CN105867462A - 一种温室大棚温度自动控制系统 - Google Patents

一种温室大棚温度自动控制系统 Download PDF

Info

Publication number
CN105867462A
CN105867462A CN201610353046.0A CN201610353046A CN105867462A CN 105867462 A CN105867462 A CN 105867462A CN 201610353046 A CN201610353046 A CN 201610353046A CN 105867462 A CN105867462 A CN 105867462A
Authority
CN
China
Prior art keywords
pole
audion
electric capacity
amplifier
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610353046.0A
Other languages
English (en)
Inventor
李洪军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Niaoer Electronic Technology Co Ltd
Original Assignee
Chengdu Niaoer Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Niaoer Electronic Technology Co Ltd filed Critical Chengdu Niaoer Electronic Technology Co Ltd
Priority to CN201610353046.0A priority Critical patent/CN105867462A/zh
Publication of CN105867462A publication Critical patent/CN105867462A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D23/00Control of temperature
    • G05D23/19Control of temperature characterised by the use of electric means
    • G05D23/20Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种温室大棚温度自动控制系统,其特征在于,主要由微控制器,分别与微控制器相连接的电暖器、制冷机、显示器、信号转换电路、储存器,以及与信号转换电路相连接的温度传感器组组成。本发明可以实时的采集大棚内的温度,当大棚内的温度过高或过低时可以自动启动制冷机或电暖器,从而能够及时准确的对温度进行调节,实现温度采集和温度控制的智能化,为农作物生长提供良好的条件;同时本发明的自动化程度高,可以节省劳动力。

Description

一种温室大棚温度自动控制系统
技术领域
本发明涉及自动化控制领域,具体是指一种温室大棚温度自动控制系统。
背景技术
农作物的生长与温度息息相关,目前很多蔬菜都采用温室大棚种植,对于温室大棚来说,最重要的一个管理因素是温度控制,温度太低,蔬菜就会被冻死或者停止生长,温度过高也不利于蔬菜的生长,所以在蔬菜种植的过程中需要将大棚温度始终控制在适合蔬菜生长的范围内。然而,目前温室大棚的温度控制主要依靠人工进行控制,这种温度控制方法不仅耗费大量人力,而且容易发生差错。
发明内容
本发明的目的在于克服传统的温室大棚温度依靠人工控制,不仅耗费大量人力,而且容易发生差错的缺陷,提供一种温室大棚温度自动控制系统。
本发明的目的通过下述技术方案实现:一种温室大棚温度自动控制系统,主要由微控制器,分别与微控制器相连接的电暖器、制冷机、显示器、信号转换电路、储存器,以及与信号转换电路相连接的温度传感器组组成。
进一步的,所述信号转换电路由模拟信号放大电路,与模拟信号放大电路相连接的高效转换电路组成;所述模拟信号放大电路的输入端与温度传感器组相连接,该高效转换电路的输出端则与微控制器相连接。
所述模拟信号放大电路由放大器P1,放大器P2,三极管VT1,N极经电阻R1后与放大器P1的正极相连接、P极与温度传感器组相连接的二极管D1;负极与放大器P1的正极相连接、正极与放大器P1的输出端相连接的电容C1,N极经电阻R4后与放大器P2的输出端相连接、P极与三极管VT1的基极相连接的二极管D3,负极与放大器P2的正极相连接、正极与放大器P2的输出端相连接的电容C2,N极与放大器P2的负极相连接、P极接地的稳压二极管D2,与稳压二极管D2相并联的电阻R3,以及串接在放大器P1的负极和稳压二极管D2的P极之间的电阻R2组成;所述三极管VT1的发射极与放大器P1的正极相连接、其集电极与放大器P1的输出端相连接;所述二极管D3的N极与高效转换电路相连接;所述放大器P2的输出端与高效转换电路相连接、其正极与放大器P1的输出端相连接。
所述高效转换电路由转换芯片U,三极管VT2,三极管VT3,三极管VT4,正极与转换芯片U的SS管脚相连接、负极经电阻R5后与三极管VT2的集电极相连接的电容C3,N极与转换芯片U的GND管脚相连接、P极接地的稳压二极管D4,正极与转换芯片U的VREF管脚相连接、负极与稳压二极管D4的N极相连接的电容C6,正极与稳压二极管D4的P极相连接、负极经电阻R6后与电容C6的负极相连接的电容C5,正极与电容C5的正极相连接、负极与电容C6的负极相连接的电容C4,正极经电阻R8后与三极管VT3的发射极相连接、负极与电容C6的负极相连接的电容C7,与电容C7相并联的电阻R7,正极与二极管D3的N极相连接、负极与转换芯片U的V+管脚相连接的电容C8,串接在电容C8的正极和三极管VT3的集电极之间的电阻R9,N极与三极管VT4的基极相连接、P极与三极管VT3的发射极相连接的二极管D5,P极经电感L后与三极管VT4的发射极相连接、N极经电容C9后与三极管VT3的发射极相连接的二极管D6,P极与三极管VT3的发射极相连接、N极与微控制器相连接的二极管D7,以及一端与二极管D7的N极相连接、另一端接地的电阻R10组成;所述转换芯片U的SHDN管脚与放大器P2的输出端相连接、其V-管脚则与电容C7的正极相连接、其LX管脚则与三极管VT3的基极相连接;所述三极管VT2的发射极接地、其基极与稳压二极管D4的P极相连接;所述三极管VT4的集电极与电容C8的正极相连接。
所述转换芯片U为MAX752集成芯片。
本发明较现有技术相比,具有以下优点及有益效果:
(1)本发明可以实时的采集大棚内的温度,当大棚内的温度过高或过低时可以自动启动制冷机或电暖器,从而能够及时准确的对温度进行调节,实现温度采集和温度控制的智能化,为农作物生长提供良好的条件;同时本发明的自动化程度高,可以节省劳动力。
附图说明
图1为本发明的整体结构示意图。
图2为本发明的信号转换电路的结构示意图。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式并不限于此。
实施例
如图1所示,本发明的温室大棚温度自动控制系统,主要由微控制器,电暖器,制冷机,显示器,信号转换电路,储存器以及温度传感器组七部分组成。
其中,微控制器是本发明的控制中心,其优选MCS-51单片机来实现。该温度传感器组包括多个温度传感器,每个温度传感器均匀的分布在大棚内,如此可以更精确的检测大棚内的温度,该温度传感器优选上海科旗仪表有限公司生产的SMW温度传感器来实现。该信号转换电路用于对温度传感器输出的信号转换为数字信号,其输入端与温度传感器的信号输出端相连接,其输出端则与MCS-51单片机的P1.0管脚相连接。该储存器用于预先储存农作物生长的最佳温度范围值,其与MCS-51单片机的P1.1管脚相连接。该显示器则与MCS-51单片机的P0.3管脚相连接;电暖器则与MCS-51单片机的P0.1管脚相连接;制冷机与MCS-51单片机的P0.2管脚相连接。
所述信号转换电路可以高效的把温度传感器输出的模拟信号转换为MCS-51单片机所能识别的数字信号,其结构如图2所示,由模拟信号放大电路,与模拟信号放大电路相连接的高效转换电路组成。所述模拟信号放大电路的输入端与温度传感器组相连接,该高效转换电路的输出端则与MCS-51单片机相连接。
其中,所述模拟信号放大电路由放大器P1,放大器P2,三极管VT1,电阻R1,电阻R2,电阻R3,电阻R4,二极管D1,二极管D3,稳压二极管D2,电容C1以及电容C2组成。
连接时,二极管D1的N极经电阻R1后与放大器P1的正极相连接、其P极与温度传感器组相连接。电容C1的负极与放大器P1的正极相连接、其正极与放大器P1的输出端相连接。二极管D3的N极经电阻R4后与放大器P2的输出端相连接、其P极与三极管VT1的基极相连接。电容C2的负极与放大器P2的正极相连接、其正极与放大器P2的输出端相连接。稳压二极管D2的N极与放大器P2的负极相连接、其P极接地。电阻R3与稳压二极管D2相并联。电阻R2则串接在放大器P1的负极和稳压二极管D2的P极之间。
所述三极管VT1的发射极与放大器P1的正极相连接、其集电极与放大器P1的输出端相连接。所述二极管D3的N极与高效转换电路相连接。所述放大器P2的输出端与高效转换电路相连接、其正极与放大器P1的输出端相连接。温度传感器输出的模拟信号很微弱,该模拟信号放大电路则可以对模拟信号进行不失真的放大,以便高效转换电路进行处理。
另外,所述高效转换电路可以把模拟信号转换为数字信号发送给MCS-51单片机,其由转换芯片U,三极管VT2,三极管VT3,三极管VT4,电阻R5,电阻R6,电阻R7,电阻R8,电阻R9,电阻R10,电容C3,电容C4,电容C5,电容C6,电容C7,电容C8,电容C9,稳压二极管D4,二极管D5,二极管D6以及二极管D7组成。
连接时,电容C3的正极与转换芯片U的SS管脚相连接、其负极经电阻R5后与三极管VT2的集电极相连接。稳压二极管D4的N极与转换芯片U的GND管脚相连接、其P极接地。电容C6的正极与转换芯片U的VREF管脚相连接、其负极与稳压二极管D4的N极相连接。电容C5的正极与稳压二极管D4的P极相连接、其负极经电阻R6后与电容C6的负极相连接。电容C4的正极与电容C5的正极相连接、其负极与电容C6的负极相连接。电容C7的正极经电阻R8后与三极管VT3的发射极相连接、其负极与电容C6的负极相连接。电阻R7与电容C7相并联。电容C8的正极与二极管D3的N极相连接、其负极与转换芯片U的V+管脚相连接。电阻R9串接在电容C8的正极和三极管VT3的集电极之间。二极管D5的N极与三极管VT4的基极相连接、其P极与三极管VT3的发射极相连接。二极管D6的P极经电感L后与三极管VT4的发射极相连接、其N极与电容C9的正极相连接。所述电容C9的负极与三极管VT3的发射极相连接。二极管D7的P极与三极管VT3的发射极相连接、其N极与微控制器相连接。电阻R10的一端与二极管D7的N极相连接、其另一端接地。
同时,所述转换芯片U的SHDN管脚与放大器P2的输出端相连接、其V-管脚则与电容C7的正极相连接、其LX管脚则与三极管VT3的基极相连接。所述三极管VT2的发射极接地、其基极与稳压二极管D4的P极相连接。所述三极管VT4的集电极与电容C8的正极相连接。为了更好的实施本发明,所述转换芯片U优选MAX752集成芯片来实现。
工作时,温度传感器组实时采集大棚内的温度信号并传输给信号转换电路,信号转换电路把温度传感器输出的模拟信号转换为数字信号后传输给微控制器,微控制器把采集到的温度值与预先储存在储存器内的最优温度值范围进行对比,当大棚内的温度高于预设值时微控制器驱动制冷机工作给大棚内的空气降温,直至大棚内温度处于预设的温度范围值内;当大棚内的温度低于预先设置的温度值时,微控制器则驱动电暖器工作对大棚内进行加温直至大棚内温度处于预设的温度范围值内;当大棚内的温度值处于预先温度范围时,电暖器和制冷机都不工作。同时该显示器显示大棚内的实时温度值。
如上所述,便可很好的实现本发明。

Claims (5)

1.一种温室大棚温度自动控制系统,其特征在于,主要由微控制器,分别与微控制器相连接的电暖器、制冷机、显示器、信号转换电路、储存器,以及与信号转换电路相连接的温度传感器组组成。
2.根据权利要求1所述的一种温室大棚温度自动控制系统,其特征在于:所述信号转换电路由模拟信号放大电路,与模拟信号放大电路相连接的高效转换电路组成;所述模拟信号放大电路的输入端与温度传感器组相连接,该高效转换电路的输出端则与微控制器相连接。
3.根据权利要求2所述的一种温室大棚温度自动控制系统,其特征在于:所述模拟信号放大电路由放大器P1,放大器P2,三极管VT1,N极经电阻R1后与放大器P1的正极相连接、P极与温度传感器组相连接的二极管D1;负极与放大器P1的正极相连接、正极与放大器P1的输出端相连接的电容C1,N极经电阻R4后与放大器P2的输出端相连接、P极与三极管VT1的基极相连接的二极管D3,负极与放大器P2的正极相连接、正极与放大器P2的输出端相连接的电容C2,N极与放大器P2的负极相连接、P极接地的稳压二极管D2,与稳压二极管D2相并联的电阻R3,以及串接在放大器P1的负极和稳压二极管D2的P极之间的电阻R2组成;所述三极管VT1的发射极与放大器P1的正极相连接、其集电极与放大器P1的输出端相连接;所述二极管D3的N极与高效转换电路相连接;所述放大器P2的输出端与高效转换电路相连接、其正极与放大器P1的输出端相连接。
4.根据权利要求3所述的一种温室大棚温度自动控制系统,其特征在于:所述高效转换电路由转换芯片U,三极管VT2,三极管VT3,三极管VT4,正极与转换芯片U的SS管脚相连接、负极经电阻R5后与三极管VT2的集电极相连接的电容C3,N极与转换芯片U的GND管脚相连接、P极接地的稳压二极管D4,正极与转换芯片U的VREF管脚相连接、负极与稳压二极管D4的N极相连接的电容C6,正极与稳压二极管D4的P极相连接、负极经电阻R6后与电容C6的负极相连接的电容C5,正极与电容C5的正极相连接、负极与电容C6的负极相连接的电容C4,正极经电阻R8后与三极管VT3的发射极相连接、负极与电容C6的负极相连接的电容C7,与电容C7相并联的电阻R7,正极与二极管D3的N极相连接、负极与转换芯片U的V+管脚相连接的电容C8,串接在电容C8的正极和三极管VT3的集电极之间的电阻R9,N极与三极管VT4的基极相连接、P极与三极管VT3的发射极相连接的二极管D5,P极经电感L后与三极管VT4的发射极相连接、N极经电容C9后与三极管VT3的发射极相连接的二极管D6,P极与三极管VT3的发射极相连接、N极与微控制器相连接的二极管D7,以及一端与二极管D7的N极相连接、另一端接地的电阻R10组成;所述转换芯片U的SHDN管脚与放大器P2的输出端相连接、其V-管脚则与电容C7的正极相连接、其LX管脚则与三极管VT3的基极相连接;所述三极管VT2的发射极接地、其基极与稳压二极管D4的P极相连接;所述三极管VT4的集电极与电容C8的正极相连接。
5.根据权利要求4所述的一种温室大棚温度自动控制系统,其特征在于:所述转换芯片U为MAX752集成芯片。
CN201610353046.0A 2016-05-24 2016-05-24 一种温室大棚温度自动控制系统 Pending CN105867462A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610353046.0A CN105867462A (zh) 2016-05-24 2016-05-24 一种温室大棚温度自动控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610353046.0A CN105867462A (zh) 2016-05-24 2016-05-24 一种温室大棚温度自动控制系统

Publications (1)

Publication Number Publication Date
CN105867462A true CN105867462A (zh) 2016-08-17

Family

ID=56634899

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610353046.0A Pending CN105867462A (zh) 2016-05-24 2016-05-24 一种温室大棚温度自动控制系统

Country Status (1)

Country Link
CN (1) CN105867462A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292791A (zh) * 2016-09-29 2017-01-04 四川森迪科技发展股份有限公司 一种养殖场用低干扰温度自动控制系统
CN106292775A (zh) * 2016-08-26 2017-01-04 合肥若涵信智能工程有限公司 基于物联网温室温度控制系统
CN106484005A (zh) * 2016-09-29 2017-03-08 四川森迪科技发展股份有限公司 一种基于积分电路的养殖场用温度自动控制系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106292775A (zh) * 2016-08-26 2017-01-04 合肥若涵信智能工程有限公司 基于物联网温室温度控制系统
CN106292791A (zh) * 2016-09-29 2017-01-04 四川森迪科技发展股份有限公司 一种养殖场用低干扰温度自动控制系统
CN106484005A (zh) * 2016-09-29 2017-03-08 四川森迪科技发展股份有限公司 一种基于积分电路的养殖场用温度自动控制系统
CN106292791B (zh) * 2016-09-29 2018-06-08 永春锐拓信息技术中心 一种养殖场用低干扰温度自动控制系统
CN106484005B (zh) * 2016-09-29 2018-06-26 福建省永春冠怡花卉苗木专业合作社 一种基于积分电路的养殖场用温度自动控制系统

Similar Documents

Publication Publication Date Title
CN105843290A (zh) 一种温室大棚用精确制冷式高精度温度自动控制系统
CN105807809A (zh) 一种基于物联网技术的信号滤波式温室大棚温度监控系统
CN205229869U (zh) 一种智能温室大棚系统
CN105824334A (zh) 一种基于物联网技术的温室大棚温度监控系统
CN105867462A (zh) 一种温室大棚温度自动控制系统
CN105807810A (zh) 一种基于物联网技术的太阳能温室大棚温度监控系统
CN105807818A (zh) 基于物联网技术的信号混合处理式温室大棚温度监控系统
CN204443403U (zh) 蔬菜温室大棚环境解耦控制系统
CN105843279A (zh) 一种基于太阳能供电的物联网温室大棚温度监控系统
CN204707593U (zh) 一种山区蔬菜大棚
CN204679888U (zh) 一种基于led光源的温室光环境控制装置
CN104885814A (zh) 一种低日照太阳能种植大棚
CN203369166U (zh) 农业大棚自动化装置
CN202425408U (zh) 全自动定时浇花器
CN205596796U (zh) 一种分区节水喷灌或滴灌控制系统
CN206862493U (zh) 一种养殖水域监测系统
CN105807808A (zh) 一种基于温度报警的温室大棚温度自动控制系统
CN209435951U (zh) 一种农业灌溉系统
CN105824335A (zh) 一种精确制冷式温室大棚温度自动控制系统
CN106708119B (zh) 一种大棚蔬菜种植用湿度控制系统
CN204287949U (zh) 一种大棚用温度自动控制系统
CN105843280A (zh) 基于温度报警的精确制冷式温室大棚温度自动控制系统
CN203369160U (zh) 一种基于传感设备可实时进行环境数据采集的温控大棚
CN209299869U (zh) 一种环保绿能养菇系统
CN205720217U (zh) 远程土地湿度高强度监测系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160817