction filtering. The TBD method is easy to establish a relatively complete theoretical model and processing method, but the calculation is complicated, the hardware implementation is troublesome, and it is rarely used in actual engineering (C.Q.Gao, D.Y.Meng, Y.Yang, Y.T.Wang, X.F.Zhou, A.G.Hauptmann, Infrared patch-image model for smalltarget detection in a single image, IEEE Transactions on Image Processing, 22(12):4996-5009, 2013). The DBT method generally first detects candidate targets according to the short-term grayscale characteristics of a single frame image, and then eliminates false targets according to the short-term motion characteristics of the target, so as to obtain the real trajectory of the target. Compared with the TBD method, the DBT algorithm is simple and convenient for program modularization, so it plays an important role in the field of real-time target detection (H.Deng, X.P.Sun, M.L.Liu, C.H.Ye, X.Zhou, Infrared small-target detection using multiscale gray difference weighted image entropy, IEEE Transactions on Aerospace and electronic Systems, 52(1):60-72, 2016). According to the definition of small objects given by the International Society for Optical Engineering, the size of small objects generally does not exceed 0.12% of the size of the entire image, so the appearance of objects has little impact on the texture structure of the entire image, but has a greater impact on the texture structure of local areas . Based on this feature, some operators describing local texture changes have been proposed, which can effectively detect small infrared targets, such as multi-scale gray-scale weighted image entropy, sparse ring representation, probabilistic principal component analysis, and local contrast measurement (C.L.Philip, H.Li, Y.T.Wei, T.Xia, and Y.Y.Tang, A local contrast method for small infrared target detection, IEEE Transactions on Geoscience and Remote Sensing, 51(1):574-581, 2014). The patented method of this application belongs to the DBT method. Compared with the conventional DBT method, the patented method of this application proposes a concept of fuzzy distance, which can effectively describe the distance between the inside of the target, the inside of the background, and the target and the background, thereby converting the local texture changes caused by the appearance of small targets into The measurement of fuzzy distance can realize background suppression and target enhancement, which is conducive to improving the detection probability of targets and reducing the probability of false alarms.

虽然红外小目标检测领域已取得了很多成果,并且已有很多TBD和DBT算法在工程应用中得到了很好的实现。但对于复杂背景下低信噪比红外小目标图像,目标检测系统工程依然面临很大的难度和复杂性。因此,如何设计出结果简单、鲁棒性强的红外小目标检测算法是目标检测技术应用研究的关键问题。Although many achievements have been made in the field of infrared small target detection, and many TBD and DBT algorithms have been well realized in engineering applications. However, for infrared small target images with low signal-to-noise ratio in complex backgrounds, the target detection system engineering still faces great difficulty and complexity. Therefore, how to design an infrared small target detection algorithm with simple results and strong robustness is a key issue in the application research of target detection technology.

发明内容Contents of the invention

本发明是针对现有红外小目标检测方法存在的上述技术问题,提供了一种基于模糊距离的红外小目标检测方法。The invention aims at the above-mentioned technical problems existing in the existing infrared small target detection method, and provides an infrared small target detection method based on fuzzy distance.

一种基于模糊距离的红外小目标检测方法,包括以下步骤:An infrared small target detection method based on fuzzy distance, comprising the following steps:

步骤1、初始化相关参数:Step 1. Initialize related parameters:

设置最大迭代次数L,其中L为正整数;初始化迭代次数索引k=0;设置最大局部窗口大小m×n,其中m和n均为大于1的正奇数;Set the maximum number of iterations L, where L is a positive integer; initialize the number of iterations index k=0; set the maximum local window size m×n, where m and n are both positive odd numbers greater than 1;

步骤2、求解红外图像I每个像素点的模糊距离,包括以下步骤:Step 2, solving the fuzzy distance of each pixel of the infrared image I includes the following steps:

步骤2.1、获得单帧红外图像I每一个像素点(x,y)的邻域空间集{Ωl|l=1,2,...,s},其中s=min{0.5·(m-1),0.5·(n-1)},Ωl的大小为(2l+1)×(2l+1),像素点(x,y)的邻域空间Ωl的定义为Ωl={(p,q)|max(|p-x|,|q-y|)≤l},(p,q)是邻域空间Ωl内的像素点;Step 2.1, obtain the neighborhood space set {Ω l |l=1,2,...,s} of each pixel point (x, y) of the single-frame infrared image I, where s=min{0.5 (m- 1), 0.5·(n-1)}, the size of Ω l is (2l+1)×(2l+1), and the neighborhood space Ω l of a pixel (x, y) is defined as Ω l ={( p,q)|max(|px|,|qy|)≤l}, (p,q) is a pixel in the neighborhood space Ω l ;

步骤2.2、计算每一个像素点(x,y)的各个邻域空间Ωl内像素的灰度均值Dl(x,y):Step 2.2. Calculating the average gray value D l (x, y) of pixels in each neighborhood space Ω l of each pixel point (x, y):

其中,#Ωl表示邻域空间Ωl内像素点的数目,I(a,b)表示邻域空间Ωl内像素点(a,b)处的灰度值。Among them, #Ω l represents the number of pixels in the neighborhood space Ω l , and I(a, b) represents the gray value at the pixel point (a, b) in the neighborhood space Ω l .

步骤2.3、计算每一个像素点(x,y)所对应的最大邻域空间Ωs与其它各个邻域空间Ωi,i=1,2,…,s-1之间的模糊距离EiStep 2.3. Calculate the fuzzy distance E i between the largest neighborhood space Ω s corresponding to each pixel point (x, y) and other neighborhood spaces Ω i , i=1,2,...,s-1:

其中e为自然常数,Ds表示最大邻域空间Ωs内像素的灰度均值,Di表示第i个邻域空间Ωi内像素的灰度均值;Where e is a natural constant, D s represents the average gray value of pixels in the largest neighborhood space Ω s , and D i represents the average gray value of pixels in the i-th neighborhood space Ω i ;

步骤3、求解多尺度模糊距离图:Step 3. Solve the multi-scale fuzzy distance map:

遍历红外图像I中每一个像素点,得到每一个像素点的多尺度模糊距离E(x,y),然后根据每一个像素点的多尺度模糊距离E(x,y)并通过归一化方法获得红外图像I的多尺度模糊距离图E;Traverse each pixel in the infrared image I to obtain the multi-scale blur distance E(x, y) of each pixel, and then use the normalization method according to the multi-scale blur distance E(x, y) of each pixel Obtain the multi-scale fuzzy distance map E of the infrared image I;

步骤4、迭代停止准则判断:Step 4, iteration stop criterion judgment:

迭代次数索引k加1,判断迭代次数索引k与最大迭代次数L之间的关系,若k<L,把步骤3所获得的多尺度模糊距离图E作为新的红外图像I,返回步骤2;若k≥L,停止迭代,把步骤3所获得的多尺度模糊距离图E作为最终的滤波结果,进行步骤5;Add 1 to the iteration number index k, and judge the relationship between the iteration number index k and the maximum iteration number L, if k<L, use the multi-scale fuzzy distance map E obtained in step 3 as the new infrared image I, and return to step 2; If k≥L, stop the iteration, use the multi-scale fuzzy distance map E obtained in step 3 as the final filtering result, and proceed to step 5;

步骤5、求解自适应阈值T:Step 5. Solve the adaptive threshold T:

对经过步骤4所获得的最终滤波结果,即多尺度模糊距离图E,求解自适应阈值T,并通过自适应阈值T对多尺度模糊距离图E进行二值化,检测出红外小目标。For the final filtering result obtained through step 4, that is, the multi-scale fuzzy distance map E, the adaptive threshold T is solved, and the multi-scale fuzzy distance map E is binarized by the adaptive threshold T to detect small infrared targets.

如上所述的步骤3中红外图像I每一个像素点(x,y)的多尺度模糊距离表示为The multi-scale fuzzy distance of each pixel point (x, y) of the infrared image I in step 3 above is expressed as

E(x,y)=max{0,E1,E2,…,Es-1}。E(x,y)=max{0,E 1 ,E 2 ,...,E s-1 }.

如上所述的步骤5中自适应阈值T的确定方法为The method for determining the adaptive threshold T in step 5 as described above is

T=α·Emax+β·mt T=α·E max +β·m t

其中,α和β为正的常数,mt为多尺度模糊距离图E的灰度均值,Emax为多尺度模糊距离图E的灰度最大值。Among them, α and β are positive constants, m t is the average gray value of the multi-scale fuzzy distance map E, and E max is the maximum gray value of the multi-scale fuzzy distance map E.

本发明与现有技术相比,具有以下优点:Compared with the prior art, the present invention has the following advantages:

1.针对小目标的出现会引起局部纹理发生较大变化这一特征,本发明提出了一种模糊距离概念,能有效刻画目标内部、背景内部、目标与背景之间的距离,从而将局部纹理变化转化为模糊距离的度量。1. Aiming at the feature that the appearance of a small target will cause a large change in the local texture, the present invention proposes a concept of fuzzy distance, which can effectively describe the distance between the inside of the target, the inside of the background, and the distance between the target and the background, so that the local texture The change translates into a measure of blur distance.

2.针对小目标的尺寸会随成像距离的改变而发生相应变化这一特点,本发明提出了一种多尺度模糊距离度量方法,从而有效地提高目标的检测概率,降低虚警概率。2. In view of the characteristic that the size of small targets will change with the change of imaging distance, the present invention proposes a multi-scale fuzzy distance measurement method, thereby effectively improving the detection probability of targets and reducing the probability of false alarms.

3.本发明首先构建复杂背景下红外图像的多尺度模糊距离图,能剔除大量背景杂波和噪声干扰;其次通过迭代运算,有效抑制残留的背景和噪声,增强目标;然后利用自适应阈值分离目标,简单且有效地检测出目标。3. The present invention first constructs a multi-scale fuzzy distance map of an infrared image under a complex background, which can eliminate a large number of background clutter and noise interference; secondly, through iterative operations, effectively suppress the residual background and noise, and enhance the target; then use adaptive threshold to separate target, detect targets easily and efficiently.

附图说明Description of drawings

图1为本发明的流程框图。Fig. 1 is a flowchart of the present invention.

图2为多次迭代后的多尺度模糊距离图,其中,A图为原始天空背景下的小目标图像(白色矩形框表示目标所在区域),B图为一次迭代后的多尺度模糊距离图,C图为两次迭代后的多尺度模糊距离图,D图为三次迭代后的多尺度模糊距离图,E图为四次迭代后的多尺度模糊距离图,F图为为采用自适应阈值的检测结果。Figure 2 is the multi-scale fuzzy distance map after multiple iterations, in which, picture A is the small target image under the original sky background (the white rectangle box indicates the area where the target is located), and picture B is the multi-scale fuzzy distance map after one iteration, Picture C is the multi-scale fuzzy distance map after two iterations, picture D is the multi-scale fuzzy distance map after three iterations, picture E is the multi-scale fuzzy distance map after four iterations, and picture F is the one using adaptive threshold Test results.

图3为采用本实施例方法获得的单个红外小目标图像的滤波结果示意图。Fig. 3 is a schematic diagram of a filtering result of a single infrared small target image obtained by using the method of this embodiment.

A、B、C和D:依次为原始不同背景下的单个红外小目标图像(白色矩形框表示目标所在区域),其中,A图为天空背景下的小目标图像,B图为杂波背景下的小目标图像,C图为海洋背景的水下小目标图像,D图为地物背景下的小目标图像;A, B, C, and D: the original single infrared small target images in different backgrounds (the white rectangle box indicates the area where the target is located), among which, A is the small target image under the sky background, and B is the clutter background The image of the small target, C is the image of the underwater small target in the ocean background, and D is the image of the small target in the background of the ground object;

E、F、G和H:依次对应于A、B、C和D的采用本实施例方法获得的滤波结果。E, F, G, and H: corresponding to A, B, C, and D in turn, the filtering results obtained by using the method of this embodiment.

图4为采用本实施例方法获得的两个红外小目标图像的滤波结果示意图。FIG. 4 is a schematic diagram of filtering results of two infrared small target images obtained by using the method of this embodiment.

A、B、C和D:依次为原始不同背景下的两个红外小目标图像(白色矩形框表示目标所在区域),其中,A图为天空背景下的小目标图像,B图为天空背景下的小目标图像,C图为海洋水面背景下的小目标图像,D图为地物背景下的小目标图像;A, B, C, and D: two infrared small target images under different original backgrounds (the white rectangle box indicates the area where the target is located), in which, A is the small target image under the sky background, and B is the sky background The small target image of , C is the small target image under the background of the ocean water surface, and D is the small target image under the ground object background;

E、F、G和H:依次对应于A、B、C和D的采用本实施例方法获得的滤波结果。E, F, G, and H: corresponding to A, B, C, and D in turn, the filtering results obtained by using the method of this embodiment.

图5为针对图3中的A、B、C和D采用现有方法获得的滤波结果示意图。FIG. 5 is a schematic diagram of filtering results obtained by using an existing method for A, B, C and D in FIG. 3 .

A1、B1、C1和D1:依次对应于图3A、图3B、图3C和图3D的基于局部对比度(Localcontrast measure,LCM)方法的滤波结果;A1, B1, C1 and D1: the filtering results based on the local contrast measure (LCM) method corresponding to Fig. 3A, Fig. 3B, Fig. 3C and Fig. 3D in turn;

A2、B2、C2和D2:依次对应于图3A、图3B、图3C和图3D的基于最大均值滤波(Maxmeanfilter,MME)方法的滤波结果;A2, B2, C2 and D2: the filtering results based on the Maxmean filter (MME) method corresponding to Fig. 3A, Fig. 3B, Fig. 3C and Fig. 3D in turn;

A3、B3、C3和D3:依次对应于图3A、图3B、图3C和图3D的基于最大中值滤波(Maxmedian filter,MED)方法的滤波结果;A3, B3, C3 and D3: corresponding to the filtering results of the Maxmedian filter (Maxmedian filter, MED) method in sequence corresponding to Fig. 3A, Fig. 3B, Fig. 3C and Fig. 3D;

A4、B4、C4和D4:依次对应于图3A、图3B、图3C和图3D的基于顶帽滤波(Top-hatfilter,THT)方法的滤波结果。A4, B4, C4 and D4: the filtering results based on the Top-hat filter (Top-hat filter, THT) method corresponding to FIG. 3A , FIG. 3B , FIG. 3C and FIG. 3D in sequence.

图6为针对图4中的A、B、C和D采用现有方法获得的滤波结果示意图。FIG. 6 is a schematic diagram of filtering results obtained by using existing methods for A, B, C and D in FIG. 4 .

A1、B1、C1和D1:依次对应于图4A、图4B、图4C和图4D的基于局部对比度(Localcontrast measure,LCM)方法的滤波结果;A1, B1, C1 and D1: the filtering results based on the local contrast measure (LCM) method corresponding to Fig. 4A, Fig. 4B, Fig. 4C and Fig. 4D in turn;

A2、B2、C2和D2:依次对应于图4A、图4B、图4C和图4D的基于最大均值滤波(Maxmeanfilter,MME)方法的滤波结果;A2, B2, C2 and D2: the filtering results based on the Maxmean filter (Maxmeanfilter, MME) method corresponding to Fig. 4A, Fig. 4B, Fig. 4C and Fig. 4D in turn;

A3、B3、C3和D3:依次对应于图4A、图4B、图4C和图4D的基于最大中值滤波(Maxmedian filter,MED)方法的滤波结果;A3, B3, C3 and D3: the filtering results based on the Maxmedian filter (MED) method corresponding to Fig. 4A, Fig. 4B, Fig. 4C and Fig. 4D in turn;

A4、B4、C4和D4:依次对应于图4A、图4B、图4C和图4D的基于顶帽滤波(Top-hatfilter,THT)方法的滤波结果。A4, B4, C4 and D4: the filtering results based on the Top-hat filter (Top-hat filter, THT) method corresponding to FIG. 4A , FIG. 4B , FIG. 4C and FIG. 4D in sequence.

具体实施方式Detailed ways

下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。The technical solutions of the present invention will be further specifically described below through the embodiments and in conjunction with the accompanying drawings.

实施例:Example:

图1为本发明实施方式的结构示意框图,主要包括—图像输入:输入单帧红外小目标图像;模糊距离求解:求解输入图像当前区域与邻域集之间的模糊距离;多尺度模糊距离图求解:求解输入图像的多尺度模糊距离图,刻画可能存在的因成像距离的变化所引起的目标尺寸变化这一特性;迭代停止判断:判断迭代次数索引与最大迭代次数之间的关系,重复迭代,获得最终滤波结果;阈值求解:求解最终滤波结果的分割阈值;二值化:通过阈值分离目标,获得目标质心位置。Fig. 1 is a schematic block diagram of the structure of the embodiment of the present invention, mainly including - image input: input a single frame infrared small target image; fuzzy distance solution: solve the fuzzy distance between the current region of the input image and the neighborhood set; multi-scale fuzzy distance map Solution: solve the multi-scale fuzzy distance map of the input image, and describe the possible characteristics of the target size change caused by the change of the imaging distance; iteration stop judgment: judge the relationship between the iteration number index and the maximum number of iterations, and repeat the iteration , to obtain the final filtering result; threshold solution: solve the segmentation threshold of the final filtering result; binarization: separate the target through the threshold, and obtain the target centroid position.

具体为:Specifically:

步骤1,初始化相关参数:Step 1, initialize relevant parameters:

设置最大迭代次数L,其中L为正整数,一般为2,3或4;初始化迭代次数索引k=0;设置最大局部窗口大小m×n,其中m和n均为大于1的正奇数,一般m和n的值均设置为7,9或11。Set the maximum number of iterations L, where L is a positive integer, usually 2, 3 or 4; initialize the number of iterations index k=0; set the maximum local window size m×n, where m and n are positive odd numbers greater than 1, generally The values of m and n are both set to 7, 9 or 11.

步骤2,求解红外图像I每个像素点的模糊距离:Step 2, solve the fuzzy distance of each pixel of the infrared image I:

复杂背景下的红外小目标图像一般由目标、复杂背景和噪声三部分组成。通过度量目标内部、背景内部、目标与背景之间的距离,从而将因小目标的出现所引起的局部纹理变化转化为模糊距离的度量,实现背景抑制和目标增强。Infrared small target images under complex background generally consist of three parts: target, complex background and noise. By measuring the distance between the inside of the target, the inside of the background, and between the target and the background, the local texture changes caused by the appearance of small targets are converted into the measurement of blur distance, and background suppression and target enhancement are realized.

红外图像I每个像素点的模糊距离的求解过程如下:The process of solving the fuzzy distance of each pixel in the infrared image I is as follows:

(1)获得单帧红外图像I每一个像素点(x,y)的邻域空间集{Ωl|l=1,2,…,s},其中s=min{0.5·(m-1),0.5·(n-1)},Ωl的大小为(2l+1)×(2l+1),像素点(x,y)的邻域空间Ωl的定义为Ωl={(p,q)|max(|p-x|,|q-y|)≤l},(p,q)是邻域空间Ωl内的像素点。(1) Obtain the neighborhood space set {Ω l |l=1,2,...,s} of each pixel point (x, y) of the single-frame infrared image I, where s=min{0.5·(m-1) ,0.5·(n-1)}, the size of Ω l is (2l+1)×(2l+1), and the neighborhood space Ω l of a pixel point (x, y) is defined as Ω l ={(p, q)|max(|px|,|qy|)≤l}, (p,q) is a pixel in the neighborhood space Ω l .

(2)计算每一个像素点(x,y)的各个邻域空间Ωl内像素的灰度均值Dl(x,y):(2) Calculate the average gray value D l (x, y) of pixels in each neighborhood space Ω l of each pixel (x, y):

其中,#Ωl表示邻域空间Ωl内像素点的数目,I(a,b)表示邻域空间Ωl内像素点(a,b)处的灰度值。Among them, #Ω l represents the number of pixels in the neighborhood space Ω l , and I(a, b) represents the gray value at the pixel point (a, b) in the neighborhood space Ω l .

(3)计算每一个像素点(x,y)所对应的最大邻域空间Ωs与其它各个邻域空间Ωi,i=1,2,...,s-1之间的模糊距离Ei(3) Calculate the fuzzy distance E between the largest neighborhood space Ω s corresponding to each pixel (x, y) and other neighborhood spaces Ω i , i=1,2,...,s-1 i :

其中e为自然常数,Ds表示最大邻域空间Ωs内像素的灰度均值,Di表示第i个邻域空间Ωi内像素的灰度均值。Where e is a natural constant, D s represents the average gray value of pixels in the largest neighborhood space Ω s , and D i represents the average gray value of pixels in the i-th neighborhood space Ω i .

步骤3,求解多尺度模糊距离图:Step 3, solve the multi-scale fuzzy distance map:

尽管缺乏红外小目标尺寸、大小等先验知识,但随着成像距离的改变,目标的尺寸、大小等特征会发生一定程度地改变。利用多尺度模糊距离刻画可能存在的因成像距离的变化所引起的目标尺寸变化这一性质。Although there is a lack of prior knowledge about the size and size of infrared small targets, as the imaging distance changes, the size and size of the target will change to a certain extent. Using the multi-scale fuzzy distance to characterize the property of possible object size change caused by the change of imaging distance.

红外图像I每一个像素点(x,y)的多尺度模糊距离表示为The multi-scale fuzzy distance of each pixel point (x, y) in the infrared image I is expressed as

E(x,y)=max{0,E1,E2,...,Es-1} (3)E(x,y)=max{0,E 1 ,E 2 ,...,E s-1 } (3)

其中,Ei,i=1,2,…,s-1表示像素点(x,y)的一系列模糊距离。Wherein, E i , i=1, 2, . . . , s-1 represent a series of blur distances of pixel points (x, y).

遍历红外图像I中每一个像素点,得到每一个像素点的多尺度模糊距离,然后通过归一化方法获得红外图像I的多尺度模糊距离图E(如图2的B所示)。从图2的B中可以看出,红外图像I的均质天空背景和云层内部背景得到抑制,目标得到增强。Traverse each pixel in the infrared image I to obtain the multi-scale fuzzy distance of each pixel, and then obtain the multi-scale fuzzy distance map E of the infrared image I through the normalization method (as shown in Figure 2B). From Figure 2B, it can be seen that the homogeneous sky background and cloud interior background of the infrared image I are suppressed, and the target is enhanced.

步骤4,迭代停止准则判断:Step 4, iteration stop criterion judgment:

迭代次数索引k加1,判断迭代次数索引k与最大迭代次数L之间的关系,若k<L,将步骤3所获得的多尺度模糊距离图E作为新的红外图像I,返回步骤2;若k≥L,停止迭代,将步骤3所获得的多尺度模糊距离图作为最终的滤波结果,进行步骤5。Add 1 to the iteration number index k, judge the relationship between the iteration number index k and the maximum iteration number L, if k<L, use the multi-scale fuzzy distance map E obtained in step 3 as the new infrared image I, and return to step 2; If k≥L, stop the iteration, take the multi-scale fuzzy distance map obtained in step 3 as the final filtering result, and proceed to step 5.

红外图像的复杂背景边界具有与目标相似的热成像特征,通过多次重复迭代可以消除残留背景和噪声的影响(如图2所示)。图2的B表示一次迭代后的多尺度模糊距离图。从图2的B中可以看出,图2的B中的均质背景(均质天空和均质云层内部)得到很好的抑制,但残留较多的云层边缘。图2的B的多尺度模糊距离图(如图2的C所示)能去除绝大部分残留的云层边缘,而图2的C的多尺度模糊距离图(如图2的D所示)能去除剩余的云层边缘,使得复杂云层边界得到进一步地抑制,目标得到进一步地增强。图2的D的多尺度模糊距离图(如图2的E所示)与图2的D差异不大,说明采用合适有限的迭代次数就可以获得较理想的滤波结果。The complex background boundary of the infrared image has thermal imaging characteristics similar to the target, and the influence of the residual background and noise can be eliminated through repeated iterations (as shown in Figure 2). B of Fig. 2 represents the multi-scale fuzzy distance map after one iteration. It can be seen from B of FIG. 2 that the homogeneous background (homogeneous sky and homogeneous cloud interior) in FIG. 2 B is well suppressed, but more cloud edges remain. The multi-scale fuzzy distance map of B in Figure 2 (as shown in Figure 2 C) can remove most of the remaining cloud edges, while the multi-scale fuzzy distance map of Figure 2 C (shown in Figure 2 D) can Removing the remaining cloud edges enables further suppression of complex cloud boundaries and further enhancement of targets. The multi-scale fuzzy distance map of D in Fig. 2 (as shown in E in Fig. 2) is not much different from D in Fig. 2, indicating that a more ideal filtering result can be obtained by using a suitable limited number of iterations.

步骤5,求解自适应阈值T:Step 5, solve the adaptive threshold T:

对经过步骤4所获得的最终滤波结果(即多尺度模糊距离图E)求解自适应阈值T,并通过自适应阈值T对多尺度模糊距离图E进行二值化,检测出红外小目标(二值化结果如图2的F所示)。自适应阈值T的确定方法为The adaptive threshold T is solved for the final filtering result obtained in step 4 (ie, the multi-scale fuzzy distance map E), and the multi-scale fuzzy distance map E is binarized by the adaptive threshold T to detect small infrared targets (two The valued results are shown in F of Figure 2). The method of determining the adaptive threshold T is

T=α·Emax+β·mt (4)T=α·E max +β·m t (4)

其中,α和β为正的常数,mt为多尺度模糊距离图E的灰度均值,Emax为多尺度模糊距离图E的灰度最大值。Among them, α and β are positive constants, m t is the average gray value of the multi-scale fuzzy distance map E, and E max is the maximum gray value of the multi-scale fuzzy distance map E.

采用不同红外小目标检测方法的滤波结果如图5和图6所示。比较图3、图4、图5和图6,本实施例方法获得的滤波性能最好,其中,基于局部对比度(Local contrastmeasure,LCM)方法来自于文献C.L.Philip,H.Li,Y.T.Wei,T.Xia,and Y.Y.Tang,A localcontrast method for small infrared target detection,IEEE Transactions onGeoscience and Remote Sensing,51(1):574-581,2014,LCM方法先通过局部对比度度量当前区域与邻域之间的不相似性,然后通过阈值分离目标;基于最大均值滤波(Maxmeanfilter,MME)或最大中值滤波(Maxmedian filter,MED)方法来自于文献S.Deshpande,M.Er,and R.Venkateswarlu,Maxmean and Maxmedian filters for detection ofsmall-targets,Proceeding of SPIE,1999,3809:74-83,MME/MED方法是先通过最大均值/中值滤波器滤除背景杂波干扰,然后根据图像的统计特性确定阈值,分离目标;基于顶帽滤波(Top-hat filter,THT)方法来自于文献X.Z.Bai and F.G.Zhou,Analysis of new top-hat transformation and the application for infrared dim small targetdetection,Pattern Recognition,2010,43(6):2145-2156,THT方法先通过顶-帽算子抑制背景和噪声,然后采用阈值从滤波后图像中分离目标。LCM、MME、MED、THT均隶属于DBT方法。The filtering results of different infrared small target detection methods are shown in Figure 5 and Figure 6. Comparing Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the filtering performance obtained by the method of this embodiment is the best, wherein, based on local contrast measure (Local contrastmeasure, LCM) method comes from literature C.L.Philip, H.Li, Y.T.Wei, T .Xia, and Y.Y.Tang, A localcontrast method for small infrared target detection, IEEE Transactions on Geoscience and Remote Sensing, 51(1):574-581, 2014, the LCM method first measures the difference between the current region and the neighborhood through the local contrast Similarity, and then separate the target by threshold; based on the maximum mean filter (Maxmean filter, MME) or maximum median filter (Maxmedian filter, MED) method from the literature S.Deshpande, M.Er, and R.Venkateswarlu, Maxmean and Maxmedian filters For detection of small-targets, Proceeding of SPIE, 1999, 3809: 74-83, the MME/MED method is to first filter out the background clutter interference through the maximum mean/median filter, and then determine the threshold according to the statistical characteristics of the image to separate the target ; Based on the top-hat filter (Top-hat filter, THT) method from the literature X.Z.Bai and F.G.Zhou, Analysis of new top-hat transformation and the application for infrared dim small target detection, Pattern Recognition, 2010,43(6):2145 -2156, the THT method first suppresses the background and noise through the top-hat operator, and then uses the threshold to separate the target from the filtered image. LCM, MME, MED, and THT all belong to the DBT method.

采用背景抑制因子(Background suppression factor,BSF)客观评价红外小目标检测方法的滤波性能。BSF的定义为:The background suppression factor (Background suppression factor, BSF) is used to objectively evaluate the filtering performance of the infrared small target detection method. BSF is defined as:

BSF=σIO (5)BSF= σI / σO (5)

其中,σI表示滤波后图像的灰度标准差,σO表示滤波前图像的灰度标准差。采用LCM、MME、MED、THT和本实施例方法所获得的BSF数值见表1。从表1可以看出,本实施例方法获得最高的BSF值,说明本实施例方法能有效地抑制红外小目标图像的复杂背景和噪声,与图5和图6所获得的结论一致。Among them, σ I represents the gray standard deviation of the image after filtering, and σ O represents the gray standard deviation of the image before filtering. The BSF values obtained by using LCM, MME, MED, THT and the method of this embodiment are shown in Table 1. It can be seen from Table 1 that the method of this embodiment obtains the highest BSF value, indicating that the method of this embodiment can effectively suppress the complex background and noise of the infrared small target image, which is consistent with the conclusions obtained in Figures 5 and 6.

表1采用不同红外小目标检测方法的背景抑制因子(BSF)比较Table 1 Comparison of background suppression factor (BSF) using different infrared small target detection methods

图像image LCM方法LCM method MME方法MME method MED方法MED method THT方法THT method 本实施例方法The method of this embodiment 图3AFigure 3A 0.81340.8134 0.56380.5638 0.58260.5826 1.01571.0157 5.83395.8339 图3BFigure 3B 0.93480.9348 0.73680.7368 0.73960.7396 1.85421.8542 8.24088.2408 图3CFigure 3C 0.56860.5686 0.32880.3288 0.35210.3521 0.79930.7993 6.07856.0785 图3DFigure 3D 0.42720.4272 0.38000.3800 0.38430.3843 1.65481.6548 6.34096.3409 图4AFigure 4A 0.41790.4179 0.26400.2640 0.24760.2476 1.64131.6413 1.70251.7025 图4BFigure 4B 0.16980.1698 0.12590.1259 0.12320.1232 0.36810.3681 0.51560.5156 图4CFigure 4C 0.22270.2227 0.21710.2171 0.21640.2164 1.07751.0775 4.76914.7691 图4DFigure 4D 0.56850.5685 0.52460.5246 0.52270.5227 1.63201.6320 7.53937.5393

本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。The specific embodiments described herein are merely illustrative of the spirit of the invention. Those skilled in the art to which the present invention belongs can make various modifications or supplements to the described specific embodiments or adopt similar methods to replace them, but they will not deviate from the spirit of the present invention or go beyond the definition of the appended claims range.

Claims (2)

1.一种基于模糊距离的红外小目标检测方法,其特征在于,包括以下步骤:1. a kind of infrared small target detection method based on fuzzy distance, is characterized in that, comprises the following steps: 步骤1、初始化相关参数:Step 1. Initialize related parameters: 设置最大迭代次数L,其中L为正整数;初始化迭代次数索引k=0;设置最大局部窗口大小m×n,其中m和n均为大于1的正奇数;Set the maximum number of iterations L, where L is a positive integer; initialize the number of iterations index k=0; set the maximum local window size m×n, where m and n are both positive odd numbers greater than 1; 步骤2、求解红外图像I每个像素点的模糊距离,包括以下步骤:Step 2, solving the fuzzy distance of each pixel of the infrared image I includes the following steps: 步骤2.1、获得单帧红外图像I每一个像素点(x,y)的邻域空间集{Ωl|l=1,2,...,s},其中s=min{0.5·(m-1),0.5·(n-1)},Ωl的大小为(2l+1)×(2l+1),像素点(x,y)的邻域空间Ωl的定义为Ωl={(p,q)|max(|p-x|,|q-y|)≤l},(p,q)是邻域空间Ωl内的像素点;Step 2.1, obtain the neighborhood space set {Ω l |l=1,2,...,s} of each pixel point (x, y) of the single-frame infrared image I, where s=min{0.5 (m- 1), 0.5·(n-1)}, the size of Ω l is (2l+1)×(2l+1), and the neighborhood space Ω l of a pixel (x, y) is defined as Ω l ={( p,q)|max(|px|,|qy|)≤l}, (p,q) is a pixel in the neighborhood space Ω l ; 步骤2.2、计算每一个像素点(x,y)的各个邻域空间Ωl内像素的灰度均值Dl(x,y):Step 2.2. Calculating the average gray value D l (x, y) of pixels in each neighborhood space Ω l of each pixel point (x, y): 其中,#Ωl表示邻域空间Ωl内像素点的数目,I(a,b)表示邻域空间Ωl内像素点(a,b)处的灰度值,Among them, #Ω l represents the number of pixels in the neighborhood space Ω l , I(a, b) represents the gray value at the pixel point (a, b) in the neighborhood space Ω l , 步骤2.3、计算每一个像素点(x,y)所对应的最大邻域空间Ωs与其它各个邻域空间Ωi,i=1,2,...,s-1之间的模糊距离EiStep 2.3. Calculate the fuzzy distance E between the largest neighborhood space Ω s corresponding to each pixel (x, y) and other neighborhood spaces Ω i , i=1,2,...,s-1 i : 其中e为自然常数,Ds表示最大邻域空间Ωs内像素的灰度均值,Di表示第i个邻域空间Ωi内像素的灰度均值;Where e is a natural constant, D s represents the average gray value of pixels in the largest neighborhood space Ω s , and D i represents the average gray value of pixels in the i-th neighborhood space Ω i ; 步骤3、求解多尺度模糊距离图:Step 3. Solve the multi-scale fuzzy distance map: 遍历红外图像I中每一个像素点,得到每一个像素点的多尺度模糊距离E(x,y),然后根据每一个像素点的多尺度模糊距离E(x,y)并通过归一化方法获得红外图像I的多尺度模糊距离图E;Traverse each pixel in the infrared image I to obtain the multi-scale blur distance E(x, y) of each pixel, and then use the normalization method according to the multi-scale blur distance E(x, y) of each pixel Obtain the multi-scale fuzzy distance map E of the infrared image I; 步骤4、迭代停止准则判断:Step 4, iteration stop criterion judgment: 迭代次数索引k加1,判断迭代次数索引k与最大迭代次数L之间的关系,若k<L,把步骤3所获得的多尺度模糊距离图E作为新的红外图像I,返回步骤2;若k≥L,停止迭代,把步骤3所获得的多尺度模糊距离图E作为最终的滤波结果,进行步骤5;Add 1 to the iteration number index k, and judge the relationship between the iteration number index k and the maximum iteration number L, if k<L, use the multi-scale fuzzy distance map E obtained in step 3 as the new infrared image I, and return to step 2; If k≥L, stop the iteration, take the multi-scale fuzzy distance map E obtained in step 3 as the final filtering result, and proceed to step 5; 步骤5、求解自适应阈值T:Step 5. Solve the adaptive threshold T: 对经过步骤4所获得的最终滤波结果,即多尺度模糊距离图E,求解自适应阈值T,并通过自适应阈值T对多尺度模糊距离图E进行二值化,检测出红外小目标,For the final filtering result obtained through step 4, that is, the multi-scale fuzzy distance map E, solve the adaptive threshold T, and use the adaptive threshold T to binarize the multi-scale fuzzy distance map E to detect small infrared targets. 步骤3中红外图像I每一个像素点(x,y)的多尺度模糊距离表示为In step 3, the multi-scale fuzzy distance of each pixel (x, y) of the infrared image I is expressed as E(x,y)=max{0,E1,E2,...,Es-1}。E(x,y)=max{0,E 1 ,E 2 ,...,E s-1 }. 2.根据权利要求1所述的一种基于模糊距离的红外小目标检测方法,其特征在于,所述的步骤5中自适应阈值T的确定方法为2. a kind of infrared small target detection method based on fuzzy distance according to claim 1, is characterized in that, the determination method of self-adaptive threshold T in the described step 5 is T=α·Emax+β·mt T=α·E max +β·m t 其中,α和β为正的常数,mt为多尺度模糊距离图E的灰度均值,Emax为多尺度模糊距离图E的灰度最大值。Among them, α and β are positive constants, m t is the average gray value of the multi-scale fuzzy distance map E, and E max is the maximum gray value of the multi-scale fuzzy distance map E.
CN201610177589.1A 2016-03-25 2016-03-25 A kind of infrared small target detection method based on fuzzy distance Active CN105869156B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610177589.1A CN105869156B (en) 2016-03-25 2016-03-25 A kind of infrared small target detection method based on fuzzy distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610177589.1A CN105869156B (en) 2016-03-25 2016-03-25 A kind of infrared small target detection method based on fuzzy distance

Publications (2)

Publication Number Publication Date
CN105869156A CN105869156A (en) 2016-08-17
CN105869156B true CN105869156B (en) 2018-07-17

Family

ID=56625266

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610177589.1A Active CN105869156B (en) 2016-03-25 2016-03-25 A kind of infrared small target detection method based on fuzzy distance

Country Status (1)

Country Link
CN (1) CN105869156B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107590496A (en) * 2017-09-18 2018-01-16 南昌航空大学 The association detection method of infrared small target under complex background
CN108198198A (en) * 2017-12-22 2018-06-22 湖南源信光电科技股份有限公司 Single frames infrared small target detection method based on wavelet transformation and Steerable filter
CN109886980B (en) * 2019-03-04 2023-04-14 电子科技大学 A Method of Cirrus Cloud Detection in Infrared Images Based on Neighborhood Intensity Texture Coding

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104463911A (en) * 2014-12-09 2015-03-25 上海新跃仪表厂 Small infrared moving target detection method based on complicated background estimation
CN104657945A (en) * 2015-01-29 2015-05-27 南昌航空大学 Infrared small target detection method for multi-scale spatio-temporal union filtering under complex background
CN104899866A (en) * 2015-05-05 2015-09-09 河南三联网络技术有限公司 Intelligent infrared small target detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362880B2 (en) * 2005-03-31 2008-04-22 Lockheed Martin Corporation Unresolved target detection improvement by use of multiple matched filters approach at different spatial phases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104463911A (en) * 2014-12-09 2015-03-25 上海新跃仪表厂 Small infrared moving target detection method based on complicated background estimation
CN104657945A (en) * 2015-01-29 2015-05-27 南昌航空大学 Infrared small target detection method for multi-scale spatio-temporal union filtering under complex background
CN104899866A (en) * 2015-05-05 2015-09-09 河南三联网络技术有限公司 Intelligent infrared small target detection method

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
An improved algorithm for facet-based infrared small target detection;KEJIA YI 等;《JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS》;20120430;第14卷(第3-4期);298-303 *
基于多尺度局部方差的海面红外舰船检测;邹常文 等;《激光与红外》;20110620;第41卷(第6期);697-699 *
基于邻域对比的红外林火小目标检测;张红民 等;《重庆理工大学学报(自然科学)》;20150115;第29卷(第1期);107-110、130 *

Also Published As

Publication number Publication date
CN105869156A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105809693B (en) SAR image registration method based on deep neural network
CN104834915B (en) A kind of small infrared target detection method under complicated skies background
CN107403134B (en) Local gradient trilateral-based image domain multi-scale infrared dim target detection method
Zheng et al. Adaptive edge detection algorithm based on improved grey prediction model
CN109919870A (en) A method for speckle suppression in SAR images based on BM3D
CN103984945A (en) Optical remote sensing image ship detection method
CN108038856B (en) Infrared small target detection method based on improved multi-scale fractal enhancement
CN109584303A (en) A kind of method for detecting infrared puniness target based on Lp norm and nuclear norm
CN110135312B (en) A Fast Small Object Detection Method Based on Hierarchical LCM
CN114596551A (en) Vehicle-mounted forward-looking image crack detection method
Hsieh et al. Fast and robust infrared image small target detection based on the convolution of layered gradient kernel
CN105869156B (en) A kind of infrared small target detection method based on fuzzy distance
CN110533025A (en) The millimeter wave human body image detection method of network is extracted based on candidate region
Xiao et al. A multi-cue mean-shift target tracking approach based on fuzzified region dynamic image fusion
CN114549642B (en) Low-contrast infrared dim target detection method
CN105931235B (en) A kind of air-sea infrared image detection method of small target based on plural Scharr filters
Wu et al. Research on crack detection algorithm of asphalt pavement
CN110751667A (en) Method for detecting infrared dim small target under complex background based on human visual system
CN115359258A (en) Method and system for weak and small target detection of component uncertainty measurement
CN113705433A (en) Power line detection method based on visible light aerial image
Li et al. An infrared dim and small target detection method based on fractional differential
CN107729903A (en) SAR image object detection method based on area probability statistics and significance analysis
CN118154543A (en) Electric power artificial intelligence visual analysis method based on lightweight network
Ma et al. A CNN-based method for SAR image despeckling
Ye et al. Improved edge detection algorithm of high-resolution remote sensing images based on fast guided filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant