CN105865555A - 一种科氏质量流量计的抗高温模拟驱动电路 - Google Patents

一种科氏质量流量计的抗高温模拟驱动电路 Download PDF

Info

Publication number
CN105865555A
CN105865555A CN201610372978.XA CN201610372978A CN105865555A CN 105865555 A CN105865555 A CN 105865555A CN 201610372978 A CN201610372978 A CN 201610372978A CN 105865555 A CN105865555 A CN 105865555A
Authority
CN
China
Prior art keywords
circuit
amplifier
resistance
input
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610372978.XA
Other languages
English (en)
Other versions
CN105865555B (zh
Inventor
徐科军
刘铮
方正余
张建国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201610372978.XA priority Critical patent/CN105865555B/zh
Publication of CN105865555A publication Critical patent/CN105865555A/zh
Application granted granted Critical
Publication of CN105865555B publication Critical patent/CN105865555B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8422Coriolis or gyroscopic mass flowmeters constructional details exciters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

本发明涉及流量检测领域,是一种科氏质量流量计的抗高温模拟驱动电路,在现有的科氏质量流量计模拟驱动电路的基础上,重新设计精密整流电路与低通滤波电路,研制出一种科氏质量流量计的抗高温模拟驱动电路,有效地解决了现有模拟驱动电路存在的高温环境中幅值漂移的问题。

Description

一种科氏质量流量计的抗高温模拟驱动电路
技术领域
本发明涉及流量检测领域,是一种科氏质量流量计的抗高温模拟驱动电路,具体涉及一种科氏质量流量计模拟驱动电路中的精密整流电路与有源二阶低通滤波电路。
背景技术
科氏质量流量计用于流体质量流量的直接测量,测量精度高,重复性好,而且还能同时实现流体的体积流量、密度、温度等多参数和不同流体状况下的测量,具有广阔的应用前景。科氏质量流量计由一次仪表(或称科氏质量流量传感器)和二次仪表(或称科氏质量流量变送器,简称变送器)组成。一次仪表包括流量管、驱动线圈、拾振线圈(磁电式速度传感器)和温度传感器,变送器包括信号处理系统和流量管驱动系统(简称驱动系统)。驱动系统产生驱动信号,提供给驱动线圈;驱动线圈驱动流量管振动。磁电式速度传感器检测流量管的振动情况,并将检测到的振动信息送至信号处理系统进行处理。
几乎所有仪表的变送器都不可避免地需要考虑温度影响的问题,科氏质量流量计应用于石油化工行业中,常常会在高温环境下工作(如太阳直射的沙漠环境)。这就对科氏质量流量计变送器的耐高温性能提出了较高的要求。然而,由于需要满足国家的防爆隔爆标准,在实际使用时,往往需要将变送器的表壳密封,这将导致变送器内部的温度进一步升高。此时,表壳内的器件或电路可能会受到温度的影响,出现停止工作或信号畸变等问题,造成变送器无法正常工作或是影响仪表测量的准确度。
为了保证科氏质量流量变送器在高温时的正常工作,科氏质量流量计计量检定规范GB1038-2008中,规定了其工作的环境温度范围为5~45℃,所以,生产厂家都会在变送器出厂时,对其进行高温实验。目前广泛应用于科氏质量流量变送器中的模拟驱动电路,因在整流滤波环节采用了易受高温影响的齐纳式二极管,导致变送器工作在高温环境时,通常会出现驱动信号幅值及传感器信号幅值漂移过大的现象。
针对科氏质量流量计在高温环境工作时出现的问题,国外学者从机械角度,对科氏质量流量传感器超低温时的特性进行了研究,并提出了相应的误差补偿方法(Tao Wang,Yousif Hussain.Coriolis mass flow measurement at cryogenic temperatures[J].FlowMeasurement and Instrumentation,2009,20(3):110-115)。然而,对于电气部分,即变送器出现的问题,并未进行过深入的研究。国外企业的研究人员通常会从芯片的角度来解决温度耐受问题,即采用工作温度范围较宽的芯片。但是,即使是温度范围较宽的芯片,其耐受温度的能力有时也会出现问题。在国内,合肥工业大学通过深入分析,改善系统电源电路效率,精心地进行PCB布局排版,合理地散热,成功地解决了自己研制的变送器在55℃高温实验环境下,DSP停止工作的问题(熊文军,科氏质量流量计实验和应用中关键技术研究[D].合肥:合肥工业大学硕士论文,2013)。但是,尚未解决因高温引起的变送器驱动幅值及传感器幅值漂移的问题。
发明内容
为了解决科氏质量流量变送器工作在高温环境下,模拟驱动电路因受环境温度影响而导致的驱动信号幅值及传感器信号幅值漂移的问题,本发明基于现有的科氏质量流量计模拟驱动电路的框架,重新设计精密整流及低通滤波这两个电路环节,研制出一种科氏质量流量计的抗高温模拟驱动电路。
本发明的具体技术解决方案是:
现有的科氏质量流量计模拟驱动电路由电压跟随、放大滤波、乘法电路、精密整流、低通滤波、增益控制、电压放大、驱动保护和功率放大等九个电路环节组成。其中,电压跟随环节由低噪声、高精度运算放大器与分立电阻组成,对拾振线圈(磁电式速度传感器)输出的信号进行跟随,起到阻抗隔离的作用;放大滤波环节由运算放大器与分立电阻电容组成,滤除工业现场产生的高频干扰噪声;精密整流及滤波环节由精密运放与齐纳式二极管组成,并与后级分立电阻电容组成滤波电路,形成传感器信号的幅值信息;增益控制环节由运算放大器与分立电阻组成,根据得到传感器信号的幅值信息来控制、调节驱动信号的幅值大小;乘法电路环节由模拟乘法器与分立电阻组成,得到幅值可控的驱动电压;功率放大环节由功率放大器与分立电阻组成,对驱动电压进行放大,以得到高电压、大电流的驱动信号,维持流量管的正常振动。
然而,上述已被广泛应用于科氏质量流量计中的模拟驱动电路,其精密整流环节用到的齐纳式二极管较易受到高温环境的影响,其主要原因为:起开关作用的齐纳二极管,其反向漏电流随温度升高而显著增大。该反向漏电流会在整流电路运放输入端的电阻上叠加噪声电压,从而影响输入信号幅值信息的准确性,导致驱动电压幅值产生漂移,进而造成传感器信号幅值产生漂移。
本发明针对上述问题,将现有模拟驱动电路中的精密整流及滤波环节改为基于单电源运算放大器的精密整流电路与低通滤波电路,以避免现有模拟驱动电路中精密整流环节在高温时因齐纳二极管反向漏电流增大而造成的问题。
本发明专利的优点是:
采用抗高温科氏质量流量计模拟驱动电路的变送器,解决了高温实验(60℃)时出现的传感器信号幅值漂移的问题,为后续对传感器信号的处理及流量的计算提供了保障。
附图说明
图1是现有的模拟驱动系统电路硬件组成框图;
图2是现有的电压跟随电路原理图;
图3是现有的放大滤波电路原理图;
图4是现有的增益控制电路原理图;
图5是现有的乘法电路原理图;
图6是现有的驱动保护电路原理图;
图7是现有的功率放大电路原理图;
图8是现有的精密整流及滤波电路原理图;
图9是本发明设计的精密整流电路原理图;
图10是本发明设计的二阶有源低通滤波电路原理图;
图11是高温实验照片。
具体实施方式
下面结合附图对本发明作进一步说明。
图1是现有的模拟驱动系统的电路硬件组成框图。模拟驱动电路由电压跟随、精密整流、增益控制、乘法放大、驱动保护以及功率放大等六部分组成。磁电式速度传感器的输出信号经过电压跟随、放大、滤波后分为两路。对这两路信号分别进行处理。对其中的一路信号进行精密整流,得到传感器信号的幅值信息,再经过后级的增益控制环节得到驱动信号所需要的增益,然后,送入乘法器的一端;将另一路信号作为驱动信号所需的波形信息,直接送入乘法器的另一端。这样,包含幅值和波形信息的两路信号经过乘法器后将输出所需的驱动原始信号。该驱动原始信号经过后级功率放大后,得到所需加在传感器激振线圈两端的驱动信号。为了避免驱动信号过大而损坏流量管,在模拟驱动电路中设置有驱动保护电路。当驱动信号幅值超过预先设置阈值电压后,电路将自动切换为小增益驱动,限制了驱动信号的幅值,间接地保护流量管不受损坏。
图2是现有的电压跟随电路原理图。针对传感器信号幅值低(仅为毫伏级)的特点,采用低噪声精密运算放大器组成电压跟随电路,利用运算放大器高输入阻抗、低输出阻抗的特性,对拾振线圈输出的信号进行阻抗隔离。
图3是现有的放大滤波电路原理图。运算放大器U1与电阻R1、R2组成反相放大器电路结构,对传感器信号进行一级放大。电容C5与电阻R4构成无源高通滤波器电路结构,对工业现场产生的高频噪声加以滤除。反馈电容C1的设置既可构成低通滤波器,对信号进行低通滤波,又对运算放大器起到了零点补偿的作用,保证了运算放大器正常工作的稳定性。
图4是现有的增益控制电路原理图。电阻R10与可变电阻器W1组成目标幅值调节电路,通过调节W1的阻值大小,可得到不同的分压值Vref。输入Vin为精密整流与低通滤波电路的输出,为简化分析过程,在不考虑反馈滤波电容C16的前提下,按照运算放大器虚短和虚断的条件,可得如下关系:
V r e f - V i n R 12 = V o u t - V r e f R 17 - - - ( 2 )
所以,输入输出满足下述关系:
V o u t = R 12 + R 17 R 12 × V r e f - R 17 R 12 V i n - - - ( 3 )
从式(3)中不难看出,输出信号Vout随输入信号Vin的变化而发生反向变化,即当输入信号过大时,提供较小的增益;当输入信号过小时,可提供较大的增益。通过这种方式来维持流量管的稳幅振动。
图5是现有的乘法电路原理图。模拟乘法器U4(AD633)的一端被输入经过增益控制环节后得到的驱动信号所需要的增益信息,另一端被输入驱动信号所需的波形信息,经过乘法运算后,将输出包含幅值和波形信息的驱动原始信号。运算放大器U3B与分立电阻R16和R18构成同相放大电路,对输出的驱动原始信号作进一步的放大处理,电容C14与电阻R15组成无源高通滤波器,在滤除输出信号直流分量的同时,也为运放U3B输入引脚的电流提供了回流路径,保证了该同相放大电路的正常工作。
图6是现有的驱动保护电路原理图。其作用是保证传感器不因振动过强而造成损坏。通过电阻R20与可调电阻器W2设置驱动电压的阈值,当未达到阈值时,MOS管Q1处于导通状态,此时由运算放大器U5B和分立电阻R19、R21构成同相放大电路,放大增益为2倍;当达到或超过设置阈值时,运算放大器U5A的输出电压为负,此时运放U5B与分立电阻R21构成同相电压跟随电路,放大增益减小为1倍,从而达到减小驱动电压,保护流量管的目的。
图7是现有的功率放大电路原理图。功率放大电路由正负9V电压供电,大电流输出运算放大器U6(OPA551)、分立电阻R28、R29构成同相放大器;电阻R27与电容C24组成无源高通滤波器。正常工作时,待放大的驱动信号从“IN”处输入,经过同相放大器放大后,从“Drive+”处输出。“Drive+”端直接接至科氏质量流量传感器的驱动线圈正端,驱动线圈的负端接变送器的地电平。
图8是现有的精密整流及滤波电路原理图。电路工作时,从R3处输入正弦波形的磁电式速度传感器的输出信号。由于这个传感器信号属于交流信号,所以,需要将这传感器信号分为正负半周情况进行分析。当传感器信号处于正半周时,二极管D2导通,D1截止。根据叠加定理,此时输入输出满足关系式:
Vout=(-Vin)×(-2)+(-Vin)=Vin (4)
由式(4)可知,此时输出信号Vout跟随输入信号Vin。
同理,当传感器信号处于负半周时,二极管D2截止,D1导通。根据叠加定理,此时输入输出满足关系式:
Vout=-Vin (5)
由式(5)可知,此时输出信号与输入信号反相。
综上,当传感器信号为正时,电路输出与输入相同;当传感器信号为负时,输出信号等于输入信号的绝对值,所以,该电路具有整流的作用。另外,在图8中,电容C10与第二级运算放大器U2B组成低通滤波器结构,对整流后的波形再进行滤波,这样,使整个电路的输出为整流信号波形的有效值。
图9是本发明设计的精密整流电路原理图。该精密整流电路由单电源运算放大器AD820与外围电阻R1与R2组成,其中,R1与R2阻值相同。
当输入的传感器信号为正时,前级运放U1作为单位增益跟随器,使后级运放U2的同向输入端电压与反向输入端相同,这样电阻R1、R2上没有电流流过,所以,后级运放U2的输出Vout将跟随输入Vin变化。
当输入的传感器信号为负时,由于运放U1为单电源供电,所以,U1将输出强制拉低至GND,从而使运放U2同向输入端接至GND。此时,U2为单位增益的反相放大器,此时输入输出满足关系式:
Vout=-Vin
综上分析,该电路对输入的传感器信号起到了整流的作用。它通过利用运算放大器单电源供电时,输入超出电源轨范围的特性,省去了现有精密整流电路中的齐纳二极管,避免了在高温时二极管反向漏电流增大所产生的影响。
需要注意的是,这一方案需要选择允许输入超出电源轨范围的运放,例如ADI公司的芯片AD820,这款运放由于特殊的结构设计,允许反相输入端的输入电压低于地电平20V,适合在该方案的整流电路中使用。
图10是本发明设计的二阶有源低通滤波电路原理图。运算放大器U3A与电阻R4、R5、R6,电容C6、C7组成二阶多路负反馈型有源低通滤波器,其中,电容C8、C9、C10、C11为所述运算放大器U3A与U3B的退耦电容,低通滤波器的截止频率取决于电阻R5、R6与电容C6、C7,截止频率的计算公式如式(6)所示:
f c = 1 2 π R 5 R 6 C 6 C 7 - - - ( 6 )
对于有源滤波器的结构,有两种可供选择,分别是MFB(多路反馈型)结构及Sallen-Key结构。前者的增益可变,且对元件值改变的敏感度较低,而且采用了负反馈,相较于Sallen-Key更为稳定。因此,考虑克服温漂的因素,选择MFB(多路反馈型)结构,以进一步减弱滤波器中分立元件温度系数的影响,但是,需要注意该结构具有反相的特点。
对本发明的电路进行了实验测试,图11是高温实验的实物图。高温实验系统分为实验对象、控温设备以及观察设备三部分组成。其中,实验对象由科氏质量流量传感器和变送器组成。科氏质量流量变送器由电源电路、安全栅电路、模拟驱动电路、输入信号调理电路和处理器最小系统电路五部分组成,处理芯片采用的是TI公司的DSP TMS320F28335;科氏质量流量传感器由国内某企业研制,其口径为25mm,其满管固有振动频率为158Hz,最佳振动幅值为200mVpp。控温设备使用的是上海森信公司DGG-9053AD鼓风恒温箱,该恒温箱温度可调节范围为10~200℃,内部使用铂电阻测温,测温误差为1℃,保温定时时间最长可达999小时;观察设备使用的是Tektronix DPO4054四通道数字示波器。该示波器具有高达5GS/s的采样率,可实现高达20M的记录长度,最大波形捕获速率大于340000wfm/s,具有1GHz带宽。
根据科氏质量流量计计量检定规范(GB 1038-2008)规定的科氏质量流量计工作的温度范围为5~45℃,但是,在工业生产过程中,变送器在出厂前一般需要进行45~60℃的高温实验。所以,温度实验中需要将模拟环境温度(恒温箱温度)设置为60℃。
实验前,将科氏质量流量变送器的驱动参数与实验所用的科氏质量流量传感器调整匹配,并按传感器的最佳振动幅值调整好信号调理电路中的放大倍数;然后,加载程序,使科氏质量流量变送器正常运行后,将变送器其放入恒温箱中。
因为现有的模拟驱动电路在常温中能稳定、正常地工作,所以,在实验时,首先记录一次常温环境中的驱动信号幅值与传感器信号幅值,作为对比量;然后,再调整环境温度达到60℃,并在高温下进行连续两小时的高温实验。在实验过程中,每隔10分钟记录驱动信号幅值与传感器信号幅值。在实验过程中,用上述示波器观察并记录驱动信号幅值与传感器信号幅值。针对现有的模拟驱动电路进行高温实验,实验结果如表1所示。
表1现有的模拟驱动电路高温实验结果
从实验结果中可以看出:常温状态下,科氏质量流量传感器中的流量管稳幅振荡时,驱动信号电压幅值为0.74Vpp,此时,磁电式速度传感器信号的电压幅值为4.76Vpp;当环境温度达到60℃时,驱动信号电压幅值增加到1.25V,相较于常温变化约70%,由于驱动电压的增长,使得磁电式速度传感器信号的幅值增加至7.78V,超出了科氏质量流量变送器中ADC(模数转换器)的5V电源上限,相较于常温时变化约63%。
与上述实验步骤相同,针对本发明的抗高温模拟驱动电路进行连续的温度实验,实验结果如表2所示。
表2抗高温模拟驱动系统的高温实验结果
由表2中数据可以看出,当环境温度达到60℃时,驱动电压相较于常温(28℃)时变化约为2%,同时可以看到,磁电式速度传感器信号电压变化约为0.2%。
由表1与表2实验数据对比可知,在环境温度为60℃的工作条件下,科氏质量流量变送器使用的现有的模拟驱动电路驱动信号幅值漂移较大,从而使磁电式速度传感器信号幅值漂移的幅度达到63%。相比之下,在相同的工作条件,抗高温的模拟驱动电路能正常工作,且将传感器信号幅值漂移的幅度减小至0.2%,验证了本发明的有效性。

Claims (3)

1.科氏质量流量计的抗高温模拟驱动电路由电压跟随、放大滤波、乘法电路、精密整流、低通滤波、增益控制、电压放大、驱动保护和功率放大等九个电路环节组成;其特征在于:
所述精密整流电路,由单电源运算放大器U1、U2与外围电阻R1、R2组成;其中,电阻R1与R2阻值相同;该电路利用运算放大器单电源供电时,输入超出电源范围的特性实现精密整流功能,省去了现有整流电路中的齐纳二极管,避免了在高温时因二极管反向漏电流增大所产生的影响;正常工作时:当输入传感器信号为正,前级运放U1作为单位增益跟随器,使后级运放U2的同向输入端电压与反向输入端相同,后级运放U2的输出信号Vout将跟随输入信号Vin变化;当输入传感器信号为负,前级运放U1的输出强制拉低至GND,从而使运放U2同向输入端接至GND;此时,U2为单位增益的反相放大器,从而使输出与输入反相;
所述低通滤波电路中,运算放大器U3A与电阻R4、R5、R6,电容C6、C7组成二阶多路负反馈型有源低通滤波器,其中,低通滤波器的截止频率取决于电阻R5、R6与电容C6、C7,截止频率的计算公式为:
f c = 1 2 π R 5 R 6 C 6 C 7 - - - ( 1 )
式中,电容C8、C9、C10、C11为所述运算放大器U3A与U3B的退耦电容;所述运算放大器U3B与电阻R7、R8组成单位增益的反相跟随器。
2.根据权利要求1中所述的精密整流电路,其特征在于:
所述的精密整流电路中,所述单电源运算放大器U1与U2的具体型号为:AD820。
3.据权利要求1中所述的低通滤波电路,其特征在于:
所述低通滤波电路中,所述运算放大器U3A与U3B的具体型号为:OPA2277。
CN201610372978.XA 2016-05-24 2016-05-24 一种科氏质量流量计的抗高温模拟驱动电路 Active CN105865555B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610372978.XA CN105865555B (zh) 2016-05-24 2016-05-24 一种科氏质量流量计的抗高温模拟驱动电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610372978.XA CN105865555B (zh) 2016-05-24 2016-05-24 一种科氏质量流量计的抗高温模拟驱动电路

Publications (2)

Publication Number Publication Date
CN105865555A true CN105865555A (zh) 2016-08-17
CN105865555B CN105865555B (zh) 2018-08-24

Family

ID=56642769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610372978.XA Active CN105865555B (zh) 2016-05-24 2016-05-24 一种科氏质量流量计的抗高温模拟驱动电路

Country Status (1)

Country Link
CN (1) CN105865555B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914649A (zh) * 2017-07-07 2020-03-24 恩德斯+豪斯流量技术股份有限公司 用于确定液体的质量流量的测量传感器
CN114460999A (zh) * 2022-01-04 2022-05-10 珠海格力电器股份有限公司 一种可校准电路、控制器及电子设备
CN116094412A (zh) * 2021-11-05 2023-05-09 荣耀终端有限公司 线性马达驱动方法、电路及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876898A (en) * 1988-10-13 1989-10-31 Micro Motion, Inc. High temperature coriolis mass flow rate meter
CN1068421A (zh) * 1991-07-11 1993-01-27 微型机械装置有限公司 基本消除科里奥利表中温度引发的测量误差的技术
CN1314993A (zh) * 1998-08-26 2001-09-26 微动公司 Coriolis质量流量计的高温驱动系统
CN101706299A (zh) * 2009-11-20 2010-05-12 合肥工业大学 一种基于dsp的科氏质量流量变送器
CN103814278A (zh) * 2011-07-07 2014-05-21 微动公司 用于振动仪表的改进的电气配置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4876898A (en) * 1988-10-13 1989-10-31 Micro Motion, Inc. High temperature coriolis mass flow rate meter
CN1068421A (zh) * 1991-07-11 1993-01-27 微型机械装置有限公司 基本消除科里奥利表中温度引发的测量误差的技术
CN1314993A (zh) * 1998-08-26 2001-09-26 微动公司 Coriolis质量流量计的高温驱动系统
CN101706299A (zh) * 2009-11-20 2010-05-12 合肥工业大学 一种基于dsp的科氏质量流量变送器
CN103814278A (zh) * 2011-07-07 2014-05-21 微动公司 用于振动仪表的改进的电气配置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110914649A (zh) * 2017-07-07 2020-03-24 恩德斯+豪斯流量技术股份有限公司 用于确定液体的质量流量的测量传感器
CN110914649B (zh) * 2017-07-07 2022-08-30 恩德斯+豪斯流量技术股份有限公司 用于确定液体的质量流量的测量传感器
US11788875B2 (en) 2017-07-07 2023-10-17 Endress+Hauser Flowtec Ag Measurement pickup for determining the mass flow rate of a liquid
CN116094412A (zh) * 2021-11-05 2023-05-09 荣耀终端有限公司 线性马达驱动方法、电路及相关装置
CN114460999A (zh) * 2022-01-04 2022-05-10 珠海格力电器股份有限公司 一种可校准电路、控制器及电子设备

Also Published As

Publication number Publication date
CN105865555B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN100487389C (zh) 流量测定装置
CN102353481B (zh) 基于二维正交函数的压力传感器温度和压力互补的方法及装置
CN102494808B (zh) 微量热计、使用该微量热计的功率基准系统及测量方法
CN105865555A (zh) 一种科氏质量流量计的抗高温模拟驱动电路
CN203037265U (zh) 一种温度补偿电路
CN103278561B (zh) 通用型超声波液体浓度检测装置
CN105651409A (zh) 热电偶冷端补偿测温电路和装置
CN103913249A (zh) 一种温度监测电路装置和方法
CN101769773B (zh) 数字一体化质量涡街流量计
CN106918380B (zh) 一种高灵敏度微质量测试方法及便携式质量测试装置
CN105067492A (zh) 一种粉尘浓度仪
Sinaga et al. Design and Manufacture of a Low-Cost Data Acquisition Based Measurement System for Dual Fuel Engine Researches
CN204007880U (zh) 一种非接触式红外温度采集装置
Huchel et al. Stretched sensing strategies for IEPE
CN203732109U (zh) 基于Cortex M3内核处理器的气体流量测量电路
CN105784036B (zh) 一种科氏质量流量计驱动系统中的差分式功率放大电路
Dong et al. Curve fitting and piecewise linear method for z-type temperature sensor
CN107356811A (zh) 功耗测试系统
CN103913192B (zh) 一种电荷放大单元校准装置及校准方法
CN204988959U (zh) 一种粉尘浓度仪
Follmer Frequency domain characterization of mass air flow sensors
CN104748940A (zh) 一种便携式在线流阻测试仪
CN102095756B (zh) 具有温度补偿的湿度感测电路
CN116642544A (zh) 高精度平衡流量计
CN205049313U (zh) 一种便携式在线流阻测试仪

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant