CN105842692A - Atmospheric correction method during INSAR measurement - Google Patents
Atmospheric correction method during INSAR measurement Download PDFInfo
- Publication number
- CN105842692A CN105842692A CN201610154435.0A CN201610154435A CN105842692A CN 105842692 A CN105842692 A CN 105842692A CN 201610154435 A CN201610154435 A CN 201610154435A CN 105842692 A CN105842692 A CN 105842692A
- Authority
- CN
- China
- Prior art keywords
- delay
- atmospheric
- data
- insar
- wrf
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012937 correction Methods 0.000 title claims abstract description 30
- 238000000034 method Methods 0.000 title claims abstract description 27
- 238000005259 measurement Methods 0.000 title claims abstract description 12
- 238000012545 processing Methods 0.000 claims description 4
- 238000013461 design Methods 0.000 claims 1
- 241001420622 Meris Species 0.000 abstract description 13
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000010587 phase diagram Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000004088 simulation Methods 0.000 description 5
- 230000001934 delay Effects 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000005433 ionosphere Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000005436 troposphere Substances 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9023—SAR image post-processing techniques combined with interferometric techniques
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Image Processing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
技术领域technical field
本发明涉及遥感技术领域,特别是涉及一种INSAR(Interferometric SAR,合成孔径雷达干涉)测量中的大气校正方法。The invention relates to the technical field of remote sensing, in particular to an atmospheric correction method in INSAR (Interferometric SAR, Synthetic Aperture Radar Interferometry) measurement.
背景技术Background technique
大气延迟是影响干涉相位精度的最重要的因素之一。通常极轨SAR卫星飞行高度一般在500~800km,SAR电磁波传播需要经过电离层(地表以上约80km到85~800km的气层)和对流层(地表到7~12km的气层),从而受到电离层和对流层的影响。在电离层中主要由于电离大气的散射效应引起电磁波的传播发生延迟;同时由于电离层电子浓度总含量(TotalElectron Content,TEC)的变化,使得电磁波的传播路径发生改变。在对流层中,由于大气的温度、气压和湿度都是随高度改变的,使大气表现为一种分层介质,造成大气的折射率随高度变化,而使电磁波的传播路径发生变化;另外,由于电磁波受到云、降雨和悬浮颗粒等液体和固体颗粒的折曲、吸收、反射和散射作用,也会导致信号传播延迟和路径弯曲。Atmospheric delay is one of the most important factors affecting the interferometric phase accuracy. Generally, the flight altitude of polar-orbiting SAR satellites is generally 500-800km. SAR electromagnetic wave propagation needs to pass through the ionosphere (the air layer from about 80km to 85-800km above the earth's surface) and the troposphere (the air layer from the earth's surface to 7-12km), thus being affected by the ionosphere. and tropospheric effects. In the ionosphere, the propagation of electromagnetic waves is delayed mainly due to the scattering effect of the ionized atmosphere; at the same time, due to changes in the total electron content (TEC) of the ionosphere, the propagation path of electromagnetic waves changes. In the troposphere, since the temperature, pressure and humidity of the atmosphere change with height, the atmosphere behaves as a layered medium, causing the refractive index of the atmosphere to change with height, which changes the propagation path of electromagnetic waves; in addition, due to Electromagnetic waves are bent, absorbed, reflected, and scattered by liquid and solid particles such as clouds, rainfall, and suspended particles, which can also cause signal propagation delays and path bending.
大气参数通常又分为湿大气参数(指大气中水汽分气压)和干大气参数(即静力大气参数,包括干大气压和温度),由此引起的大气延迟分别为大气湿延迟和大气干延迟。干延迟在时域内比较稳定,在空域内有大尺度变化的特性,对流层中的湿延迟在总体大气延迟中占有主导地位。例如,对于L波段而言,雷达波长λ为22cm,入射角θ范围为20°~30°,10mm的ZWD(ZenithWetDelay,水汽造成的天顶方向上的延迟)误差可以引起干涉图0.16~0.23个相位延迟;10mm的ZWD误差引起的形变误差为4.8mm~7.1mm。当斜距R为800km,垂直基线为251m时,10mm的ZWD误差引起的高程误差为23m~36m。Atmospheric parameters are usually divided into wet atmospheric parameters (referring to the atmospheric pressure of water vapor in the atmosphere) and dry atmospheric parameters (that is, static atmospheric parameters, including dry atmospheric pressure and temperature), and the atmospheric delays caused by them are respectively atmospheric wet delay and atmospheric dry delay . The dry delay is relatively stable in the time domain and has large-scale variation characteristics in the air domain, and the wet delay in the troposphere dominates the overall atmospheric delay. For example, for the L-band, the radar wavelength λ is 22cm, the incident angle θ ranges from 20° to 30°, and a 10mm ZWD (Zenith Wet Delay, delay in the zenith direction caused by water vapor) error can cause 0.16 to 0.23 interferograms. Phase delay; deformation error caused by ZWD error of 10mm is 4.8mm~7.1mm. When the slope distance R is 800km and the vertical baseline is 251m, the elevation error caused by the 10mm ZWD error is 23m~36m.
目前,比较有效的大气较正模型是基于MERIS水汽产品进行大气校正(许骥、谢酬等,2007)。利用MERIS数据进行大气相位改正,主要包括获取可沉降水汽含量、计算卫星过境时相应的天顶湿延迟和分析干涉对上的大气相位3个部分。从MERIS数据获取可沉降水汽含量(PerceptibleWaveVapor,PWV)和云信息。MERIS传感器的14、15通道波长分别为0.89μm和0.90μm,其中的0.90μm位于大气吸收波段范围,而0.89μm为大气窗口。这两个通道之间的反射辐射比可以用来作为MERIS传感器的大气水汽总量的一个指标。MERIS大气反演算法通常都是建立15、14通道的比值与积分水汽含量(Integrated Water Vapor,IWV)的多项式关系上的,即At present, the more effective atmospheric correction model is atmospheric correction based on MERIS water vapor products (Xu Ji, Xie Chong et al., 2007). Atmospheric phase correction using MERIS data mainly includes three parts: obtaining the settling water vapor content, calculating the corresponding zenith wet delay when the satellite transits, and analyzing the atmospheric phase on the interference pair. Precipitable water vapor content (PerceptibleWaveVapor, PWV) and cloud information were obtained from MERIS data. The wavelengths of channels 14 and 15 of the MERIS sensor are 0.89 μm and 0.90 μm respectively, of which 0.90 μm is in the atmospheric absorption band and 0.89 μm is the atmospheric window. The ratio of reflected radiance between these two channels can be used as an indicator of the total amount of atmospheric water vapor for the MERIS sensor. The MERIS atmospheric inversion algorithm usually establishes the polynomial relationship between the ratio of channels 15 and 14 and the integrated water vapor content (Integrated Water Vapor, IWV), namely
式中,I15和I14分别表示MERIS传感器15、14通道的辐射值;k0、k1和k2为回归系数。由于水汽的密度为1.0×103kg/m3,IWV和可沉降水汽含量PWV具有相同的数值。在无云的情况下,算法在陆地上的理论精度为1.6mm。MER_RR_2P提供了以g/cm2为单位的大气水汽含量数据。MER_RR_2P提供的有关云的信息包括了云的类型和云的光学厚度,根据这些信息可以确定卫星过境时该区域的云量是否过大和该景MERIS数据是否适合于进行大气改正。对于第i景SAR数据上的第j个点,根据雷达成像几何,可以计算出该点对应地面目标的空间三维坐标矢量Xj,同时也可以计算出在每一景ASAR数据成像时该地面目标对应的入射角θi j,根据Xj,通过二维插值运算,从与第i景ASAR数据对应的MERIS数据上,能够得到在获取第i景ASAR数据时第j个点对应的可沉降水汽含量PWVi j和云信息。对SAR影像上的像素点,水汽造成的天顶方向上的延迟(ZenithWetDelay,ZWD)可用PWV来表示,即In the formula, I 15 and I 14 represent the radiation values of channels 15 and 14 of the MERIS sensor respectively; k 0 , k 1 and k 2 are regression coefficients. Since the density of water vapor is 1.0×10 3 kg/m 3 , IWV and settleable water vapor content PWV have the same value. In cloudless conditions, the theoretical accuracy of the algorithm on land is 1.6mm. MER_RR_2P provides data on atmospheric water vapor content in g/ cm2 . The cloud information provided by MER_RR_2P includes the type of cloud and the optical thickness of the cloud. Based on this information, it can be determined whether the cloud cover in this area is too large and whether the MERIS data of this scene is suitable for atmospheric correction. For the jth point on the SAR data of the i-th scene, according to the radar imaging geometry, the spatial three-dimensional coordinate vector Xj of the point corresponding to the ground target can be calculated. The incident angle θ i j , according to Xj, through two-dimensional interpolation, from the MERIS data corresponding to the i-th scene ASAR data, can get the settling water vapor content PWV corresponding to the j-th point when the i-th scene ASAR data is obtained i j and cloud information. For the pixels on the SAR image, the delay in the zenith direction (ZenithWetDelay, ZWD) caused by water vapor can be expressed by PWV, that is,
ZWD=∏-1PWV (2)ZWD=∏ -1 PWV (2)
式中,Π为转换系数,与数据获取时所在区域的真实表面温度相关。在确定了无云或云量较小的情况下,根据式(2),结合数据获取时所在区域的真实表面温度Ti,从可沉降水汽含量得到第i景ASAR数据第j个点上水汽造成的天顶方向上的延迟。根据式(2),由于PWV的测量误差,导致SAR数据中大气相位的计算误差可表示为In the formula, Π is the conversion coefficient, which is related to the real surface temperature of the area where the data is acquired. When it is determined that there is no cloud or the cloud cover is small, according to formula (2), combined with the real surface temperature T i of the area where the data is acquired, the water vapor at the jth point of ASAR data of the i-th scene can be obtained from the settling water vapor content The resulting delay in the direction of the zenith. According to formula (2), due to the measurement error of PWV, the calculation error of atmospheric phase in SAR data can be expressed as
式中,λ为SAR传感器波长;θinc为SAR影像上像素点所对应的地面点在成像时的入射角。In the formula, λ is the wavelength of the SAR sensor; θ inc is the incident angle of the ground point corresponding to the pixel on the SAR image during imaging.
上述方法存在以下不足:There are following deficiencies in the above-mentioned method:
1、MERIS获取水汽含量数据受云的影响,因此在有云的区域,该数据的水汽含量不准确。1. The water vapor content data obtained by MERIS is affected by clouds, so in cloudy areas, the water vapor content of the data is not accurate.
2、该方法受MERIS数据时间分辨率的限制,数据的接收时间是固定的,数据时间和实际干涉图的时间会有偏差,影响计算结果。2. This method is limited by the time resolution of MERIS data, the data receiving time is fixed, and the data time and the actual interferogram time will deviate, which will affect the calculation results.
由此可见,上述现有的大气校正方法,显然仍存在有不便与缺陷,而亟待加以进一步改进。如何能创设一种结果可靠的新的INSAR测量中的大气校正方法,成为当前业界极需改进的目标。It can be seen that the above-mentioned existing atmospheric correction method obviously still has inconvenience and defects, and needs to be further improved urgently. How to create a new atmospheric correction method in INSAR measurement with reliable results has become a goal that needs to be improved in the current industry.
发明内容Contents of the invention
本发明要解决的技术问题是提供一种结果准确可靠的INSAR测量中的大气校正方法。The technical problem to be solved by the invention is to provide an atmospheric correction method in INSAR measurement with accurate and reliable results.
为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:
一种INSAR测量中的大气校正方法,包括:(1)利用WRF模型模拟出来计算大气延迟所需要的参数,所述WRF模型采用的气象数据是GFS数据;(2)计算干、湿大气延迟;(3)将大气延迟转换为相位延迟;(4)在INSAR干涉相位图中去掉大气延迟相位。A kind of atmospheric correction method in INSAR measurement, comprises: (1) utilizes WRF model to simulate the parameter needed to calculate atmospheric delay, the meteorological data that described WRF model adopts is GFS data; (2) calculate dry, wet atmospheric delay; (3) Convert the atmospheric delay to phase delay; (4) Remove the atmospheric delay phase in the INSAR interferogram.
进一步地,所述WRF模型包括WPS处理步骤及WRF处理步骤,计算大气延迟所需要的参数包括温度、湿度、气压。Further, the WRF model includes a WPS processing step and a WRF processing step, and the parameters required for calculating the atmospheric delay include temperature, humidity, and air pressure.
进一步地,在计算干、湿大气延迟的同时,同时输入DEM数据、入射角、波长、分辨率、经纬度范围、干涉图文件,进行空间插值,并将计算出来的天顶方向的延迟转换成斜距延迟(单位:cm),然后将斜距延迟(单位:cm)转变为相位延迟(单位:rad),通过画图软件得出大气延迟效果图;将已处理好的INSAR干涉相位图中减掉大气相位延迟,即可得到大气相位校正后的干涉图。Further, while calculating dry and wet atmospheric delays, input DEM data, incident angles, wavelengths, resolutions, longitude and latitude ranges, and interferogram files at the same time, perform spatial interpolation, and convert the calculated delays in the zenith direction into oblique Then convert the slant distance delay (unit: cm) into phase delay (unit: rad), and draw the atmospheric delay effect map through the drawing software; subtract the processed INSAR interferometric phase map Atmospheric phase delay, the interferogram after atmospheric phase correction can be obtained.
本发明利用WRF模型进行InSAR大气校正可以获得更实时有效的气象参数,计算出来的大气延迟相位更加准确;该方法利用了高程信息,在空间高度分布上对延迟相位进行插值,结果更可靠,该校正方法对InSAR技术的精准性作出很大贡献。The present invention uses the WRF model to perform InSAR atmospheric correction to obtain more real-time and effective meteorological parameters, and the calculated atmospheric delay phase is more accurate; the method uses elevation information to interpolate the delay phase on the spatial height distribution, and the result is more reliable. Calibration methods contribute significantly to the accuracy of the InSAR technique.
附图说明Description of drawings
上述仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,以下结合附图与具体实施方式对本发明作进一步的详细说明。The above is only an overview of the technical solution of the present invention. In order to better understand the technical means of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1是图1 WRF模型中WPS、WRF处理程序及其之间的关系图;Fig. 1 is the WPS, the WRF processing program and the relationship diagram among them in the WRF model of Fig. 1;
图2是利用WRF模型进行大气校正流程图;Figure 2 is a flowchart of atmospheric correction using the WRF model;
图3为采用本发明方法对黄河三角洲地区的数据进行大气校正得出的大气延迟结果图;Fig. 3 is the atmospheric delay result figure that adopts the method of the present invention to carry out atmospheric correction to the data in the Yellow River Delta region;
图4为黄河三角洲地区大气校正前的干涉图;Figure 4 is the interferogram before atmospheric correction in the Yellow River Delta region;
图5为黄河三角洲地区大气校正后的干涉图。Figure 5 is the interferogram after atmospheric correction in the Yellow River Delta region.
具体实施方式detailed description
如图2所示,针对INSAR测量中的大气校正,本发明主要是利用WRF模型模拟出来计算大气延迟所需要的温度、湿度、气压、位势高度;利用这些大气参数计算大气干、湿延迟。As shown in Figure 2, for the atmospheric correction in the INSAR measurement, the present invention mainly uses the WRF model to simulate the temperature, humidity, air pressure, and geopotential height needed to calculate the atmospheric delay; use these atmospheric parameters to calculate the atmospheric dry and wet delay.
WRF(Weather Research Forecast)模式系统是由许多美国研究部门及大学的科学家共同参与进行开发研究的新一代中尺度预报模式和同化系统,是灵活、完美的大气模拟系统,具有易携带,高效,且可并行运算的特性,广泛应用于从米到数千公里。包括:实时数值天气预报、预报研究、参数化研究等。WRF模型支持多种气象数据,本发明所采用的气象数据是GFS数据,美国国家环境预报中心的GFS(全球预报系统),其预报数据可预报未来8天共192个小时的天气,预报数据时间间隔为3小时,分辨率有1°*1°的,也有0.5°*0.5°。每隔6小时更新一次,每日四次,06时,12时,18时,00时,分别于03:30,09:30,15:30,21:30UTC更新。WRF的前处理系统(The WRF Preprocessing System,WPS)用于实时的资料处理,功能包括:定义模拟区域;插值地形资料(如地形、土表和土壤类型)到模拟区域;插值其他模式的资料(如气象要素等)到模拟区域和模式坐标。The WRF (Weather Research Forecast) model system is a new generation of mesoscale forecast model and assimilation system jointly developed and researched by scientists from many American research departments and universities. It is a flexible and perfect atmospheric simulation system, which is easy to carry, efficient, and The characteristics of parallel computing are widely used from meters to thousands of kilometers. Including: real-time numerical weather prediction, forecast research, parameterization research, etc. WRF model supports multiple meteorological data, and the meteorological data that the present invention adopts is GFS data, and the GFS (Global Forecasting System) of U.S. National Environmental Forecasting Center, its forecast data can predict the weather of 192 hours altogether in next 8 days, forecast data time The interval is 3 hours, and the resolution is 1°*1° or 0.5°*0.5°. It is updated every 6 hours, four times a day, at 06:00, 12:00, 18:00, and 00:00, respectively at 03:30, 09:30, 15:30, and 21:30 UTC. The WRF Preprocessing System (WPS) is used for real-time data processing. Its functions include: defining the simulation area; interpolating terrain data (such as terrain, soil surface and soil type) to the simulation area; interpolating data from other models ( Such as meteorological elements, etc.) to the simulation area and model coordinates.
配合图1所示,WPS的三个步骤包括:利用geogrid模块确定一个模式的粗糙区域(最外围的范围);利用ungrib把模拟期间所需的气象要素场从grib资料集中提取出来;利用metgrid把上述的气象要素场水平插值到模式区域。WRF的两个步骤:运行WRF数据程序real.exe;运行WRF模式主程序wrf.exe。WRF模型运行出来的结果文件wrfplev_d*,wrfout_d*将作为后续大气校正的输入文件。通过MATLAB程序将气象参数的中温度、湿度、气压等参数提取出来,计算出大气延迟。As shown in Figure 1, the three steps of WPS include: use the geogrid module to determine the rough area (the outermost range) of a model; use ungrib to extract the meteorological element field required during the simulation from the grib data set; use metgrid to extract the The above meteorological element fields are horizontally interpolated to the model area. Two steps of WRF: run WRF data program real.exe; run WRF mode main program wrf.exe. The result files wrfplev_d* and wrfout_d* generated by the WRF model will be used as input files for subsequent atmospheric correction. The temperature, humidity, air pressure and other parameters of the meteorological parameters are extracted through the MATLAB program, and the atmospheric delay is calculated.
配合图2所示,本发明中INSAR测量中的大气校正方法,在计算干湿大气延迟的同时,同时要输入DEM数据、入射角、波长、分辨率、经纬度范围、干涉图文件,进行空间插值,并将计算出来的天顶方向的延迟(单位:cm)转换成斜距延迟,然后将斜距延迟转变为相位延迟(单位:rad),通过画图软件得出大气延迟效果图。将已处理好的干涉图中减掉大气延迟相位,即可得到大气相位校正后的干涉图。As shown in Figure 2, the atmospheric correction method in the INSAR measurement of the present invention, while calculating the dry and wet atmospheric delay, at the same time, it is necessary to input DEM data, incident angle, wavelength, resolution, latitude and longitude range, and interferogram files for spatial interpolation , and convert the calculated zenith-direction delay (unit: cm) into slant-range delay, and then convert the slant-range delay into phase delay (unit: rad), and draw the atmospheric delay effect map by drawing software. The atmospheric phase-corrected interferogram can be obtained by subtracting the atmospheric delay phase from the processed interferogram.
本发明的上述大气校正方法,利用了中尺度的大气模型WRF做大气校正,WRF模型可以模拟出来计算大气延迟所需要的各种气象要素,包括温度、湿度、气压等,模型可以预测天气情况达到1公里的分辨率水平,远远优于基于MERIS,MODIS和GPS数据的方法。所用的GFS气象数据,预报数据时间间隔为3小时,每隔6小时更新一次,时效性更强。该方法利用了高程信息,在空间高度分布上对延迟相位进行插值,结果更可靠。The above-mentioned atmospheric correction method of the present invention utilizes the mesoscale atmospheric model WRF to perform atmospheric correction, and the WRF model can simulate various meteorological elements required for calculating atmospheric delay, including temperature, humidity, air pressure, etc., and the model can predict weather conditions up to The resolution level of 1 km is far superior to methods based on MERIS, MODIS and GPS data. For the GFS meteorological data used, the time interval of the forecast data is 3 hours, and it is updated every 6 hours, which is more time-sensitive. This method utilizes the elevation information to interpolate the delayed phase on the spatial height distribution, and the result is more reliable.
已利用该方法对黄河三角洲地区的数据进行了大气校正。所用数据为ALOS-1,数据日期为20070628,20070813,分辨率为15米。得出总的大气延迟结果如图3所示,大气延迟值为-1-7cm。大气校正前的干涉图如图4所示,大气校正后的干涉图如图5所示。Atmospheric corrections have been made to the data in the Yellow River Delta region using this method. The data used is ALOS-1, the data dates are 20070628, 20070813, and the resolution is 15 meters. The result of the total atmospheric delay is shown in Figure 3, and the atmospheric delay value is -1-7cm. The interferogram before atmospheric correction is shown in Figure 4, and the interferogram after atmospheric correction is shown in Figure 5.
以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,本领域技术人员利用上述揭示的技术内容做出些许简单修改、等同变化或修饰,均落在本发明的保护范围内。The above is only a preferred embodiment of the present invention, and does not limit the present invention in any form. Those skilled in the art make some simple modifications, equivalent changes or modifications by using the technical content disclosed above, all of which fall within the scope of the present invention. within the scope of protection of the invention.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610154435.0A CN105842692B (en) | 2016-03-17 | 2016-03-17 | A kind of atmospheric correction method in INSAR measurements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610154435.0A CN105842692B (en) | 2016-03-17 | 2016-03-17 | A kind of atmospheric correction method in INSAR measurements |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105842692A true CN105842692A (en) | 2016-08-10 |
CN105842692B CN105842692B (en) | 2018-07-03 |
Family
ID=56587317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610154435.0A Expired - Fee Related CN105842692B (en) | 2016-03-17 | 2016-03-17 | A kind of atmospheric correction method in INSAR measurements |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105842692B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107483137A (en) * | 2017-09-04 | 2017-12-15 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Multistation split-second precision frequency synchronization method |
CN107566070A (en) * | 2017-09-04 | 2018-01-09 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | The method of one-way synchronization transmission time frequency |
CN108897073A (en) * | 2018-06-20 | 2018-11-27 | 西安电子科技大学 | Weather prediction method based on Beidou signal and terrestrial wireless signal |
CN110031841A (en) * | 2019-04-01 | 2019-07-19 | 中国科学院遥感与数字地球研究所 | The method and system of InSAR atmospheric delay correction based on ECMWF |
CN111679346A (en) * | 2019-12-27 | 2020-09-18 | 广东电网有限责任公司电力科学研究院 | Atmospheric water-reducing quantity estimation method and device |
CN112711022A (en) * | 2020-12-18 | 2021-04-27 | 中国矿业大学 | GNSS chromatography-assisted InSAR (interferometric synthetic aperture radar) atmospheric delay correction method |
CN113281754A (en) * | 2021-07-26 | 2021-08-20 | 中国水利水电科学研究院 | WRF-Hydro key parameter calibration method for quantitatively estimating rainfall by integrating rainfall station with radar |
CN114624708A (en) * | 2022-05-16 | 2022-06-14 | 中山大学 | A method and system for atmospheric correction in complex environment |
WO2024113421A1 (en) * | 2022-12-02 | 2024-06-06 | 深圳先进技术研究院 | Method and system for quantitative evaluation of atmospheric delay phase correction precision, device, and medium |
CN118625322A (en) * | 2024-08-12 | 2024-09-10 | 中国科学院空天信息创新研究院 | InSAR ionospheric delay correction method based on global ionospheric map |
WO2025010654A1 (en) * | 2023-07-12 | 2025-01-16 | 陈垦 | Radar measurement compensation method and device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103778572A (en) * | 2014-02-24 | 2014-05-07 | 南方电网科学研究院有限责任公司 | WRF mode-based offshore wind resource assessment method |
-
2016
- 2016-03-17 CN CN201610154435.0A patent/CN105842692B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103778572A (en) * | 2014-02-24 | 2014-05-07 | 南方电网科学研究院有限责任公司 | WRF mode-based offshore wind resource assessment method |
Non-Patent Citations (3)
Title |
---|
ROMMEN B ET AL.: ""The ESA METAWAVE project: Correcting for atmospheric water vapour effects in InSAR products"", 《PROCEEDINGS OF 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION》 * |
崔喜爱 等: ""重载新载InSAR测量中的大气校正方法综述"", 《遥感技术与应用》 * |
许骥 等: ""基于MERIS数据的永久散射体处理中大气改正方法研究"", 《国土资源遥感》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107483137A (en) * | 2017-09-04 | 2017-12-15 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Multistation split-second precision frequency synchronization method |
CN107566070A (en) * | 2017-09-04 | 2018-01-09 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | The method of one-way synchronization transmission time frequency |
CN107566070B (en) * | 2017-09-04 | 2019-05-07 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | The method of one-way synchronization transmission time frequency |
CN107483137B (en) * | 2017-09-04 | 2019-06-28 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | Multistation split-second precision frequency synchronization method |
CN108897073A (en) * | 2018-06-20 | 2018-11-27 | 西安电子科技大学 | Weather prediction method based on Beidou signal and terrestrial wireless signal |
CN110031841B (en) * | 2019-04-01 | 2021-07-23 | 中国科学院遥感与数字地球研究所 | Method and System for InSAR Atmospheric Delay Correction Based on ECMWF |
CN110031841A (en) * | 2019-04-01 | 2019-07-19 | 中国科学院遥感与数字地球研究所 | The method and system of InSAR atmospheric delay correction based on ECMWF |
CN111679346A (en) * | 2019-12-27 | 2020-09-18 | 广东电网有限责任公司电力科学研究院 | Atmospheric water-reducing quantity estimation method and device |
CN112711022A (en) * | 2020-12-18 | 2021-04-27 | 中国矿业大学 | GNSS chromatography-assisted InSAR (interferometric synthetic aperture radar) atmospheric delay correction method |
CN112711022B (en) * | 2020-12-18 | 2022-08-30 | 中国矿业大学 | GNSS chromatography-assisted InSAR (interferometric synthetic aperture radar) atmospheric delay correction method |
CN113281754A (en) * | 2021-07-26 | 2021-08-20 | 中国水利水电科学研究院 | WRF-Hydro key parameter calibration method for quantitatively estimating rainfall by integrating rainfall station with radar |
CN114624708A (en) * | 2022-05-16 | 2022-06-14 | 中山大学 | A method and system for atmospheric correction in complex environment |
WO2024113421A1 (en) * | 2022-12-02 | 2024-06-06 | 深圳先进技术研究院 | Method and system for quantitative evaluation of atmospheric delay phase correction precision, device, and medium |
WO2025010654A1 (en) * | 2023-07-12 | 2025-01-16 | 陈垦 | Radar measurement compensation method and device |
CN118625322A (en) * | 2024-08-12 | 2024-09-10 | 中国科学院空天信息创新研究院 | InSAR ionospheric delay correction method based on global ionospheric map |
CN118625322B (en) * | 2024-08-12 | 2024-10-22 | 中国科学院空天信息创新研究院 | InSAR ionospheric delay correction method based on global ionospheric map |
Also Published As
Publication number | Publication date |
---|---|
CN105842692B (en) | 2018-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105842692B (en) | A kind of atmospheric correction method in INSAR measurements | |
Huang et al. | A physically based algorithm for retrieving land surface temperature under cloudy conditions from AMSR2 passive microwave measurements | |
Tobin et al. | Adjusting satellite precipitation data to facilitate hydrologic modeling | |
CN111965666A (en) | Aerosol three-dimensional distribution mapping method | |
Shi et al. | Spatial downscaling of monthly TRMM precipitation based on EVI and other geospatial variables over the Tibetan Plateau from 2001 to 2012 | |
Yu et al. | Variational assimilation of HF radar surface currents in a coastal ocean model off Oregon | |
CN104406686B (en) | Estimation method of solar short-wave incident radiation under complex terrain conditions | |
Mateus et al. | Can spaceborne SAR interferometry be used to study the temporal evolution of PWV? | |
Li et al. | Estimating snow water equivalent in a Sierra Nevada watershed via spaceborne radiance data assimilation | |
Yun et al. | Mitigating atmospheric effects in InSAR measurements through high-resolution data assimilation and numerical simulations with a weather prediction model | |
Sokolovskiy et al. | Assessing the accuracy of a linearized observation operator for assimilation of radio occultation data: Case simulations with a high-resolution weather model | |
Mascitelli et al. | Data assimilation of GPS-ZTD into the RAMS model through 3D-Var: preliminary results at the regional scale | |
Liu et al. | Estimation of surface and near-surface air temperatures in arid Northwest China using Landsat satellite images | |
CN115980751A (en) | A Tropospheric Delay Correction Method for Power Law Model InSAR | |
Otkin | Assessing the impact of the covariance localization radius when assimilating infrared brightness temperature observations using an ensemble Kalman filter | |
Nodzu et al. | Precipitation estimation performance by Global Satellite Mapping and its dependence on wind over northern Vietnam | |
CN116519913A (en) | GNSS-R data soil moisture monitoring method based on fusion of satellite-borne and foundation platform | |
Webley et al. | Determining radio wave delay by non-hydrostatic atmospheric modelling of water vapour over mountains | |
Yang et al. | A GPS water vapour tomography method based on a genetic algorithm | |
Xia et al. | Monitoring urban heat island intensity based on GNSS tomography technique | |
Wadge et al. | Correction of atmospheric delay effects in radar interferometry using a nested mesoscale atmospheric model | |
Zhao et al. | General method of precipitable water vapor retrieval from remote sensing satellite near-infrared data | |
Miao et al. | Wet tropospheric correction methods for wide-swath altimeters | |
Liu et al. | Evapotranspiration estimated by using datasets from the Chinese FengYun-2D geostationary meteorological satellite over the Yellow River source area | |
Seto et al. | Representing Cloud Water Content of Extensive Cloud Systems Over Land Using Satellite‐Based Passive Microwave Observations With a Coupled Land and Atmosphere Assimilation Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20190515 Address after: 313200 Geographic Information Innovation Park Project T Building, Deqing County, Huzhou City, Zhejiang Province Co-patentee after: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences Patentee after: Chinese Academy of satellite application Deqing Research Institute Address before: 100000 Dengzhuang South Road, Haidian District, Beijing Patentee before: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences |
|
TR01 | Transfer of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180703 Termination date: 20200317 |
|
CF01 | Termination of patent right due to non-payment of annual fee |