CN105842266A - Fluorescence analysis method for determining element content in lithium iron phosphate - Google Patents
Fluorescence analysis method for determining element content in lithium iron phosphate Download PDFInfo
- Publication number
- CN105842266A CN105842266A CN201610168627.7A CN201610168627A CN105842266A CN 105842266 A CN105842266 A CN 105842266A CN 201610168627 A CN201610168627 A CN 201610168627A CN 105842266 A CN105842266 A CN 105842266A
- Authority
- CN
- China
- Prior art keywords
- solution
- sample
- iron phosphate
- lithium iron
- phosphorus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- GELKBWJHTRAYNV-UHFFFAOYSA-K lithium iron phosphate Chemical compound [Li+].[Fe+2].[O-]P([O-])([O-])=O GELKBWJHTRAYNV-UHFFFAOYSA-K 0.000 title claims abstract description 55
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000012921 fluorescence analysis Methods 0.000 title claims abstract description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 89
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 52
- 239000011574 phosphorus Substances 0.000 claims abstract description 52
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 52
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910052742 iron Inorganic materials 0.000 claims abstract description 41
- 238000004846 x-ray emission Methods 0.000 claims abstract description 40
- 239000012086 standard solution Substances 0.000 claims abstract description 19
- YVBOZGOAVJZITM-UHFFFAOYSA-P ammonium phosphomolybdate Chemical compound [NH4+].[NH4+].[NH4+].[NH4+].[O-]P([O-])=O.[O-][Mo]([O-])(=O)=O YVBOZGOAVJZITM-UHFFFAOYSA-P 0.000 claims abstract description 4
- 238000001914 filtration Methods 0.000 claims abstract description 4
- 239000000243 solution Substances 0.000 claims description 61
- 239000000523 sample Substances 0.000 claims description 50
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 26
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 25
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 claims description 18
- 239000002244 precipitate Substances 0.000 claims description 14
- 229910000147 aluminium phosphate Inorganic materials 0.000 claims description 13
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 12
- 229910017604 nitric acid Inorganic materials 0.000 claims description 12
- DGXTZMPQSMIFEC-UHFFFAOYSA-M sodium;4-anilinobenzenesulfonate Chemical compound [Na+].C1=CC(S(=O)(=O)[O-])=CC=C1NC1=CC=CC=C1 DGXTZMPQSMIFEC-UHFFFAOYSA-M 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 12
- 239000012488 sample solution Substances 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 10
- 229910021626 Tin(II) chloride Inorganic materials 0.000 claims description 10
- 229910052799 carbon Inorganic materials 0.000 claims description 10
- 235000011150 stannous chloride Nutrition 0.000 claims description 10
- AXZWODMDQAVCJE-UHFFFAOYSA-L tin(II) chloride (anhydrous) Chemical compound [Cl-].[Cl-].[Sn+2] AXZWODMDQAVCJE-UHFFFAOYSA-L 0.000 claims description 10
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 8
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 7
- 238000009702 powder compression Methods 0.000 claims description 7
- 239000011609 ammonium molybdate Substances 0.000 claims description 6
- APUPEJJSWDHEBO-UHFFFAOYSA-P ammonium molybdate Chemical compound [NH4+].[NH4+].[O-][Mo]([O-])(=O)=O APUPEJJSWDHEBO-UHFFFAOYSA-P 0.000 claims description 6
- 229940010552 ammonium molybdate Drugs 0.000 claims description 6
- 235000018660 ammonium molybdate Nutrition 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 6
- JXDYKVIHCLTXOP-UHFFFAOYSA-N isatin Chemical compound C1=CC=C2C(=O)C(=O)NC2=C1 JXDYKVIHCLTXOP-UHFFFAOYSA-N 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 235000011114 ammonium hydroxide Nutrition 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 5
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 4
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 3
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 3
- 239000013558 reference substance Substances 0.000 claims description 3
- -1 titanium trichloride hydrochloric acid Chemical compound 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract description 5
- 238000003912 environmental pollution Methods 0.000 abstract description 3
- 238000001506 fluorescence spectroscopy Methods 0.000 abstract description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 abstract 1
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 abstract 1
- 229910052700 potassium Inorganic materials 0.000 abstract 1
- 239000011591 potassium Substances 0.000 abstract 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 9
- 229910001416 lithium ion Inorganic materials 0.000 description 9
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- KJFMBFZCATUALV-UHFFFAOYSA-N phenolphthalein Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)C2=CC=CC=C2C(=O)O1 KJFMBFZCATUALV-UHFFFAOYSA-N 0.000 description 6
- 239000010406 cathode material Substances 0.000 description 5
- 238000005485 electric heating Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- QSNQXZYQEIKDPU-UHFFFAOYSA-N [Li].[Fe] Chemical compound [Li].[Fe] QSNQXZYQEIKDPU-UHFFFAOYSA-N 0.000 description 2
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 2
- 238000004448 titration Methods 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 231100000481 chemical toxicant Toxicity 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000000875 corresponding effect Effects 0.000 description 1
- 229960000935 dehydrated alcohol Drugs 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- IWZKICVEHNUQTL-UHFFFAOYSA-M potassium hydrogen phthalate Chemical compound [K+].OC(=O)C1=CC=CC=C1C([O-])=O IWZKICVEHNUQTL-UHFFFAOYSA-M 0.000 description 1
- 239000004323 potassium nitrate Substances 0.000 description 1
- 235000010333 potassium nitrate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 238000005464 sample preparation method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000007704 wet chemistry method Methods 0.000 description 1
- 238000004876 x-ray fluorescence Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/223—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material by irradiating the sample with X-rays or gamma-rays and by measuring X-ray fluorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/07—Investigating materials by wave or particle radiation secondary emission
- G01N2223/076—X-ray fluorescence
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
Abstract
本发明公开了一种用于测定磷酸铁锂中磷铁元素含量的荧光分析方法,包括将磷酸铁锂样品平分为三份;采用盐酸处理第一份磷酸铁锂样品,过滤后用重铬酸钾标准溶液滴定,测得铁元素含量;采用盐酸处理第二份磷酸铁锂样品,过滤后用磷钼酸铵容量法测得磷元素含量;将第三份磷酸铁锂样品配制成含量不同的六个标准样品;再分别压制成片状,再通过X射线荧光光谱法测得各片状标准样品中铁、磷元素的荧光强度;绘出XRF标准曲线;将待测的磷酸铁锂样品压制成片状中,测其荧光强度;通过XRF标准曲线,即得出铁、磷元素含量。本发明先利用湿化学法和X荧光光谱法相结合的方法快捷高速,且操作简单、误差小,消耗时间长,对环境污染环保。The invention discloses a fluorescence analysis method for determining the content of phosphorus and iron elements in lithium iron phosphate, which comprises dividing the lithium iron phosphate sample into three equally; using hydrochloric acid to treat the first lithium iron phosphate sample, and after filtering, dichromate Potassium standard solution was titrated to measure the iron content; the second lithium iron phosphate sample was treated with hydrochloric acid, and after filtration, the phosphorus content was measured by the ammonium phosphomolybdate volumetric method; the third lithium iron phosphate sample was prepared into Six standard samples; then pressed into flakes respectively, and then measure the fluorescence intensity of iron and phosphorus elements in each flake standard sample by X-ray fluorescence spectrometry; draw the XRF standard curve; press the lithium iron phosphate sample to be measured into In flakes, the fluorescence intensity is measured; through the XRF standard curve, the content of iron and phosphorus elements can be obtained. The invention first utilizes the wet chemical method combined with the X fluorescence spectrometry method to be fast and high-speed, and has simple operation, small error, long time consumption, and is environmentally friendly to environmental pollution.
Description
技术领域technical field
本发明涉及锂离子电池技术领域,具体涉及一种利用X射线荧光光谱分析法测定锂电池正极材料磷酸铁锂中铁、磷元素含量的方法。The invention relates to the technical field of lithium ion batteries, in particular to a method for determining the content of iron and phosphorus in lithium iron phosphate, a cathode material of lithium batteries, by using an X-ray fluorescence spectroscopic analysis method.
背景技术Background technique
磷酸铁锂是一种橄榄石结构的磷酸盐,其结构稳定,是当前锂离子电池常用的正极材料之一。目前,工业合成的磷酸铁锂还含有少量杂质成分,因此作为一种锂离子电池正极材料,其主要元素铁元素和磷元素的含量是其合格标准的关键指标。Lithium iron phosphate is a phosphate with an olivine structure, and its structure is stable. It is one of the cathode materials commonly used in lithium-ion batteries. At present, industrially synthesized lithium iron phosphate also contains a small amount of impurities. Therefore, as a lithium ion battery cathode material, the content of its main elements iron and phosphorus is the key indicator of its qualification standard.
而目前,锂离子电池工业上测试铁元素和磷元素含量的方法多采用《GB/T30835-2014锂离子电池用炭复合磷酸铁锂正极材料》。该方法为湿化学法,操作繁琐,操作误差大,消耗时间长,试剂种类多;且所需试剂重铬酸钾等对环境污染也较重。因此,开发一种快速且绿色的方法来检测磷酸铁锂中元素含量具有十分重要的意义。At present, the method for testing the content of iron and phosphorus in the lithium-ion battery industry mostly adopts "GB/T30835-2014 Carbon-composite Lithium Iron Phosphate Cathode Material for Lithium-ion Batteries". This method is a wet chemical method, which is cumbersome to operate, has large operating errors, takes a long time, and has many kinds of reagents; and the required reagents, such as potassium dichromate, also cause serious environmental pollution. Therefore, it is of great significance to develop a fast and green method to detect the element content in lithium iron phosphate.
X射线荧光光谱法(XRF)是一种分析速度快、制样简单,不需要用到有毒有污染的试剂,也不需要费时的前处理过程的方法,可以用来测试磷酸铁锂中铁元素和磷元素的含量,该方法依赖标准样品中元素的荧光强度与含量建立的标准曲线。目前,XRF多用于建筑材料、陶瓷、金属材料等领域样品的分析。就目前而言,锂离子电池工业中的磷酸铁锂正极材料中的铁元素和磷元素的含量尚无采用XRF快速测量的报道。X-ray fluorescence spectrometry (XRF) is a method with fast analysis speed, simple sample preparation, no need to use toxic and polluting reagents, and no time-consuming pretreatment process. It can be used to test the iron and The content of phosphorus element, this method relies on the standard curve established by the fluorescence intensity and content of the element in the standard sample. At present, XRF is mostly used in the analysis of samples in the fields of building materials, ceramics, and metal materials. For now, there is no report on the rapid measurement of iron and phosphorus in lithium iron phosphate cathode materials in the lithium ion battery industry using XRF.
发明内容Contents of the invention
本发明的目的在于提供一种操作方便、样品制备简单、检测过程不需要有毒有污染试剂的方法来检测工业合成的磷酸铁锂中铁元素和磷元素的含量。The object of the present invention is to provide a method for detecting the content of iron and phosphorus in industrially synthesized lithium iron phosphate by providing a method with convenient operation, simple sample preparation, and the detection process does not require toxic and polluting reagents.
本发明的目的可以通过以下技术方案来实现:The purpose of the present invention can be achieved through the following technical solutions:
一种用于测定磷酸铁锂中磷铁元素含量的荧光分析方法,包括以下步骤:A fluorescence analysis method for determining the content of phosphorus and iron elements in lithium iron phosphate, comprising the following steps:
(1)取同一批次的磷酸铁锂样品,并将其平分为三份;(1) Take the same batch of lithium iron phosphate samples and divide them into three equal parts;
(2)采用盐酸处理第一份磷酸铁锂样品,过滤未反应的碳后,形成待测样品溶液;用重铬酸钾标准溶液对其进行滴定,测得待测样品溶液中铁元素的含量;(2) Treat the first lithium iron phosphate sample with hydrochloric acid, filter the unreacted carbon, and form the sample solution to be tested; titrate it with potassium dichromate standard solution, and measure the content of iron in the sample solution to be tested;
(3)采用盐酸处理第二份磷酸铁锂样品,过滤未反应的碳后,形成待测样品溶液;用磷钼酸铵容量法测得待测样品溶液中磷元素的含量;(3) Treat the second lithium iron phosphate sample with hydrochloric acid, filter the unreacted carbon, and form the sample solution to be tested; use the ammonium phosphomolybdate volumetric method to measure the content of phosphorus in the sample solution to be tested;
(4)将第三份磷酸铁锂样品均分为至少六份,分别加入不同含量的碳酸钙基准物质,配制成含量不同的标准样品;再采用粉末压片法将各个标准样品分别压制成片状,然后通过X射线荧光光谱法测得各片状标准样品中铁、磷元素的荧光强度;(4) Divide the third lithium iron phosphate sample into at least six equal parts, add calcium carbonate reference substances with different contents respectively, and prepare standard samples with different contents; then use powder compression method to compress each standard sample into tablets respectively Shape, then measure the fluorescence intensity of iron and phosphorus in each flake standard sample by X-ray fluorescence spectrometry;
(5)将步骤(4)中通过X射线荧光光谱法所测得的磷酸铁锂样品中铁、磷元素的荧光强度,与通过步骤(2)、(3)所测得的磷酸铁锂样品中铁、磷元素的含量进行关联,形成以荧光强度为纵坐标、以铁、磷元素的含量为横坐标的XRF标准曲线;(5) Compare the fluorescence intensity of iron and phosphorus elements in the lithium iron phosphate sample measured by X-ray fluorescence spectrometry in step (4) with the iron and phosphorus elements in the lithium iron phosphate sample measured in steps (2) and (3). and phosphorus content to form an XRF standard curve with the fluorescence intensity as the ordinate and the iron and phosphorus content as the abscissa;
(6)采用与步骤(4)中相同的粉末压片法将待测的磷酸铁锂样品压制成片状,得到待测样品,通过X射线荧光光谱法测得待测样品中各元素的荧光强度;通过步骤(5)所得的XRF标准曲线,即可得出待测样品中铁、磷元素的含量。(6) Press the lithium iron phosphate sample to be tested into a sheet using the same powder compression method as in step (4) to obtain the sample to be tested, and measure the fluorescence of each element in the sample to be tested by X-ray fluorescence spectrometry Intensity; through the XRF standard curve obtained in step (5), the content of iron and phosphorus elements in the sample to be tested can be obtained.
进一步方案,所述步骤(2)中,将第一份磷酸铁锂样品加入盐酸溶液中,加热煮沸并保持18-25min,然后冷却至室温,并过滤掉未反应的碳,过滤后的溶液用二氯化锡溶液还原其中的三价铁,然后加入指示剂,形成待测溶液。In a further scheme, in the step (2), the first lithium iron phosphate sample is added to the hydrochloric acid solution, heated to boil and kept for 18-25min, then cooled to room temperature, and unreacted carbon is filtered out, and the filtered solution is used The tin dichloride solution reduces the ferric iron in it, and then adds an indicator to form a solution to be tested.
更进一步方案,所述盐酸水溶液是指质量浓度为36%的浓盐酸与一级水按照质量比为1:1进行混合而成的;In a further solution, the hydrochloric acid aqueous solution refers to the mixture of concentrated hydrochloric acid with a mass concentration of 36% and first-grade water according to a mass ratio of 1:1;
所述二氯化锡溶液是指将二氯化锡溶于盐酸中,再用水稀释至浓度为50g/L;Described tin dichloride solution refers to that tin dichloride is dissolved in hydrochloric acid, then diluted with water to concentration is 50g/L;
所述指示剂为CuSO4-靛红指示剂、二苯胺磺酸钠指示剂;加入CuSO4-靛红指示剂将淡黄色溶液变成绿色,再滴加TiCl3溶液至绿色消失后,过量半滴,放置后溶液变为蓝色;再加入硫酸/磷酸混酸和二苯胺磺酸钠指示剂后,形成待测溶液。The indicator is CuSO 4 -isatin indicator, sodium diphenylamine sulfonate indicator; add CuSO 4 -isatin indicator to turn the light yellow solution into green, then add TiCl 3 solution dropwise until the green disappears, and the excess half drop, the solution turns blue after standing; add sulfuric acid/phosphoric acid mixed acid and sodium diphenylamine sulfonate indicator to form the solution to be tested.
优选方案,所述CuSO4-靛红指示剂是指靛红溶解于硫酸水溶液中,然后定容到硫酸铜溶液中;In a preferred embodiment, the CuSO 4 -isatin indicator refers to that isatin is dissolved in aqueous sulfuric acid solution, and then fixed to copper sulfate solution;
所述TiCl3溶液是指浓度为20g/L的三氯化钛盐酸溶液;Described TiCl Solution refers to the titanium trichloride hydrochloric acid solution that concentration is 20g/L;
所述硫酸/磷酸混酸是采用95~98wt%的浓硫酸和85wt%的磷酸按照体积比为1:1进行混合,然后再用一级水稀释至1L配成15wt %;The sulfuric acid/phosphoric acid mixed acid is mixed with 95~98wt% concentrated sulfuric acid and 85wt% phosphoric acid according to the volume ratio of 1:1, and then diluted with primary water to 1L to make 15wt%;
所述二苯胺磺酸钠指示剂是指浓度为0.05g/ L的二苯胺磺酸钠水溶液。The sodium diphenylamine sulfonate indicator refers to a concentration of 0.05g/L sodium diphenylamine sulfonate aqueous solution.
进一步方案,所述步骤(2)中用重铬酸钾标准溶液进行滴定,当溶液由蓝色转变成紫红色即为反应终点。In a further scheme, in the step (2), potassium dichromate standard solution is used for titration, when the solution changes from blue to purple, it is the end point of the reaction.
进一步方案,所述步骤(3)中,过滤未反应的碳后的溶液用氨水中和至有氢氧化物沉淀出现,再用硝酸标准溶液中和氢氧化物沉淀,并使其刚好消失;然后加入过量硝酸标准溶液,缓慢加入钼酸铵溶液,振荡2~3min后沉淀,并放置4h以上,得到其中磷元素的含量。In a further scheme, in the step (3), the solution after filtering the unreacted carbon is neutralized with ammonia water until a hydroxide precipitate appears, and then neutralized with a nitric acid standard solution to make the hydroxide precipitate just disappear; then Add excess nitric acid standard solution, slowly add ammonium molybdate solution, shake for 2 to 3 minutes, precipitate, and place it for more than 4 hours to obtain the content of phosphorus element in it.
本发明先利用湿化学法和X荧光光谱法相结合的方法,绘出以荧光强度为纵坐标、以铁、磷元素的含量为横坐标的XRF标准曲线,然后以此XRF标准曲线作为标准,并通过X射线荧光光谱法测得待测样品中各元素的荧光强度,来检测任意待测的磷酸铁锂中磷、铁元素的含量。本发明检测方法快捷高速,且操作简单、误差小,消耗时间长,对环境污染环保。The present invention utilizes the wet chemistry method and the method that X fluorescence spectrometry combines first, draws the XRF standard curve with the fluorescence intensity as the ordinate, and the content of iron and phosphorus elements as the abscissa, and then uses this XRF standard curve as a standard, and The fluorescence intensity of each element in the sample to be tested is measured by X-ray fluorescence spectrometry to detect the content of phosphorus and iron elements in any lithium iron phosphate to be tested. The detection method of the invention is fast and high-speed, and has simple operation, small error, long time consumption, and is environmentally friendly to environmental pollution.
本发明的有益效果如下:The beneficial effects of the present invention are as follows:
(1)本发明采用湿化学法和X荧光光谱法相结合的方式,从而快速准确测定磷酸铁锂中铁元素和磷元素的含量;(1) The present invention adopts the combination of wet chemical method and X-ray fluorescence spectrometry, so as to quickly and accurately determine the content of iron and phosphorus in lithium iron phosphate;
(2)本发明通过湿化学法定值检验磷酸铁锂样品中的各种元素的含量,并以此为基础制作XRF标准样品,再利用XRF得到相应的标准曲线,有效解决了磷酸铁锂样品中的XRF标准曲线制作难题;(2) The present invention checks the content of various elements in the lithium iron phosphate sample by wet chemical method, and based on this, the XRF standard sample is made, and the corresponding standard curve is obtained by XRF, which effectively solves the problem of the lithium iron phosphate sample. Difficulties in making XRF standard curves;
(3)本发明采用XRF标准曲线,并通过X荧光光谱法测定磷酸铁锂中铁元素和磷元素的含量,从而减少了有毒化学试剂的使用、降低了成本,并提高了测试时间,是一种绿色环保的测试方法。(3) The present invention adopts the XRF standard curve, and measures the content of iron and phosphorus in lithium iron phosphate by X-ray fluorescence spectrometry, thereby reducing the use of toxic chemical reagents, reducing the cost, and improving the test time. It is a kind of Green test method.
具体实施方式detailed description
以下结合实施例,对本发明进行较为详细的说明。Below in conjunction with embodiment, the present invention is described in more detail.
以下实施例中,盐酸、硫酸、磷酸均为市场上销售的未稀释的试剂。In the following examples, hydrochloric acid, sulfuric acid, and phosphoric acid are commercially available undiluted reagents.
其中所选用的盐酸水溶液是指质量浓度为36%的浓盐酸与一级水按照质量比为1:1进行混合而成的;The selected hydrochloric acid aqueous solution refers to the mixture of concentrated hydrochloric acid with a mass concentration of 36% and primary water at a mass ratio of 1:1;
所述二氯化锡溶液是指将二氯化锡溶于盐酸中,再用水稀释至浓度为50g/L;Described tin dichloride solution refers to that tin dichloride is dissolved in hydrochloric acid, then diluted with water to concentration is 50g/L;
所述CuSO4-靛红指示剂是指靛红溶解于硫酸水溶液中,然后定容到硫酸铜溶液中;The CuSO 4 -isatin indicator means that isatin is dissolved in an aqueous sulfuric acid solution, and then fixed to a copper sulfate solution;
所述TiCl3溶液是指浓度为20g/L的三氯化钛盐酸溶液;Described TiCl Solution refers to the titanium trichloride hydrochloric acid solution that concentration is 20g/L;
所述硫酸/磷酸混酸是采用95~98wt%的浓硫酸和85wt%的磷酸按照体积比为1:1进行混合,然后再用一级水稀释至1L配成15wt %;The sulfuric acid/phosphoric acid mixed acid is mixed with 95~98wt% concentrated sulfuric acid and 85wt% phosphoric acid according to the volume ratio of 1:1, and then diluted with primary water to 1L to make 15wt%;
所述二苯胺磺酸钠指示剂是指浓度为0.05g/ L的二苯胺磺酸钠水溶液。The sodium diphenylamine sulfonate indicator refers to a concentration of 0.05g/L sodium diphenylamine sulfonate aqueous solution.
实施例1Example 1
一种用于测定磷酸铁锂中磷铁元素含量的荧光分析方法,包括以下步骤:A fluorescence analysis method for determining the content of phosphorus and iron elements in lithium iron phosphate, comprising the following steps:
(1)取同一批次的磷酸铁锂样品,并将其平分为三份;(1) Take the same batch of lithium iron phosphate samples and divide them into three equal parts;
(2)将第一份磷酸铁锂样品加入盐酸水溶液中,加热煮沸并保持18-25min,然后冷却至室温,并过滤掉未反应的碳,过滤后的溶液用二氯化锡溶液还原其中的三价铁,然后加入CuSO4-靛红指示剂将淡黄色溶液变成绿色,再滴加TiCl3溶液至绿色消失后,过量半滴,放置后溶液变为蓝色;再加入硫酸/磷酸混酸和二苯胺磺酸钠指示剂后,形成待测溶液;用重铬酸钾标准溶液对其进行滴定,当溶液由蓝色转变成紫红色即为反应终点,即测得待测样品溶液中铁元素的含量;(2) Add the first lithium iron phosphate sample to hydrochloric acid aqueous solution, heat to boil and keep for 18-25min, then cool to room temperature, and filter out unreacted carbon, and reduce the filtered solution with tin dichloride solution Ferric iron, then add CuSO 4 -isatin indicator to turn the light yellow solution into green, then add TiCl 3 solution dropwise until the green color disappears, then add half a drop in excess, and the solution turns blue after standing; then add sulfuric acid/phosphoric acid mixed acid and sodium diphenylamine sulfonate indicator to form the solution to be tested; titrate it with potassium dichromate standard solution, when the solution changes from blue to purple, it is the end of the reaction, and the iron element in the sample solution to be tested is measured content;
(3)采用盐酸处理第二份磷酸铁锂样品,过滤未反应的碳后,用氨水中和至有氢氧化物沉淀出现,再用硝酸标准溶液中和氢氧化物沉淀,并使其刚好消失;然后加入过量硝酸标准溶液,缓慢加入钼酸铵溶液,振荡2~3min后沉淀,并放置4h以上形成待测样品溶液;即测得待测样品溶液中磷元素的含量;(3) Treat the second lithium iron phosphate sample with hydrochloric acid, filter the unreacted carbon, neutralize with ammonia water until the hydroxide precipitate appears, then neutralize the hydroxide precipitate with nitric acid standard solution, and make it just disappear Then add excess nitric acid standard solution, slowly add ammonium molybdate solution, precipitate after shaking for 2 ~ 3min, and place for more than 4h to form the sample solution to be tested; promptly record the content of phosphorus element in the sample solution to be tested;
(4)将第三份磷酸铁锂样品均分为至少六份,分别加入不同含量的碳酸钙基准物质,配制成含量不同的标准样品;再采用粉末压片法将各个标准样品分别压制成片状,然后通过X射线荧光光谱法测得各片状标准样品中铁、磷元素的荧光强度;(4) Divide the third lithium iron phosphate sample into at least six equal parts, add calcium carbonate reference substances with different contents respectively, and prepare standard samples with different contents; then use powder compression method to compress each standard sample into tablets respectively Shape, then measure the fluorescence intensity of iron and phosphorus in each flake standard sample by X-ray fluorescence spectrometry;
(5)将步骤(4)中通过X射线荧光光谱法所测得的磷酸铁锂样品中铁、磷元素和金属杂质元素的荧光强度,与通过步骤(2)、(3)所测得的磷酸铁锂样品中铁、磷元素的含量进行关联,形成以荧光强度为纵坐标、以铁磷元素的含量为横坐标的XRF标准曲线;(5) The fluorescent intensity of iron, phosphorus and metal impurity elements in the lithium iron phosphate sample measured by X-ray fluorescence spectrometry in step (4) is compared with the phosphoric acid measured in steps (2) and (3). The content of iron and phosphorus elements in the iron-lithium sample is correlated to form an XRF standard curve with the fluorescence intensity as the ordinate and the content of iron and phosphorus as the abscissa;
(6)采用与步骤(4)中相同的粉末压片法将待测的磷酸铁锂样品压制成片状,得到待测样品,通过X射线荧光光谱法测得待测样品中各元素的荧光强度;通过步骤(5)所得的XRF标准曲线,即可得出待测样品中铁、磷元素的含量。(6) Press the lithium iron phosphate sample to be tested into a sheet using the same powder compression method as in step (4) to obtain the sample to be tested, and measure the fluorescence of each element in the sample to be tested by X-ray fluorescence spectrometry Intensity; through the XRF standard curve obtained in step (5), the content of iron and phosphorus elements in the sample to be tested can be obtained.
实施例2Example 2
1、重铬酸钾标准溶液滴定法测定磷酸铁锂样品中的铁元素含量:1. Potassium dichromate standard solution titration method to determine the content of iron in lithium iron phosphate samples:
称取1.000g±0.005g(精确到0.0001g)锂离子电池工业的正极材料磷酸铁锂(样品1)于100mL烧杯中,加入(1+1)盐酸,之余电加热炉上加热煮沸保持20min左右,关闭电加热炉,冷却至室温,过滤后定容到100mL容量瓶中待用。取20mL所述溶液,加30mL水、5mL(1+1)盐酸,放在电加热炉上加热至微沸,趁热滴加50g/L的二氯化锡溶液至淡黄色,滴加两滴CuSO4-靛红指示剂变绿色,滴加20g/L的TiCl3溶液至绿色消失,过量半滴,放置溶液变为蓝色。加入20mL15%硫酸/磷酸混酸、几滴二苯胺磺酸钠指示剂,用重铬酸钾标准溶液滴定,溶液由绿色转变成紫红色为终点,消耗体积为V;再分两次移取硫酸亚铁铵5mL,采用与上述步骤完全相同的试剂和用量,按照相同的分析步骤,进行平行操作,消耗重铬酸钾的体积记录为V1和V2,再根据计算公式,最终得到所取磷酸铁锂中铁元素的含量。并平行测定三次,取平均值,极差<3‰。Weigh 1.000g±0.005g (accurate to 0.0001g) lithium iron phosphate (sample 1), a positive electrode material in the lithium-ion battery industry, into a 100mL beaker, add (1+1) hydrochloric acid, and heat and boil on an electric heating furnace for 20 minutes Left and right, turn off the electric heating furnace, cool to room temperature, filter and set the volume to a 100mL volumetric flask for later use. Take 20mL of the above solution, add 30mL of water, 5mL (1+1) hydrochloric acid, put it on an electric heating furnace and heat to a slight boil, add 50g/L tin dichloride solution dropwise while it is hot until light yellow, add two drops of CuSO 4 -isatin indicator turns green, add 20g/L TiCl 3 solution dropwise until the green color disappears, half a drop in excess, and the solution turns blue when left to stand. Add 20mL of 15% sulfuric acid/phosphoric acid mixed acid, a few drops of sodium diphenylamine sulfonate indicator, titrate with potassium dichromate standard solution, the solution turns from green to purple as the end point, and the consumed volume is V; Ferric ammonium 5mL, using the same reagent and dosage as the above steps, according to the same analysis steps, parallel operation, the volume of potassium dichromate consumed is recorded as V 1 and V 2 , and then according to the calculation formula, finally get the phosphoric acid The content of iron element in iron lithium. And parallel measurement three times, take the average value, range <3‰.
2、磷钼酸铵容量法测定磷酸铁锂中的磷含量:2. Determination of phosphorus content in lithium iron phosphate by ammonium phosphomolybdate volumetric method:
称取1.000g±0.005g(精确到0.0001g)磷酸铁锂(样品1)于100mL烧杯中,加入(1+1)盐酸,之余电加热炉上加热煮沸保持20min左右,关闭电加热炉,冷却至室温,过滤后定容到100mL容量瓶中待用。移取上述溶液10mL于锥形瓶中,用氨水中和至有沉淀,再用硝酸标准溶液中和沉淀至刚好消失,加入过量硝酸标准溶液,缓慢加入75mL钼酸铵溶液,振荡2~3min,沉淀放置4h以上。过滤,用硝酸标准溶液洗涤锥形瓶和沉淀2~3次,再用硝酸钾溶液将锥形瓶和沉淀均洗至中性。在锥形瓶中滴加氢氧化钠标准溶液使沉淀完全溶解,再加入5mL~10mL过滤氢氧化钠标准溶液,记录消耗氢氧化钠体积V,稍等后加入2滴酚酞指示剂,用硝酸标准溶液回滴至溶液变为无色,记录体积为V1。再根据计算公式,最终得到所取磷酸铁锂中磷元素的含量。并平行测定三次,取平均值,极差<3‰。Weigh 1.000g±0.005g (accurate to 0.0001g) lithium iron phosphate (sample 1) into a 100mL beaker, add (1+1) hydrochloric acid, heat and boil on the electric heating furnace for about 20min, turn off the electric heating furnace, Cool to room temperature, filter and dilute to 100mL volumetric flask for use. Pipette 10mL of the above solution into an Erlenmeyer flask, neutralize with ammonia water until there is a precipitate, then neutralize the precipitate with nitric acid standard solution until it just disappears, add excess nitric acid standard solution, slowly add 75mL ammonium molybdate solution, shake for 2~3min, Precipitation placed more than 4h. Filter, wash the Erlenmeyer flask and the precipitate with nitric acid standard solution for 2 to 3 times, and then wash the Erlenmeyer flask and the precipitate with potassium nitrate solution until neutral. Add standard sodium hydroxide solution dropwise to the Erlenmeyer flask to dissolve the precipitate completely, then add 5mL~10mL filtered sodium hydroxide standard solution, record the volume V of sodium hydroxide consumed, add 2 drops of phenolphthalein indicator after a while, and use nitric acid standard The solution was dripped back until the solution became colorless, and the volume was recorded as V 1 . Then, according to the calculation formula, the content of phosphorus element in the obtained lithium iron phosphate is finally obtained. And parallel measurement three times, take the average value, range <3‰.
其中,70g/L钼酸铵溶液是将A溶液(70g钼酸铵溶于53mL氨水和267mL水中制成)缓慢倒入B溶液(267mL硝酸与400mL水混匀而成)中,定容至1L。Among them, the 70g/L ammonium molybdate solution is prepared by dissolving A solution (70g ammonium molybdate in 53mL ammonia water and 267mL water) slowly into B solution (mixed with 267mL nitric acid and 400mL water), and dilute to 1L .
硝酸标准溶液浓度为0.1mol/L,氢氧化钠标准溶液浓度为0.1mol/L;邻苯二甲酸氢钾为基准试剂,酚酞指示剂为称取1g酚酞指示剂溶于100mL95%的无水乙醇中。The concentration of nitric acid standard solution is 0.1mol/L, the concentration of sodium hydroxide standard solution is 0.1mol/L; potassium hydrogen phthalate is the reference reagent, and the phenolphthalein indicator is 100mL of 95% dehydrated alcohol dissolved in 100mL of phenolphthalein indicator middle.
3、制备XRF标准样品:3. Preparation of XRF standard samples:
所述磷酸铁锂(样品1)已经通过湿化学法分别测试三次取平均值得到铁元素和磷元素的含量。将其用150目和200目的标准筛筛选出150~200目的粉末样品,将所筛选的磷酸铁锂(样品1)均分为六份,混入不同含量的碳酸钙基准物质,配置成不同铁元素含量和不同磷元素含量的标准样品,其中铁元素含量分别为:33.50%、32.38%、31.27%、30.14%、29.03%、27.92%,磷元素含量分别为:18.85%、18.22%、17.59%、16.96%、16.34%、15.71%。然后分别加入定量葡萄糖做粘结剂,混匀后待用。The lithium iron phosphate (sample 1) has been tested three times by wet chemical method to get the average value to obtain the content of iron element and phosphorus element. Use 150-mesh and 200-mesh standard sieves to screen 150-200-mesh powder samples, divide the screened lithium iron phosphate (sample 1) into six parts, mix in calcium carbonate reference materials with different contents, and configure them into different iron elements. Standard samples with different phosphorus content and content of iron element are: 33.50%, 32.38%, 31.27%, 30.14%, 29.03%, 27.92%, phosphorus content are: 18.85%, 18.22%, 17.59%, 16.96%, 16.34%, 15.71%. Then add a certain amount of glucose as a binder, mix well and set aside.
4、粉末压片法压制XRF标准样品或待检样品:4. Powder compression method to compress XRF standard samples or samples to be tested:
将所制备的六个梯度的磷酸铁锂标准样品,置于直径30mm的铝环等模具内,均匀铺平后稍加压力压紧,然后以硼酸填充满整个模具,在压片机上施加20吨的压力压制5秒后,压制成片状的标准样品。Put the prepared six gradient lithium iron phosphate standard samples into molds such as aluminum rings with a diameter of 30mm, spread them evenly and compact them with a little pressure, then fill the entire mold with boric acid, and apply 20 tons on the tablet press. After pressing the pressure for 5 seconds, press it into a sheet-shaped standard sample.
5、XRF标准曲线的制备:5. Preparation of XRF standard curve:
用X射线荧光光谱法测定各压制成片状的标准样品中铁元素和磷元素的荧光强度,并且以测定的元素的荧光强度作为纵坐标,以前面已经测出的铁元素和磷元素的含量为横坐标,绘制XRF标准曲线。Use X-ray fluorescence spectrometry to measure the fluorescence intensity of iron element and phosphorus element in each standard sample that is pressed into sheet shape, and take the fluorescence intensity of the element measured as the ordinate, and take the content of iron element and phosphorus element that has been measured before as The abscissa plots the XRF standard curve.
6、任一批次磷酸铁锂样品铁元素和磷元素含量的检测:6. Detection of iron and phosphorus content in any batch of lithium iron phosphate samples:
选取任一批次锂离子电池正极材料磷酸铁锂样品(样品2),置于直径30mm的铝环等模具内,均匀铺平后稍加压力压紧,然后以硼酸填充满整个模具,在压片机上施加20吨的压力压制5秒后,压制成片状,采用X射线荧光光谱法测定其中铁元素和磷元素的荧光强度,通过XRF标准曲线得出铁元素和磷元素的含量。Select any batch of lithium iron phosphate samples (sample 2), which is the positive electrode material of lithium-ion batteries, and place them in a mold such as an aluminum ring with a diameter of 30 mm. After applying 20 tons of pressure on the tablet machine and pressing for 5 seconds, it was pressed into a sheet shape, and the fluorescence intensity of iron and phosphorus elements was measured by X-ray fluorescence spectrometry, and the contents of iron and phosphorus elements were obtained through the XRF standard curve.
实施例3-5Example 3-5
选取任一批次的锂离子电池正极材料磷酸铁锂样品作为样品3-5,分别置于直径30mm的铝环等模具内,均匀铺平后稍加压力压紧,然后以硼酸填充满整个模具,在压片机上施加20吨的压力压制5秒后,压制成片状,采用X射线荧光光谱法测得待测样品中铁元素和磷元素的荧光强度,并采用实施例2绘制XRF标准曲线与测定铁元素和磷元素的含量。Select any batch of lithium iron phosphate samples, which are the positive electrode material of lithium-ion batteries, as samples 3-5, place them in molds such as aluminum rings with a diameter of 30mm, spread them evenly, press them with a little pressure, and then fill the entire mold with boric acid , after applying 20 tons of pressure on the tablet press for 5 seconds, it was pressed into a sheet, and the fluorescence intensity of iron and phosphorus in the sample to be tested was measured by X-ray fluorescence spectrometry, and the XRF standard curve was drawn using Example 2 and Determination of iron and phosphorus content.
对于实施例3、实施例4、实施例5分别进行5次独立的样品制备和测试,并对5次测量结果进行统计,根据相对标准偏差(RSD)评估本发明的精度。结果见表1。For Example 3, Example 4, and Example 5, 5 independent sample preparations and tests were carried out respectively, and the measurement results of the 5 times were counted, and the accuracy of the present invention was evaluated according to the relative standard deviation (RSD). The results are shown in Table 1.
表1 精密度实验(n=5)(单位:%)Table 1 Precision experiment (n=5) (unit: %)
从表1可看出,通过本发明方法所测得的铁元素和磷元素的RSD(相对标准偏差)小于3.5%,表明方法具有良好的精密度,元素测得结果重现性良好。It can be seen from Table 1 that the RSD (relative standard deviation) of iron and phosphorus elements measured by the method of the present invention is less than 3.5%, indicating that the method has good precision and the element measurement results have good reproducibility.
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。The above content is only an example and description of the structure of the present invention. Those skilled in the art make various modifications or supplements to the described specific embodiments or replace them in similar ways, as long as they do not deviate from the structure of the invention or Anything beyond the scope defined in the claims shall belong to the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610168627.7A CN105842266A (en) | 2016-03-23 | 2016-03-23 | Fluorescence analysis method for determining element content in lithium iron phosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610168627.7A CN105842266A (en) | 2016-03-23 | 2016-03-23 | Fluorescence analysis method for determining element content in lithium iron phosphate |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105842266A true CN105842266A (en) | 2016-08-10 |
Family
ID=56582917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610168627.7A Pending CN105842266A (en) | 2016-03-23 | 2016-03-23 | Fluorescence analysis method for determining element content in lithium iron phosphate |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105842266A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105115922A (en) * | 2015-09-21 | 2015-12-02 | 浙江瑞邦科技有限公司 | Method for detecting iron content of lithium iron phosphate-carbon composite material |
CN106769335A (en) * | 2017-02-26 | 2017-05-31 | 合肥国轩高科动力能源有限公司 | Fuse piece for drift correction of X-ray fluorescence spectrometer and preparation method and application thereof |
CN107807150A (en) * | 2016-09-08 | 2018-03-16 | 甘肃立焘新能源科技发展有限公司 | A kind of detection method of inorganic electrolyte lithium salt content |
CN110508218A (en) * | 2019-08-16 | 2019-11-29 | 中国地质科学院水文地质环境地质研究所 | The measurement method of Zero-valent Iron hydrodynamic seepage pressure hydrogen producing amount and precipitation capacity |
CN110793992A (en) * | 2019-11-12 | 2020-02-14 | 沈阳师范大学 | Method for analyzing content of phosphorus element in phosphorus-containing feed by using energy dispersion X-ray fluorescence spectrum |
CN114318009A (en) * | 2022-03-16 | 2022-04-12 | 中南大学 | A kind of method of recovering lithium from lithium iron phosphate |
CN118688287A (en) * | 2024-08-23 | 2024-09-24 | 四川富临新能源科技有限公司 | A method for detecting elemental iron in lithium iron phosphate powder |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101470078A (en) * | 2007-12-25 | 2009-07-01 | 深圳市比克电池有限公司 | Method for measuring content of iron element in different valence states in lithium iron phosphate anode material |
CN102323228A (en) * | 2011-06-22 | 2012-01-18 | 恒正科技(苏州)有限公司 | The assay method of ferrous iron and ferric iron content in the lithium iron phosphate cathode material |
CN102993196A (en) * | 2012-12-20 | 2013-03-27 | 北京科技大学 | Triazole derivative, preparation method thereof, nano particles thereof and application of nano particles |
CN103226099A (en) * | 2013-03-25 | 2013-07-31 | 常州大学 | Method for determining content of ferric iron in lithium iron phosphate |
CN104103831A (en) * | 2014-07-22 | 2014-10-15 | 合肥国轩高科动力能源股份公司 | Method for preparing multi-doped lithium iron phosphate through converter sludge |
CN105115922A (en) * | 2015-09-21 | 2015-12-02 | 浙江瑞邦科技有限公司 | Method for detecting iron content of lithium iron phosphate-carbon composite material |
-
2016
- 2016-03-23 CN CN201610168627.7A patent/CN105842266A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101470078A (en) * | 2007-12-25 | 2009-07-01 | 深圳市比克电池有限公司 | Method for measuring content of iron element in different valence states in lithium iron phosphate anode material |
CN102323228A (en) * | 2011-06-22 | 2012-01-18 | 恒正科技(苏州)有限公司 | The assay method of ferrous iron and ferric iron content in the lithium iron phosphate cathode material |
CN102993196A (en) * | 2012-12-20 | 2013-03-27 | 北京科技大学 | Triazole derivative, preparation method thereof, nano particles thereof and application of nano particles |
CN103226099A (en) * | 2013-03-25 | 2013-07-31 | 常州大学 | Method for determining content of ferric iron in lithium iron phosphate |
CN104103831A (en) * | 2014-07-22 | 2014-10-15 | 合肥国轩高科动力能源股份公司 | Method for preparing multi-doped lithium iron phosphate through converter sludge |
CN105115922A (en) * | 2015-09-21 | 2015-12-02 | 浙江瑞邦科技有限公司 | Method for detecting iron content of lithium iron phosphate-carbon composite material |
Non-Patent Citations (2)
Title |
---|
HIKARI TAKAHARA: ""Characterization in lithium ion battery", 《THE RIGAKU JOURNAL》 * |
中华人民共和国国家质量监督检验检疫总局、中国国家标准化管理委员会: "《锂离子电池用碳复合磷酸铁锂正极材料 GB/T30835-2014》", 30 April 2014 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105115922A (en) * | 2015-09-21 | 2015-12-02 | 浙江瑞邦科技有限公司 | Method for detecting iron content of lithium iron phosphate-carbon composite material |
CN107807150A (en) * | 2016-09-08 | 2018-03-16 | 甘肃立焘新能源科技发展有限公司 | A kind of detection method of inorganic electrolyte lithium salt content |
CN106769335A (en) * | 2017-02-26 | 2017-05-31 | 合肥国轩高科动力能源有限公司 | Fuse piece for drift correction of X-ray fluorescence spectrometer and preparation method and application thereof |
CN106769335B (en) * | 2017-02-26 | 2019-12-13 | 合肥国轩高科动力能源有限公司 | Melt sheet for drift correction of X-ray fluorescence spectrometer and its preparation method and application |
CN110508218A (en) * | 2019-08-16 | 2019-11-29 | 中国地质科学院水文地质环境地质研究所 | The measurement method of Zero-valent Iron hydrodynamic seepage pressure hydrogen producing amount and precipitation capacity |
CN110793992A (en) * | 2019-11-12 | 2020-02-14 | 沈阳师范大学 | Method for analyzing content of phosphorus element in phosphorus-containing feed by using energy dispersion X-ray fluorescence spectrum |
CN114318009A (en) * | 2022-03-16 | 2022-04-12 | 中南大学 | A kind of method of recovering lithium from lithium iron phosphate |
CN118688287A (en) * | 2024-08-23 | 2024-09-24 | 四川富临新能源科技有限公司 | A method for detecting elemental iron in lithium iron phosphate powder |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105842266A (en) | Fluorescence analysis method for determining element content in lithium iron phosphate | |
CN103207197B (en) | X-ray fluorescence spectra analysis method for copper content of copper ore | |
KR20120085296A (en) | Method for analyzing and detecting calcium element in ore | |
CN101713739A (en) | Reagent and method for determining chemical oxygen demand of high-chloride wastewater | |
CN103528973A (en) | Method for precisely detecting phosphorus content and iron content of iron phosphate | |
CN106290334B (en) | The chemistry in detecting of cobalt and manganese content in cobalt manganese raw material | |
CN113533309A (en) | Method for testing content of iron element in lithium iron phosphate material | |
CN113311015A (en) | Method for analyzing content of main elements in nickel cobalt lithium manganate positive electrode material | |
CN103226099A (en) | Method for determining content of ferric iron in lithium iron phosphate | |
CN104133035B (en) | Method for measuring content of metal magnesium in briquetting nodulizer by using differential method | |
CN111024740A (en) | Method for measuring content of impurity elements in high-purity graphite | |
CN103323450B (en) | Rapid determination method of iodide ion by using nano-gold as logic gate developing probe | |
CN104237220A (en) | Method for detecting content of iron, sulfur, phosphorus and silicon dioxide of rolling ball for steelmaking | |
CN108226204A (en) | The method that the analysis of applied energy dispersive x-ray fluorescence measures chlorinity in complex fertilizer | |
CN110346353B (en) | Method for testing content of aluminum oxide in electrode foil of aluminum electrolytic capacitor | |
CN103698352A (en) | Mother solution of standard solution for chromatography of heavy metals in leather and preparation method of standard curve | |
CN106769335B (en) | Melt sheet for drift correction of X-ray fluorescence spectrometer and its preparation method and application | |
CN105486801A (en) | Determination method for harmful compositions in used-sodium-silicate-sand surface adhesive film | |
CN104360010A (en) | Analysis method for determining content of each component in sulfuric acid and nitric acid mixture | |
CN104713923A (en) | Quantitative determination method of vanadium ion concentration of negative electrode electrolyte solution of all vanadium flow battery | |
CN104568922A (en) | Method for determining lithium in lithium-boron alloy | |
CN110793992A (en) | Method for analyzing content of phosphorus element in phosphorus-containing feed by using energy dispersion X-ray fluorescence spectrum | |
CN111638236A (en) | Quantitative analysis method for selenium in crude selenium | |
CN107037036B (en) | Method for measuring phosphorus content in lithium iron phosphate | |
CN104730063A (en) | Method for detecting lanthanum, cerium and yttrium in tungsten-lanthanum-cerium-yttrium quaternary alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160810 |
|
RJ01 | Rejection of invention patent application after publication |