CN105854647B - The metal organic framework thin film and its application of kayexalate modification - Google Patents

The metal organic framework thin film and its application of kayexalate modification Download PDF

Info

Publication number
CN105854647B
CN105854647B CN201610228832.8A CN201610228832A CN105854647B CN 105854647 B CN105854647 B CN 105854647B CN 201610228832 A CN201610228832 A CN 201610228832A CN 105854647 B CN105854647 B CN 105854647B
Authority
CN
China
Prior art keywords
kayexalate
solution
modification
thin film
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610228832.8A
Other languages
Chinese (zh)
Other versions
CN105854647A (en
Inventor
彭新生
郭弈
毛祎胤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201610228832.8A priority Critical patent/CN105854647B/en
Publication of CN105854647A publication Critical patent/CN105854647A/en
Application granted granted Critical
Publication of CN105854647B publication Critical patent/CN105854647B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

The invention discloses the metal organic framework thin films and its application of a kind of modification of kayexalate, steps are as follows: 1) preparing hydroxide nano line solution, the hydroxide nano line solution of preparation is mixed with kayexalate solution again, it stirs evenly, vacuum filtration obtains the composite membrane of hydroxide nano line and kayexalate;2) organic ligand is dissolved in the mixed solution of second alcohol and water, obtain organic ligand solution, the composite membrane of hydroxide nano line and kayexalate is placed in organic ligand solution, room temperature reaction obtains the metal organic framework thin film of kayexalate modification after 2~4 hours.The present invention, which is realized, is mixed kayexalate with nano wire by physical agitation, Electrostatic Absorption, kayexalate is introduced inside metal organic framework thin film in situ, modification is carried out to it, avoid the organic decoration process of Metal-organic frame ligand, it consumes energy low, it is pollution-free, rapidly and efficiently.

Description

The metal organic framework thin film and its application of kayexalate modification
Technical field
The present invention relates to the preparation methods of metal organic framework thin film, and in particular to a kind of kayexalate modification Metal organic framework thin film and its application.
Background technique
Metal organic framework thin film is that a kind of thickness is thin in nanometer to micron range, the porous function being attached in matrix Film, ideally, metal organic framework thin film surface is smooth, isotropic, has high porosity and good chemistry Stability can be applied to the numerous areas such as separation, absorption, catalysis, slow releasing carrier of medication, hydrogen storage.
Fine and close continuous metal organic framework thin film can be used for ion isolation field.If to Metal-organic frame The micropore inwall of film carries out the compatibility that modification can change inner wall to ion, by introducing different functional groups, to micropore Inner wall is modified, it is more likely that it is made to have different selectivity can be to mixing under the driving of voltage different ions Different kinds of ions in solion carries out selectivity and transports, and then realizes ion isolation.
The Chinese patent literature of Patent No. ZL201210383466.5 discloses a kind of hydroxide nano line and organic The method that ligand quickly prepares metal organic framework thin film at normal temperature, steps are as follows: 1) under magnetic stirring, by ethanol amine Aqueous solution is added in same volume copper nitrate, zinc nitrate or cadmium nitrate aqueous solution, slows down mixing speed, obtains corresponding hydroxide Nanowire solution is directly filtered and forms one layer on multiaperture pellumina by copper, zinc hydroxide or cadmium hydroxide nanowires solution Nano wire layer;2) nano wire layer is added in the organic ligand solution that solvent is ethyl alcohol, octanol or DMF, is reacted at normal temperature 30min obtains metal organic framework thin film.
It is upper specific to be frequently in grafting on organic ligand for the method for modifying of metal organic framework thin film micropore inwall at present Functional group.This process is often complicated organic synthesis, cumbersome, and energy consumption is high, there is pollution, the limitation of these drawbacks Its development and application.
Summary of the invention
The present invention provides a kind of preparation methods of the metal organic framework thin film of kayexalate modification, pass through Physical agitation, Electrostatic Absorption keep kayexalate and metal hydroxides nano wire compound, realize in low temperature, low energy Kayexalate is simply and easily introduced to the internal void of metal organic framework thin film under the conditions of consuming, being free of contamination, Modification is modified to its inner wall, makes it have the function of ion isolation.
Using metal hydroxides nanostructure as the method for source metal synthesis metal organic framework thin film, operation letter It is single, it consumes energy low, it is pollution-free.Metal hydroxides nanostructured surface often has positive charge simultaneously, can adsorb with anisotropic electricity The molecule or nanostructure of lotus.It therefore, can be by metal hydroxide in the synthesis process of metal organic framework thin film Object nanostructured surface adsorbs specific molecular or nanostructure, and specific molecular or nanostructure can be made to be combined to metal in situ In the hole of organic framework, particular functional group is introduced into Metal-organic frame to realize, reaches and its inner wall is carried out The effect of modifying and decorating, to realize that ion selectivity transports the separation with alkali metal ion.
A kind of preparation method of the metal organic framework thin film of kayexalate modification, includes the following steps:
1) hydroxide nano line solution is prepared, then by the hydroxide nano line solution and kayexalate of preparation Solution mixing, stirs evenly, and vacuum filtration obtains the composite membrane of hydroxide nano line and kayexalate;
2) organic ligand is dissolved in the mixed solution of second alcohol and water, obtains organic ligand solution, by hydroxide nano line It is placed in organic ligand solution with the composite membrane of kayexalate, room temperature reaction obtained polystyrene sulphur after 2~24 hours The metal organic framework thin film of sour sodium modification.
Preferably, the hydroxide nano line solution manufacturing method are as follows: copper nitrate is added in aqueous ethanolamine In aqueous solution, stirring, and reaction vessel is sealed, after 12~48 hours, obtain Kocide SD nanowire solution.
Further, the concentration of the aqueous ethanolamine is 1.4mM;The copper nitrate aqueous solution concentration is 4mM; The kayexalate solution takes water as a solvent, and the concentration of the kayexalate solution is 0.0003~ 0.03wt%;The volume ratio of the nanowire solution and kayexalate solution is 30:1;The organic ligand is Trimesic acid, concentration are 5~15mM, and the volume ratio for the ethyl alcohol and water that dissolve organic ligand is 1:1.
As another preferred embodiment, the hydroxide nano line solution manufacturing method are as follows: by ethanol amine be added ethyl alcohol and In the mixed liquor of water, ethanolamine solutions are obtained;Zinc nitrate is added in the mixed liquor of second alcohol and water, obtains zinc nitrate solution;Again Ethanolamine solutions are mixed with zinc nitrate solution, are stirred, and reaction vessel is sealed, after 0.5~1.5 hour, obtain hydrogen-oxygen Change zinc nanowire solution.
Further, the concentration of the ethanolamine solutions is 1.6mM;The zinc nitrate solution concentration is 4mM;It is described Kayexalate solution take water as a solvent, the concentration of the kayexalate solution is 0.0003~ 0.03wt%;The volume ratio of the nanowire solution and kayexalate solution is 30:1;The organic ligand is Methylimidazole, concentration 25mM, the volume ratio for the ethyl alcohol and water that dissolve organic ligand are 1:4;For dissolving ethanol amine Or the ethyl alcohol of zinc nitrate and the volume ratio of water are 1:1.5.
The kayexalate modification for the method preparation that another object of the present invention is to provide a kind of according to Metal organic framework thin film, the Metal-organic frame are HKUST-1, molecular formula Cu3(BTC)2·3H2O, polyphenyl Vinyl sulfonic acid sodium is uniformly distributed in Metal-organic frame hole, the continuous free from flaw of metal organic framework thin film.
Another object of the present invention is to provide the kayexalate modifications that another kind is prepared according to the method Metal organic framework thin film, the Metal-organic frame be ZIF-8, molecular formula C8H12N4Zn, polystyrene sulphur Sour sodium is uniformly distributed in Metal-organic frame hole, the continuous free from flaw of metal organic framework thin film.
Another object of the present invention is to provide a kind of Metal-organic frames such as kayexalate modification Application of the film in alkali metal ion separation.
Compared with prior art, the present invention has the advantage that
For the present invention by the way that kayexalate and metal hydroxides nanowire solution to be mixed, Electrostatic Absorption is multiple It closes, and then in situ introduces kayexalate in metal organic framework thin film hole, realize that sulfonate radical has metal The modification of machine frame object film hole inner wall changes its affine performance to ion, realizes and transmits to the selectivity of different ions, Ion isolation is realized under voltage driving.It is easy to operate the invention avoids ligand modified complicated organic synthesis step, energy consumption It is low, it is pollution-free, rapidly and efficiently.
Detailed description of the invention
Fig. 1 is the preparation flow figure of the metal organic framework thin film of kayexalate modification in embodiment 1;
Fig. 2 is the SEM photograph on the surface of the HKUST-1 film of the kayexalate modification prepared in embodiment 1;
Fig. 3 is the SEM photograph on the surface of the HKUST-1 film of the kayexalate modification prepared in embodiment 2;
Fig. 4 is the SEM photograph on the surface of the HKUST-1 film of the kayexalate modification prepared in embodiment 3;
Fig. 5 is the SEM photograph on the surface of the ZIF-8 film of the kayexalate modification prepared in embodiment 1;
Fig. 6 is the SEM photograph on the surface of the ZIF-8 film of the kayexalate modification prepared in embodiment 2;
Fig. 7 is the SEM photograph on the surface of the ZIF-8 film of the kayexalate modification prepared in embodiment 3;
Fig. 8 is the photograph of the HKUST-1 film of the kayexalate modification of dimethyl silicone polymer encapsulation in application examples 1 Piece;
Fig. 9 is the I- of the HKUST-1 film of the kayexalate modification of dimethyl silicone polymer encapsulation in application examples 1 V curve and conductivity;
Figure 10 be application examples 2 in dimethyl silicone polymer encapsulation kayexalate modification HKUST-1 film from Sub- separating resulting.
Specific embodiment
The present invention is further elaborated and is illustrated with reference to the accompanying drawings and examples.Each embodiment in the present invention Technical characteristic can carry out the corresponding combination under the premise of not conflicting with each other.
In the present invention Kocide SD nanowire solution the preparation method comprises the following steps:
Aqueous ethanolamine is added in copper nitrate aqueous solution, stirring and seals reaction vessel, 12~48 hours it Afterwards, Kocide SD nanowire solution is obtained.The concentration of the aqueous ethanolamine is 1.4mM;The copper nitrate aqueous solution Concentration is 4mM.
In the present invention zinc hydroxide nano-wire solution the preparation method comprises the following steps:
Ethanol amine is added in the mixed liquor of second alcohol and water, obtains ethanolamine solutions;Second alcohol and water is added in zinc nitrate In mixed liquor, zinc nitrate solution is obtained;Ethanolamine solutions are mixed with zinc nitrate solution again, are stirred, and reaction vessel is sealed, After 0.5~1.5 hour, zinc hydroxide nano-wire solution is obtained.The concentration of the ethanolamine solutions is 1.6mM;Described Zinc nitrate solution concentration is 4mM;Volume ratio for the ethyl alcohol and water that dissolve ethanol amine or zinc nitrate is 1:1.5.
Embodiment 1
1) 30ml Kocide SD nanowire solution is mixed with 1ml 0.0003wt% kayexalate solution, magnetic force 5min is stirred, directly vacuum filtration forms the composite membrane of one layer of nano wire and kayexalate on polyethersulfone porous membrane, The diameter of polyethersulfone porous membrane is 2.5cm, aperture 200nm, porosity 25~50%.;
2) nano wire kayexalate film is put into 10ml, in 10mM trimesic acid solution (ethyl alcohol and water Volume is 1:1), it reacts at room temperature 2 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, obtains kayexalate The HKUST-1 film of modification, is shown in Fig. 2.The HKUST-1 film of kayexalate modification shown in Fig. 2 is polycrystal film, brilliant Grain intergrowth is good, the continuous free from flaw of film.
Embodiment 2
1) 30ml Kocide SD nanowire solution is mixed with 1ml 0.003wt% kayexalate solution, magnetic force 5min is stirred, directly vacuum filtration forms the composite membrane of one layer of nano wire and kayexalate on polyethersulfone porous membrane, The diameter of polyethersulfone porous membrane is 2.5cm, aperture 200nm, porosity 25~50%.;
2) nano wire kayexalate film is put into 10ml, in 10mM trimesic acid solution (ethyl alcohol and water Volume is 1:1), it reacts at room temperature 2 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, obtains kayexalate The HKUST-1 film of modification, is shown in Fig. 3.The HKUST-1 film of kayexalate modification shown in Fig. 3 is polycrystal film, brilliant Grain intergrowth is good, the continuous free from flaw of film.
Embodiment 3
1) 30ml Kocide SD nanowire solution is mixed with 1ml 0.03wt% kayexalate solution, magnetic force stirs 5min is mixed, directly vacuum filtration forms the composite membrane of one layer of nano wire and kayexalate on polyethersulfone porous membrane, gathers The diameter of ether sulfone perforated membrane is 2.5cm, aperture 200nm, porosity 25~50%.;
2) nano wire kayexalate film is put into 10ml, in 10mM trimesic acid solution (ethyl alcohol and water Volume is 1:1), it reacts at room temperature 2 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, obtains kayexalate The HKUST-1 film of modification, is shown in Fig. 4.The HKUST-1 film of kayexalate modification shown in Fig. 4 is polycrystal film, brilliant Grain intergrowth is good, the continuous free from flaw of film.
Embodiment 4
1) 15ml zinc hydroxide nano-wire solution is mixed with 0.5ml 0.0003wt% kayexalate solution, magnetic Power stirs 5min, is directly filtered by vacuum on polyethersulfone porous membrane, forms the compound of one layer of nano wire and kayexalate Film, the diameter of polyethersulfone porous membrane are 2.5cm, aperture 200nm, porosity 25~50%.;
2) nano wire kayexalate film is put into the 2ml, (body of ethyl alcohol and water in 25mM methylimidazole solution Product is 1:1.5), and micro sodium formate is added, it reacts at room temperature 24 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, The ZIF-8 film of kayexalate modification is obtained, sees Fig. 5.The ZIF-8 of kayexalate modification shown in fig. 5 is thin Film is polycrystal film, and crystal grain intergrowth is good, the continuous free from flaw of film.
Embodiment 5
1) 15ml zinc hydroxide nano-wire solution is mixed with 0.5ml 0.003wt% kayexalate solution, magnetic Power stirs 5min, is directly filtered by vacuum on polyethersulfone porous membrane, forms the compound of one layer of nano wire and kayexalate Film, the diameter of polyethersulfone porous membrane are 2.5cm, aperture 200nm, porosity 25~50%.;
2) nano wire kayexalate film is put into the 2ml, (body of ethyl alcohol and water in 25mM methylimidazole solution Product is 1:1.5), and micro sodium formate is added, it reacts at room temperature 24 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, The ZIF-8 film of kayexalate modification is obtained, sees Fig. 6.The ZIF-8 of kayexalate modification shown in fig. 6 is thin Film is polycrystal film, and crystal grain intergrowth is good, the continuous free from flaw of film.
Embodiment 6
1) 15ml zinc hydroxide nano-wire solution is mixed with 0.5ml 0.03wt% kayexalate solution, magnetic force 5min is stirred, directly vacuum filtration forms the composite membrane of one layer of nano wire and kayexalate on polyethersulfone porous membrane, The diameter of polyethersulfone porous membrane is 2.5cm, aperture 200nm, porosity 25~50%.
2) nano wire kayexalate film is put into the 2ml, (body of ethyl alcohol and water in 25mM methylimidazole solution Product is 1:1.5), and micro sodium formate is added, it reacts at room temperature 24 hours.It is washed 3 times after reaction with the mixed solvent of same ratio, The ZIF-8 film of kayexalate modification is obtained, sees Fig. 7.The ZIF-8 of kayexalate modification shown in Fig. 7 is thin Film is polycrystal film, and crystal grain intergrowth is good, the continuous free from flaw of film.
Application examples 1
The HKUST-1 film dimethyl silicone polymer for the kayexalate modification that embodiment 3 is prepared (PDMS) it is packaged, carries out electrochemistry I-V test, electrolyte is respectively 0.5M KCl, the second of 0.5M NaCl, 0.5M LiCl Alcohol-water solution (volume ratio of ethyl alcohol and water be 1:1), electrode are platinum electrode, sweep speed 0.05V/s, scanning range is- As a result 0.4~0.4V is shown in Fig. 9.When Fig. 9 (a) shows 0.5M KCl, NaCl or LiCl solution as electrolyte, prepared by embodiment 3 The conductivity of the I-V curve of the HKUST-1 film of obtained kayexalate modification, slope of a curve and film to ion It is directly proportional;When Fig. 9 (b) shows 0.5M KCl, NaCl or LiCl solution as electrolyte, polyphenyl second that embodiment 3 is prepared The conductivity of the HKUST-1 film of alkene sodium sulfonate modification, the ratio of conductivity are the HKUST-1 of kayexalate modification Desired separated ratio of the film to different ions.
Application examples 2
The HKUST-1 film dimethyl silicone polymer for the kayexalate modification that embodiment 3 is prepared (PDMS) be packaged, original electrolyte be 0.5M KCl and LiCl mixed solution and 0.5M NaCl and LiCl mixed solution, it is molten Agent is the ethanol-water mixed solvent that volume ratio is 1:1, and collecting terminal is that the alcohol-water mixing that isometric volume ratio is 1:1 is molten Agent applies 0.4V voltage 12 hours, and separating resulting is shown in Figure 10.Figure 10 shows the mixed ion solutions of same concentrations through polystyrene Ion ratio after the HKUST-1 thin film separation of sodium sulfonate modification, Figure 10 (a) indicate 0.5M KCl and LiCl mixed solution through poly- After the HKUST-1 thin film separation of sodium styrene sulfonate modification, solute 96.97% is LiCl, 3.03% is in the solution that is collected into KCl;Figure 10 (b) indicates the HKUST-1 thin film separation that 0.5M NaCl and LiCl mixed solution are modified through kayexalate Afterwards, solute 94.92% is LiCl, 5.08% is NaCl in the solution being collected into.

Claims (4)

1. a kind of preparation method of the metal organic framework thin film of kayexalate modification, which is characterized in that including such as Lower step:
1) aqueous ethanolamine is added in copper nitrate aqueous solution, stirring, and reaction vessel is sealed, after 12 ~ 48 hours, obtained Obtain Kocide SD nanowire solution;The hydroxide nano line solution of preparation is mixed with kayexalate solution again, is stirred It mixes uniformly, vacuum filtration obtains the composite membrane of hydroxide nano line and kayexalate;
2) organic ligand is dissolved in the mixed solution of second alcohol and water, obtains organic ligand solution, by hydroxide nano line and is gathered The composite membrane of sodium styrene sulfonate is placed in organic ligand solution, and room temperature reaction obtains kayexalate after 2 ~ 4 hours and repairs The metal organic framework thin film of decorations.
2. the preparation method of the metal organic framework thin film of kayexalate modification as described in claim 1, special Sign is that the concentration of the aqueous ethanolamine is 1.4 mM;The copper nitrate aqueous solution concentration is 4 mM;Described is poly- Styrene sulfonic acid sodium solution takes water as a solvent, and the concentration of the kayexalate solution is 0.0003 ~ 0.03 wt%;Institute The volume ratio of the nanowire solution and kayexalate solution stated is 30:1;The organic ligand is trimesic acid, Concentration is 5 ~ 15 mM, and the volume ratio for the ethyl alcohol and water that dissolve organic ligand is 1:1.
3. a kind of Metal-organic frame of the kayexalate modification of method according to claim 11 preparation is thin Film, which is characterized in that the Metal-organic frame is HKUST-1, molecular formula Cu3(BTC)2•3H2O, polystyrene sulphur Sour sodium is uniformly distributed in Metal-organic frame hole, the continuous free from flaw of metal organic framework thin film.
4. a kind of metal organic framework thin film of kayexalate modification as claimed in claim 3 is in alkali metal ion point Application from.
CN201610228832.8A 2016-04-13 2016-04-13 The metal organic framework thin film and its application of kayexalate modification Expired - Fee Related CN105854647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610228832.8A CN105854647B (en) 2016-04-13 2016-04-13 The metal organic framework thin film and its application of kayexalate modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610228832.8A CN105854647B (en) 2016-04-13 2016-04-13 The metal organic framework thin film and its application of kayexalate modification

Publications (2)

Publication Number Publication Date
CN105854647A CN105854647A (en) 2016-08-17
CN105854647B true CN105854647B (en) 2019-01-11

Family

ID=56636883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610228832.8A Expired - Fee Related CN105854647B (en) 2016-04-13 2016-04-13 The metal organic framework thin film and its application of kayexalate modification

Country Status (1)

Country Link
CN (1) CN105854647B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106975373A (en) * 2017-04-14 2017-07-25 浙江大学 Metal organic framework thin film of DNA modification and its preparation method and application
CN106975374A (en) * 2017-04-26 2017-07-25 浙江大学 A kind of preparation method of metal organic framework thin film of chlorophyll b modification and its application in photocatalytic reduction of carbon oxide
CN109675441B (en) * 2019-01-11 2020-08-11 浙江大学 Heparin sodium modified metal organic framework film and preparation method and application thereof
CN109603596B (en) * 2019-01-21 2020-06-09 浙江大学 Photo-thermal seawater desalination membrane made of metal organic framework material
CN113471541B (en) * 2020-03-31 2023-01-06 南京大学 Quasi-solid electrolyte based on porous material self-supporting membrane and preparation method and application thereof
CN111547759A (en) * 2020-05-19 2020-08-18 姚丰硕 Preparation method of PS loaded copper oxide nanorod
CN111992039B (en) * 2020-09-02 2021-12-21 天津工业大学 Method for preparing high-performance nanofiltration membrane by constructing ZIF-8 intermediate layer
CN112221350B (en) * 2020-09-25 2022-04-19 浙江工业大学 Preparation method of novel nanofiltration membrane based on zinc hydroxide nanowires
CN113385043B (en) * 2021-05-14 2022-07-08 石河子大学 Preparation method and application of mixed matrix membrane filled with moniliform material
CN114188557B (en) * 2021-10-29 2023-03-31 陕西师范大学 Preparation method and application of multi-mesoporous transition metal-nitrogen-carbon catalyst

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008900A (en) * 2010-09-17 2011-04-13 北京工业大学 Method for assembling multilayer composite separation membrane based on coordination effect
CN103272491A (en) * 2013-06-19 2013-09-04 北京工业大学 Preparation method for in situ self-assembled organic/inorganic hybrid membrane based on coordination
CN103590031A (en) * 2013-11-13 2014-02-19 浙江大学 Method for preparing mesoporous metal organic framework precursor film with ultrasonic method and application
CN103879066A (en) * 2014-03-13 2014-06-25 浙江大学 Preparation method of metal organic framework material film as well as product and application of metal organic framework material film
CN104230962A (en) * 2014-08-21 2014-12-24 浙江大学 Method for preparing mesoporous metal-organic frameworks structure crystal
CN104262487A (en) * 2014-08-21 2015-01-07 浙江大学 A functional nanometer material/metal-organic framework composite and a preparing method thereof
CN104497017A (en) * 2014-12-11 2015-04-08 浙江大学 Method for growing metal-organic framework seeds in gelatin layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102008900A (en) * 2010-09-17 2011-04-13 北京工业大学 Method for assembling multilayer composite separation membrane based on coordination effect
CN103272491A (en) * 2013-06-19 2013-09-04 北京工业大学 Preparation method for in situ self-assembled organic/inorganic hybrid membrane based on coordination
CN103590031A (en) * 2013-11-13 2014-02-19 浙江大学 Method for preparing mesoporous metal organic framework precursor film with ultrasonic method and application
CN103879066A (en) * 2014-03-13 2014-06-25 浙江大学 Preparation method of metal organic framework material film as well as product and application of metal organic framework material film
CN104230962A (en) * 2014-08-21 2014-12-24 浙江大学 Method for preparing mesoporous metal-organic frameworks structure crystal
CN104262487A (en) * 2014-08-21 2015-01-07 浙江大学 A functional nanometer material/metal-organic framework composite and a preparing method thereof
CN104497017A (en) * 2014-12-11 2015-04-08 浙江大学 Method for growing metal-organic framework seeds in gelatin layer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Room temperature synthesis of free-standing HKUST-1 membranes from copper hydroxide nanostrands for gas separation";Mao Y Y. et al;《Chem. Commun》;20130501;第49卷;第5666-5668页

Also Published As

Publication number Publication date
CN105854647A (en) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105854647B (en) The metal organic framework thin film and its application of kayexalate modification
CN106975373A (en) Metal organic framework thin film of DNA modification and its preparation method and application
CN103879066B (en) Preparation method of a kind of metal organic framework thin film and products thereof and application
CN107158964A (en) A kind of composite film material based on metal organic framework nanometer sheet and graphene oxide, preparation method and the application in gas separation
CN102872728B (en) Method for preparing metal organic framework film by using hydroxide nanowires and organic ligands
CN103059066B (en) Hydroxide nano line and organic ligand prepare the method for metal organic framework thin film at normal temperatures fast
CN108339529B (en) A kind of preparation method and application of the ion blotting composite membrane for Selective Separation palladium ion
CN105372320B (en) Prepare the method and its application of nano pore
CN105588860A (en) Transition metal oxide surface heteroepitaxial metal organic framework shell layer and preparation method and application thereof
CN106995531A (en) The synthesizing preparation method in situ of cellulose/metal organic frame compound and its application
CN108636130A (en) Polymer-metal composite separating film preparation method and application
CN109692581A (en) Two-dimensional layer Ti3C2Film and the preparation method and application thereof
CN111574722A (en) Photoconductive metal organic framework thin film material, preparation method and application thereof
CN106975372B (en) Mixed substrate membrane containing nano-grade molecular sieve and preparation method and application based on flaky material filling
CN102151501A (en) Preparation method of organic-inorganic nano composite separation membrane
CN108654322A (en) A kind of preparation method and application based on alkaline functional ionic liquid blend film
CN108821330A (en) A kind of preparation method of the indium oxide hollow pipe with hierarchical structure
Platt et al. Controlled deposition of nanoparticles at the liquid–liquid interface
Anusha et al. Synthesis and characterization of novel lanthanum nanoparticles-graphene quantum dots coupled with zeolitic imidazolate framework and its electrochemical sensing application towards vitamin D3 deficiency
CN105000587B (en) Preparation method for star-like self-assembly structure copper oxide
CN105347406B (en) A kind of preparation method of nickel hydroxide ultrathin nanometer piece
Zhu et al. Three-dimensional rose-like zinc oxide fiber coating for simultaneous extraction of polychlorinated biphenyls and polycyclic aromatic hydrocarbons by headspace solid phase microextraction
CN110508157A (en) A kind of carbon-based laminated film and preparation method thereof
Mao et al. Laminar MoS2 membrane for high-efficient rejection of methyl orange from aqueous solution
CN109364774A (en) A kind of Ionomer and stannic oxide/graphene nano composite membrane and its preparation method and application

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190111

Termination date: 20190413

CF01 Termination of patent right due to non-payment of annual fee