CN105843979B - 一种led多芯片模块中芯片间热耦合及结温分布的测量方法 - Google Patents

一种led多芯片模块中芯片间热耦合及结温分布的测量方法 Download PDF

Info

Publication number
CN105843979B
CN105843979B CN201610044556.XA CN201610044556A CN105843979B CN 105843979 B CN105843979 B CN 105843979B CN 201610044556 A CN201610044556 A CN 201610044556A CN 105843979 B CN105843979 B CN 105843979B
Authority
CN
China
Prior art keywords
chip
module
thermal coupling
temperature rise
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610044556.XA
Other languages
English (en)
Other versions
CN105843979A (zh
Inventor
朱丽虹
卢红丽
吕毅军
林岳
高玉琳
郭自泉
陈国龙
陈忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610044556.XA priority Critical patent/CN105843979B/zh
Publication of CN105843979A publication Critical patent/CN105843979A/zh
Application granted granted Critical
Publication of CN105843979B publication Critical patent/CN105843979B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一种LED多芯片模块中芯片间热耦合及结温分布的测量方法,涉及发光二极管热阻及结温测试。针对阵列排布的多芯片模块中结温分布,提出一种芯片间热耦合矩阵用于快速测量模块中的结温分布。利用模块中阵列排布的对称性减少需要测试芯片的数量,获得热耦合矩阵,再通过热耦合矩阵推导出所有芯片的温升,进而获得模块的结温分布,达到简化测试的目的。不仅描述了多芯片之间的耦合情况,而且可计算出每个芯片温升,即模块中的温度分布。根据热耦合矩阵和模块中芯片的排列,可根据简化模型测量少数芯片的温升情况来获得热耦合矩阵,根据热耦合矩阵可精确预测出其他芯片的温升。对于多芯片的模块,测量各个芯片之间的耦合现象和温升时,可减少工作量。

Description

一种LED多芯片模块中芯片间热耦合及结温分布的测量方法
技术领域
本发明涉及发光二极管(LED)热阻及结温测试,尤其是涉及一种LED多芯片模块中芯片间热耦合及结温分布的测量方法。
背景技术
随着固态照明的日益普及,为得到高光功率输出,大功率多芯片LED模块(multi-chip modules,MCM)的应用逐渐取代单芯片器件。多芯片LED模块克服了单芯片器件在光输出功率上的局限性,能够实现特殊场合的超高光功率需求[1-2]。但是相对于单芯片器件来说,MCM的导热层要传导比单芯片高出几倍甚至几十倍的热功率,导致其结温高的问题。高的结温势必严重降低整个模块的光电特性,光功率的降低又会进一步升高其散热性能,从而恶性循环加速LED的失效,减短寿命[3-4]。因此,多芯片LED模块的热管理技术是近年来的研究热点之一[5-6]。对于多芯片LED模块,高光功率与高结温之间的平衡是光源热管理的重要技术问题。
LED多芯片模块中结温分布的测量较为复杂,因为MCM中,每个芯片都是一个热源。每个芯片的温升一部分是自己产生的还有一部分是由相邻其他芯片之间的热耦合产生的[7-9]。因此在同一热沉上,不同芯片各自的温升不一样,故在分析MCM上芯片的结温分布时,研究芯片之间的热耦合效应尤为重要。
假设MCM上有N个芯片,要测得每个芯片的结温一般有两种办法:一是,利用多通道测试,能直接同时检测到每个芯片的结温;二是,利用单通道测试,这个测试方法要重复做N次,每一次单独测试一个芯片,这样也可以全部测出各个芯片的结温。方法一存在的缺陷是:目前常用的热阻测试仪如T3ster只能同时测试8个通道,当芯片数量大于8时,剩余的N-8个芯片是不能同时测得的;方法二的主要缺点是需要重复做N次,计算量大,需要花费大量的时间。因此,LED模块中芯片间的热耦合及结温分布的测量仍是待解决的技术难题。
参考文献
[1]B.H.Kim and C.H.Moon,“Comparison of the thermal performance of themultichip LED packages,”IEEE Compon.,Packag.,Manuf.Technol.,vol.2,no.11,pp.1832–1837,Nov.2012.
[2]S.Y.R.Hui,H.T.Chen,and X.H.Tao,“An extended photoelectron thermaltheory for LED systems—A tutorial from device characteristic to systemdesign for general lighting,”IEEE Trans.Power Electronics,vol.27,no.1,pp.4571–4583,Nov.2012.
[3]H.T.Chen,D.Y.Lin,S.C.Tan,and S.S.Y.Hui,“Chromatic,photometric andthermal modeling of LED systems with nonidentical LED devices,”IEEETrans.Power Electronics,vol.29,no.12,pp.6636-6647,Dec.2014.
[4]H.T.Chen,Y.J.Lu,Y.L.Gao,H.B.Zhang,and Z.Chen,“The performance ofcompact thermal models for LED package,”Thermochim.Acta,vol.488,no.1-2,pp.33-38,May 2009.
[5]J.Sun and W.S.Moo,“Thermal analysis of LED arrays for automotiveheadlamp with a novel cooling system,”IEEE Trans.Device Mater.Rel.,vol.8,no.3,pp.561–564,Sep.2008.
[6]A.Christensen and S.Graham,“Thermal effects in packaging highpower light emitting diode arrays,”Appl.Therm.Eng.,vol.29,no.2,pp.364–371,Feb.2009.
[7]A.Laubsch,M.Sabathil,J.Baur,M.Peter,and B.Hahn,“High-power andhigh-efficiency InGaN-based light emitters,”IEEE Trans.Electron Devices,vol.57,no.1,pp.79-87,Jan.2010.
[8]Y.Lin,Y.J.Lu,Y.L.Gao,Y.L.Chen,and Z.Chen,“Measuring the thermalresistance of LED packages in practical circumstances,”Thermochim.Acta,vol.520,no.1-2,pp.105-109,Jun.2011
[9]L.Kim,J.H.Choi,S.H.Jang,and M.W.Shin,“Thermal analysis of LEDarray system with heat pipe,”Thermochim.Acta,vol.455,no.1/2,pp.21–25,Apr.2007.
发明内容
本发明的目的在于针对上述MCM结温测试方法中存在的问题,提供一种LED多芯片模块中芯片间热耦合及结温分布的测量方法。
本发明的具体步骤如下:
构建热耦合矩阵模型,具体方法如下:
对于单芯片的LED器件,芯片、铝基板与热沉通过导热的粘结层连接,当芯片到热沉间散热通道上的热阻为R,散热通道上消耗掉的热功率为P时,则LED芯片相对于热沉的温升ΔT,即结温为:
ΔT=R·P (1)
而热通道上的热阻为:
R=ΔT/P (2)
对于多芯片的LED模块,芯片数量增加到N时,每个芯片的温升不仅由自身产生的热量引起,还受到附近的芯片对其热耦合传递的热量引起;由热阻R=ΔT/P的定义可知,模块中的第i个芯片,当自身的热阻为Ri,消耗掉的热功率为Pi时,其自身的温升为ΔTi=Ri·Pi。但由于模块中热耦合的存在,设第i芯片和第j芯片之间横向热阻为Rij,第j芯片将一部分热量χijRj通过热通道传递到第i芯片而引起第i芯片的温升为ΔTij
ΔTij=Rij·χijPj (3)
其中,第j芯片是指除第i芯片以外的其他N-1个芯片,那么第i芯片的总的温升由两部分组成,一是,芯片自身的温升ΔTi=Ri·Pi,二是,由第j芯片对其的热耦合引起的温升ΔTij=Rij·χijPj,那么第i芯片的总的温升ΔTi可表示为:
引入参数μij=Rij·χijii=1,上式可以简化如下:
引入多芯片热耦合矩阵模型,进一步用矩阵形式表示如下:
其中,ΔT1,ΔT2,ΔT3,…,ΔTN表示第1芯片,第2芯片,第3芯片到第N芯片的温升,P1,P2,P3,…,PN表示第1芯片,第2芯片,第3芯片到第N芯片的热功率;公式(6)通过热耦合矩阵把模块中每个芯片的温升和热功率联系起来,因此只要知道热耦合矩阵的矩阵系数μij和每个芯片的热功率Pi,即可算出模块中每个芯片的温升,并得到模块中的温度分布。
通过实验可以验证热耦合矩阵的矩阵元μij=μji,因此,矩阵的获得方法可根据LED多芯片模块中芯片排列方式进一步简化。
本发明针对阵列排布的多芯片模块中结温分布,提出一种芯片间热耦合矩阵(Thermal coupling matrix)用于快速测量模块中的结温分布。本发明利用模块中阵列排布的对称性减少需要测试芯片的数量,获得热耦合矩阵,再通过热耦合矩阵推导出所有芯片的温升,进而获得模块的结温分布,达到简化测试的目的。与现有的测试方法相比,本发明具有如下优点:
1,本发明所提出的热耦合矩阵不仅描述了多芯片之间的耦合情况,而且可以计算出每个芯片温升,即模块中的温度分布。
2,根据热耦合矩阵和模块中芯片的排列,可以根据简化模型测量少数芯片的温升情况来获得热耦合矩阵,根据热耦合矩阵可以精确预测出其他芯片的温升。
3,对于多芯片的模块,测量各个芯片之间的耦合现象和温升时,该方法可以大大减少工作量。
附图说明
图1为单芯片的热阻模型示意图。
图2为单芯片的等效原理示意图。
图3为多芯片的热阻模型示意图。
图4为多芯片的等效原理示意图。
图5为m≠n时m为奇数,n为偶数的m×n多芯片模块的排布及简化步骤图。
图6为m≠n时m与n均为奇数的m×n多芯片模块的排布及简化步骤图。
图7为m≠n时m与n均为偶数的m×n多芯片模块的排布及简化步骤图。
图8为m=n时m与n均为奇数的m×n多芯片模块的排布及简化步骤图。
图9为m=n时m与n均为偶数的m×n多芯片模块的排布及简化步骤图。
图10实验所用1×3的多芯片模块样品排列示意图。图中数字表示芯片的序号。
图11实验所用2×2的多芯片模块样品排列示意图。图中数字表示芯片的序号。
图12实验所用2×3的多芯片模块样品排列示意图。图中数字表示芯片的序号。
图中各标记为:1-芯片,2-铝基板、3-粘结层、4-热沉、5-纵对称轴、6-横对称轴、7-对角线对称轴。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
下面简述热耦合矩阵模型的获得方法。对于单芯片的LED器件,如图1所示,芯片1,铝基板2与热沉4通过导热的粘结层3连接。当芯片到热沉间散热通道上的热阻为R,散热通道上消耗掉的热功率为P时,其等效的原理示意图如图2所示,则LED芯片相对于热沉的温升ΔT,即结温为:
ΔT=R·P (1)
而热通道上的热阻为:
R=ΔT/P (2)
对于多芯片的LED模块,芯片数量增加到N时,如图3所示,每个芯片的温升不仅由自身产生的热量引起,还受到附近的芯片对其热耦合传递的热量引起。其等效的原理示意图如图4所示,由热阻R=ΔT/P的定义可知,模块中的第i个芯片,当自身的热阻为Ri,消耗掉的热功率为Pi时,其自身的温升为ΔTi=Ri·Pi。但由于模块中热耦合的存在,设第i芯片和第j芯片之间横向热阻为Rij,第j芯片将一部分热量χijRj通过热通道传递到第i芯片而引起第i芯片的温升为ΔTij
ΔTij=Rij·χijPj (3)
这里的第j芯片是指除第i芯片以外的其他N-1个芯片。那么第i芯片的总的温升由两部分组成,一是,芯片自身的温升ΔTi=Ri·Pi,二是,由第j芯片对其的热耦合引起的温升ΔTij=Rij·χijPj,那么第i芯片的总的温升ΔTi可表示为:
引入参数μij=Rij·χijii=1,上式可以简化如下:
引入多芯片热耦合矩阵模型,进一步用矩阵形式表示如下:
其中,ΔT1,ΔT2,ΔT3,…,ΔTN表示第1芯片,第2芯片,第3芯片到第N芯片的温升,P1,P2,P3,…,PN表示第1芯片,第2芯片,第3芯片到第N芯片的热功率。公式(6)通过热耦合矩阵把模块中每个芯片的温升和热功率联系起来。因此只要知道热耦合矩阵的矩阵系数μij和每个芯片的热功率Pi,就可以算出模块中每个芯片的温升,从而知道模块中的温度分布。
由于矩阵元的个数是芯片个数的平方,工作量很大,因此通过实验可以验证热耦合矩阵的矩阵元μij=μji,矩阵的获得方法可根据LED多芯片模块中芯片排列方式进一步简化。对于阵列排布的LED多芯片模块,设有m×n个芯片,其简化方法如下:
1,m≠n时,芯片的排布及简化步骤如图5~7所示,图5中m和n中有一个是奇数一个是偶数,图6中m和n均为奇数;图7中m和n均为偶数。这三种排布中有且仅有两条对称轴,一条横对称轴,一条纵对称轴。若m是奇数,n是偶数,经过两次对称后,需要测试的芯片个数为若m和n均为偶数,经过两次对称后需要测试的芯片个数为若m和n均为奇数,经过两次对称后需要测试的芯片个数为鉴于此,可以计算出m≠n时需要测量的芯片个数ni为:
2,m=n时,芯片的排布及简化步骤如图8和9所示,图8中m和n均为奇数;图9中m和n均为偶数。这两种排布中有且仅有三条对称轴,一条对称轴在横轴上,一条对称轴在纵轴上,一条对称轴在对角线上。若m和n均为偶数,则经过横纵轴对称后需要测试的芯片个数为再经过对角线对称后需要测试的芯片个数为若m和n均为奇数,则经过横纵轴对称后需要测试的芯片个数为再经过对角线对称后需要测试的芯片个数为鉴于此,可以计算出m=n时需要测量的芯片个数ni为:
以下结合芯片排列m×n分别为1×3(m,n是奇数),2×2(m,n是偶数),2×3(m是偶数,n是奇数)的多芯片模块作为实施案例对本发明的详细内容进行说明:
实施例1
芯片排列为1×3的多芯片模块如图10所示,图中用数字表示芯片的序号,每个芯片的额定功率为1W,工作电流为350mA。实验步骤如下:
(1)首先设置热沉温度为25℃,测试电流为3mA,加热电流为350mA。用热阻测试仪器T3ster测试各个芯片分别在第1芯片点亮;第2芯片点亮;第1和第2芯片同时点亮;第1和第3芯片同时点亮;3个芯片同时点亮的5种情况下每个芯片的温升,表1的T3ster测试数据部分列出了各个芯片在不同实验条件下各自的温升。
(2)利用热耦合矩阵及简化方法推导出步骤1实验条件下各芯片的温升。对于1×3的多芯片模块,根据对称性我们只要测量其中的两个芯片,如第1芯片和第2芯片单独点亮时,各芯片的温升就可以得到热耦合矩阵。
(3)将步骤2所得到的实验数据带入公式(6),结合各芯片消耗掉的热功率,得到1×3多芯片模块的热耦合矩阵(9)。
(4)根据热耦合矩阵(9)与各芯片消耗掉的热功率,可以计算出步骤1中不同实验条件下各个芯片的温升,见表1中的热耦合矩阵方法获得的数据部分。
(5)对比表1中二种方法的数据,发现两者的偏差最大为4.99%,说明热耦合矩阵模型及其简化方法是合理的。
表1 1×3多芯片模块的实验数据和理论数据
实施例2
芯片排列为2×2的多芯片模块如图11所示,图中用数字表示芯片的序号,每个芯片的额定功率为1W,工作电流为350mA。实验步骤如下:
(1)首先设置热沉温度为25℃,测试电流为3mA,加热电流为350mA。用热阻测试仪器T3ster测试各个芯片分别在第1芯片单独点亮;第1和第2芯片同时点亮,第1和第3芯片同时点亮;第1、第2和第3芯片同时点亮;4个芯片同时点亮的5种实验条件下每个芯片的温升,表2的T3ster测试数据部分列出了各个芯片在不同实验条件下各自的温升。
(2)利用热耦合矩阵及简化方法推导出步骤1实验条件下各芯片的温升。对于2×2多芯片模块,根据对称性,只要测量其中的1个芯片,如第1芯片单独点亮时,各芯片的温升就可以得到热耦合矩阵。
(3)将步骤(2)所得到的实验数据带入公式(6),结合各芯片消耗的热功率,得到2×2多芯片模块的热耦合矩阵(10)。
(4)根据热耦合矩阵(10)与各芯片消耗掉的热功率,我们可以计算出步骤1中不同实验条件下各个芯片的温升,见表2中的热耦合矩阵方法获得的数据部分。
(5)对比表2中二种方法的数据,发现两者的偏差最大为8.39%,说明热耦合矩阵模型及其简化方法是合理的。
表2 2×2芯片的实验数据和理论数据
实施例3
芯片排列为2×3的多芯片模块如图12所示,图中用数字表示芯片的序号,每个芯片的额定功率为1W,工作电流为350mA。实验步骤如下:
(1)首先设置热沉温度为25℃,测试电流为3mA,加热电流为350mA。用热阻测试仪器T3ster测试各个芯片分别在第1芯片单独点亮;第2芯片单独点亮;第1和第2芯片同时点亮;第1、第2和第3芯片同时点亮;第1、第2、第3和第4芯片同时点亮;第1、第2、第3、第4和第5芯片同时点亮;6个芯片同时点亮的6种实验条件下每个芯片的温升,表3的实验数据部分列出了各个芯片在不同实验条件下各自的温升。
(2)利用热耦合矩阵及简化方法推导出步骤1实验条件下各芯片的温升。对于2×3多芯片模块,根据对称性,只要测量其中的2个芯片,如第1芯片和第2芯片,单独点亮时各芯片的温升就可以得到热耦合矩阵。
(3)将步骤(2)所得到的实验数据带入公式(6),结合各芯片消耗的热功率,得到2×3多芯片模块的热耦合矩阵(11)。
(4)根据热耦合矩阵(11)与各芯片消耗掉的热功率,可以计算出步骤(1)中不同实验条件下各个芯片的温升,见表3中的热耦合矩阵方法获得的数据部分。
(5)对比表3中二种方法的数据,发现两者的偏差最大为8.63%,说明热耦合矩阵模型及其简化方法是合理的。
表3 2×3芯片的实验数据和理论数据
本发明针对阵列排布的多芯片模块中结温分布,提出一种芯片间热耦合矩阵(Thermal coupling matrix)用于快速测量模块中的结温分布。本发明利用模块中阵列排布的对称性减少需要测试芯片的数量,获得热耦合矩阵,再通过热耦合矩阵推导出所有芯片的温升,进而获得模块的结温分布,达到简化测试的目的。

Claims (2)

1.一种LED多芯片模块中芯片间热耦合及结温分布的测量方法,其特征在于包括以下步骤:
1)利用LED多芯片模块中阵列排布构建热耦合矩阵模型,所述构建热耦合矩阵模型的具体步骤如下:
对于单芯片的LED器件,芯片、铝基板与热沉通过导热的粘结层连接,当芯片到热沉间散热通道上的热阻为R,散热通道上消耗掉的热功率为P时,则LED芯片相对于热沉的温升ΔT,即结温为:
ΔT=R·P
而热通道上的热阻为:
R=ΔT/P
对于多芯片的LED模块,芯片数量增加到N时,每个芯片的温升不仅由自身产生的热量引起,还受到附近的芯片对其热耦合传递的热量引起;由热阻R=ΔT/P的定义可知,模块中的第i个芯片,当自身的热阻为Ri,消耗掉的热功率为Pi时,其自身的温升为ΔTi=Ri·Pi;但由于模块中热耦合的存在,设第i芯片和第j芯片之间横向热阻为Rij,第j芯片将一部分热量χijRj通过热通道传递到第i芯片而引起第i芯片的温升为ΔTij
ΔTij=Rij·χijPj
其中,第j芯片是指除第i芯片以外的其他N-1个芯片,那么第i芯片的总的温升由两部分组成,一是,芯片自身的温升ΔTi=Ri·Pi,二是,由第j芯片对其的热耦合引起的温升ΔTij=Rij·χijPj,那么第i芯片的总的温升ΔTi表示为:
其中,i,j=1,2,3,…,N;
引入参数μij=Rij·χijii=1,上式简化如下:
其中,i,j=1,2,3,…,N;
引入多芯片热耦合矩阵模型,进一步用矩阵形式表示如下:
其中,ΔT1,ΔT2,ΔT3,…,ΔTN表示第1芯片,第2芯片,第3芯片到第N芯片的温升,P1,P2,P3,…,PN表示第1芯片,第2芯片,第3芯片到第N芯片的热功率;
2)利用阵列排布的对称性减少需要测试芯片的数量,简化构建热耦合矩阵所需要测量的芯片个数,获得构建热耦合矩阵的简化方法:
对于阵列排布的LED多芯片模块,设有m×n个芯片,其简化方法如下:
(1)m≠n时,芯片的排布有三种情况,即(a)m和n中有一个是奇数一个是偶数;(b)m和n均为奇数;(c)m和n均为偶数;这三种排布中有且仅有两条对称轴,一条横对称轴,一条纵对称轴;如果m是奇数,n是偶数,经过两次对称后,需要测试的芯片个数为如果m和n均为偶数,经过两次对称后需要测试的芯片个数为如果m和n均为奇数,经过两次对称后需要测试的芯片个数为鉴于此,计算出m≠n时需要测量的芯片个数ni为:
(2)当m=n时,芯片的排布有两种情况,即(a)m和n均为奇数;(b)m和n均为偶数;这两种排布中有且仅有三条对称轴,一条对称轴在横轴上,一条对称轴在纵轴上,一条对称轴在对角线上;若m和n均为偶数,则经过横纵轴对称后需要测试的芯片个数为再经过对角线对称后需要测试的芯片个数为若m和n均为奇数,则经过横纵轴对称后需要测试的芯片个数为再经过对角线对称后需要测试的芯片个数为鉴于此,计算出m=n时需要测量的芯片个数ni为:
3)通过热耦合矩阵推导出所有芯片的温升,进而获得模块的结温分布。
2.如权利要求1所述一种LED多芯片模块中芯片间热耦合及结温分布的测量方法,其特征在于在步骤3)中,所述通过热耦合矩阵推导出所有芯片的温升,进而获得模块的结温分布的具体方法如下:
先根据多芯片模块阵列排布的对称性简化构建热耦合矩阵所需要测量的芯片个数,再根据阵列结构的对称性获得整个模块热耦合矩阵,最后根据每个芯片的热功率推导出所有芯片的温升,进而获得模块的结温分布。
CN201610044556.XA 2016-01-22 2016-01-22 一种led多芯片模块中芯片间热耦合及结温分布的测量方法 Active CN105843979B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610044556.XA CN105843979B (zh) 2016-01-22 2016-01-22 一种led多芯片模块中芯片间热耦合及结温分布的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610044556.XA CN105843979B (zh) 2016-01-22 2016-01-22 一种led多芯片模块中芯片间热耦合及结温分布的测量方法

Publications (2)

Publication Number Publication Date
CN105843979A CN105843979A (zh) 2016-08-10
CN105843979B true CN105843979B (zh) 2019-05-17

Family

ID=56580429

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610044556.XA Active CN105843979B (zh) 2016-01-22 2016-01-22 一种led多芯片模块中芯片间热耦合及结温分布的测量方法

Country Status (1)

Country Link
CN (1) CN105843979B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643778B (zh) * 2016-07-22 2020-11-20 展讯通信(上海)有限公司 终端表面温度控制方法、装置及终端
CN108170916A (zh) * 2017-12-20 2018-06-15 杭州电子科技大学 利用光电热耦合理论的led芯片空间排布优化方法
CN108387601B (zh) * 2018-01-05 2021-01-15 北京科技大学 一种高导热片-金属热沉界面热阻测量装置及方法
CN109444766B (zh) * 2018-11-02 2024-06-21 硅能光电半导体(广州)有限公司 倒装cob光源中单颗芯片结温测试基板及方法
CN111289881A (zh) * 2020-03-30 2020-06-16 上海菲莱测试技术有限公司 一种芯片可靠性测试方法、设备、装置、系统和存储介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543174A (zh) * 2013-10-30 2014-01-29 工业和信息化部电子第五研究所 结环热阻的测试方法及系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6853944B2 (en) * 2002-10-29 2005-02-08 Koninklijke Philips Electronics N.V. Junction temperatures measurements in semiconductor chip package technology
JP5678192B2 (ja) * 2011-08-24 2015-02-25 株式会社日立製作所 数値解析システム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103543174A (zh) * 2013-10-30 2014-01-29 工业和信息化部电子第五研究所 结环热阻的测试方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCM热阻矩阵技术;邱宝军 等;《第十一届全国可靠性物理学术讨论会论文集》;20051001;第62-67页
多芯片组件散热的三维有限元分析;程迎军;《电子元件与材料》;20040531(第5期);第43-45页

Also Published As

Publication number Publication date
CN105843979A (zh) 2016-08-10

Similar Documents

Publication Publication Date Title
CN105843979B (zh) 一种led多芯片模块中芯片间热耦合及结温分布的测量方法
Chi et al. Analysis of thermal and luminous performance of MR-16 LED lighting module
Lu et al. Efficient measurement of thermal coupling effects on multichip light-emitting diodes
Luo et al. Chip packaging: Encapsulation of nitride LEDs
Tsai et al. Bump and underfill effects on thermal behaviors of flip-chip LED packages: Measurement and modeling
Tsai et al. Thermal resistance and reliability of high-power LED packages under WHTOL and thermal shock tests
Chen et al. Analysis and modeling of thermal effect and optical characteristic of LED systems with parallel plate-fin heatsink
Wang et al. Thermal model design and analysis of high-power LED headlamp cooling device based on the thermoelectric effect
Yang et al. An experimental and analytical investigation of the photo-thermal-electro characteristics of a high power InGaN LED module
Hantos et al. Measurement issues in LED characterization for Delphi4LED style combined electrical-optical-thermal LED modeling
Cai et al. Junction temperature prediction for LED luminaires based on a subsystem-separated thermal modeling method
Chen et al. Thermal analysis of a multichip light-emitting diode device with different chip arrays
Kailin et al. Thermal analysis of multi-chip module high power LED packaging
Guo et al. Research on LED temperature characteristic and thermal analysis at low temperatures
Kang et al. Multiple-layer heat dissipation module for led streetlamps
Ying et al. The study of thermal resistance measurement of multichip LED
Yu et al. Luminous flux modeling for high power LED automotive headlamp module
Su et al. Light degradation prediction of high-power light-emitting diode lighting modules
Ying et al. The study of thermal resistance deviation of high-power LEDs
Ong et al. Thermal simulation analysis of high power LED system using two-resistor compact LED model
Liu et al. Effect of temperature and voltage on LED luminaries reliability
CN205790067U (zh) 一种散热型led封装结构
CN101782624B (zh) 固态发光元件模块规格估算的方法及系统
Chen et al. Is thermal management outside the package enough for higher LED reliability?
Liu et al. Junction temperature and luminous flux prediction for white LED array based on electrical-photo-thermal modeling

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant