CN105826799A - 掺杂稀土的增益纤维 - Google Patents

掺杂稀土的增益纤维 Download PDF

Info

Publication number
CN105826799A
CN105826799A CN201610143443.5A CN201610143443A CN105826799A CN 105826799 A CN105826799 A CN 105826799A CN 201610143443 A CN201610143443 A CN 201610143443A CN 105826799 A CN105826799 A CN 105826799A
Authority
CN
China
Prior art keywords
fiber
core
microns
percentage
multicomponent glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610143443.5A
Other languages
English (en)
Other versions
CN105826799B (zh
Inventor
罗涛
Q.王
L.潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advalue Photonics Inc
Original Assignee
Advalue Photonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advalue Photonics Inc filed Critical Advalue Photonics Inc
Publication of CN105826799A publication Critical patent/CN105826799A/zh
Application granted granted Critical
Publication of CN105826799B publication Critical patent/CN105826799B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02004Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
    • G02B6/02009Large effective area or mode field radius, e.g. to reduce nonlinear effects in single mode fibres
    • G02B6/02014Effective area greater than 60 square microns in the C band, i.e. 1530-1565 nm
    • G02B6/02019Effective area greater than 90 square microns in the C band, i.e. 1530-1565 nm
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02395Glass optical fibre with a protective coating, e.g. two layer polymer coating deposited directly on a silica cladding surface during fibre manufacture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/024Optical fibres with cladding with or without a coating with polarisation maintaining properties
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/17Solid materials amorphous, e.g. glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06712Polarising fibre; Polariser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06733Fibre having more than one cladding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/161Solid materials characterised by an active (lasing) ion rare earth holmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1616Solid materials characterised by an active (lasing) ion rare earth thulium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1691Solid materials characterised by additives / sensitisers / promoters as further dopants
    • H01S3/1698Solid materials characterised by additives / sensitisers / promoters as further dopants rare earth

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Glass Compositions (AREA)

Abstract

本发明涉及掺杂稀土的增益纤维。具体地,掺杂稀土氧化物的多组分玻璃纤维,用于激光产生和放大,包括芯和包层,该芯包含至少2重量百分比的玻璃网络调节剂,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合;其中用芯与包层之间的阶跃折射率差来引导芯的模式,纤维的数值孔径在0.01和0.04之间;芯直径为从25至120微米,以及增益纤维的长度短于60cm。

Description

掺杂稀土的增益纤维
发明领域
本发明涉及掺杂稀土的增益纤维。
发明背景
高功率、脉冲纤维激光器在多种应用例如激光微机加工、材料处理、非线性光学和激光传感中受到极大关注。通常通过制备基于纤维的主振荡器功率放大器(MOPA)来实现现有技术高功率纤维激光器。
发明内容
公开了掺杂镱的多组分玻璃纤维,用于从约1.01至约1.12微米波长的激光产生和放大。申请人的掺杂镱的多组分玻璃纤维包含芯和包层。
申请人的掺杂镱的多组分玻璃纤维的芯玻璃包含至少2重量百分比的玻璃网络调节剂和从约3至约50重量百分比的镱氧化物,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合。用芯与包层之间的阶跃折射率差来引导芯的模式,纤维的数值孔径在约0.01和约0.04之间。芯直径为从约25至约60微米。增益纤维的长度短于60cm。
公开了掺杂铒的多组分玻璃纤维,用于从1.51至1.65微米波长的激光产生和放大。申请人的掺杂铒的多组分玻璃纤维包含芯和包层。
该纤维的芯玻璃包含至少2重量百分比的玻璃网络调节剂和从约0.5至约20重量百分比的镱氧化物,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合。用芯与包层之间的阶跃折射率差来引导芯的模式,纤维的数值孔径在约0.01和约0.04之间。芯直径为从约30至约90微米。增益纤维的长度短于60cm。
公开了掺杂铥的多组分玻璃纤维,用于从1.75至2.05微米波长的激光产生和放大。申请人的掺杂铥的多组分玻璃纤维包含芯和包层。
该纤维的芯玻璃包含至少2重量百分比的玻璃网络调节剂和从约2至约30重量百分比的镱氧化物,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合。用芯与包层之间的阶跃折射率差来引导芯的模式,纤维的数值孔径在约0.01和约0.04之间。芯直径为从约35至约120微米。增益纤维的长度短于60cm。
公开了掺杂钬的多组分玻璃纤维,用于从1.98至2.2微米波长的激光产生和放大。申请人的掺杂钬的多组分玻璃纤维包含芯和包层。
该纤维的芯玻璃包含至少2重量百分比的玻璃网络调节剂和从约0.5至约20重量百分比的镱氧化物,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合。用芯与包层之间的阶跃折射率差来引导芯的模式,纤维的数值孔径在约0.01和约0.04之间。芯直径为从约35至约120微米。增益纤维的长度短于60cm。
附图简要说明
通过阅读以下结合附图的详细说明将更好的理解本发明,附图中的相同参考标记用于指示相同的元件,并且其中:
图1说明了现有技术的基于纤维的主振荡器功率放大器(MOPA)的示意图;
图2说明了申请人的掺杂稀土的纤维的横截面图;
图3说明了申请人的双包层的掺杂稀土的纤维的横截面图;以及
图4说明了申请人的保偏双包层的掺杂稀土的纤维的横截面图。
优选实施方案的详细描述
在下面的描述中结合附图在优选实施方案中描述了本发明,其中相同的标记表示相同或相似的元件。贯穿本说明书提及“一个实施方案”、“实施方案”或相似语言意味着结合实施方案所描述的具体特征、结构或特性包括在本发明的至少一个实施方案中。因此,贯穿本说明书,短语“在一个实施方案中”、“在实施方案中”和相似语言的出现可以但不必均意指相同的实施方案。
所描述的本发明的特征、结构或特性可以以任何合适的方式结合到一个或多个实施方案中。在以下的描述中,列举了许多具体的细节以提供本发明的实施方案的彻底理解。然而,相关领域的技术人员将会认识到可以在没有一个或多个具体细节的情况下或者采用其他方法、部件、材料等实施本发明。在其他情况下,没有示出或详细描述公知的结构、材料或操作以避免模糊本发明的各个方面。
高功率、脉冲纤维激光器在多种应用例如激光微机加工、材料处理、非线性光学和激光传感中受到极大关注。通常通过制备基于纤维的主振荡器功率放大器(MOPA)来实现高功率纤维激光器。
图1说明了MOPA构造的示意图。通过纤维放大器来放大种子激光。通常,通过掺杂稀土的增益纤维来放大种子激光,通过泵浦激光器对该增益纤维供给能量。
图2显示了掺杂稀土的纤维的横截面图。经由所谓的信号和泵浦组合器将该泵浦激光与种子激光组合在一起。该放大的种子激光可以再次被放大以实现更高的脉冲能量和更高的峰值功率。当采用超过一个放大器时,纤维放大器被称为多级放大器。为了实现高功率,通常采用双包层的掺杂稀土的增益纤维。
图3说明了双包层的增益纤维的典型横截面图。该芯用于引导信号。在这里其被称为种子激光。内包层用于限制泵浦激光。该芯通常为掺杂稀土的玻璃。稀土离子产生增益。例如,镱离子(Yb3+)和钕(Nd3+)提供1微米波长左右的增益,铒离子(Er3+)产生1.55微米左右的增益,铥离子(Tm3+)和钬离子(Ho3+)能产生2微米波长左右的增益。
内包层通常是具有较低折射率的未掺杂的玻璃材料,以在芯中形成波导。外包层可以是玻璃材料或聚合物材料,其具有较低的折射率以限制内包层中的泵浦激光。为了产生保偏(PM)输出,需要PM增益纤维。
图4说明了典型PM纤维的横截面图。
对于许多应用而言,需要高脉冲能量和高峰值功率。由于强烈的横向限制和长的相互作用长度,纤维放大器的功率调节(scaling)受非线性效应的开始所限制。
对于单一频率/窄频带放大器,模拟的布里渊散射(SBS)具有最低的阈值并可能导致许多信号光反射回。对于较宽的信号带宽,模拟的拉曼散射(SRS)可在较高功率水平下发生并将许多信号功率转移到不需要的新波长分量中。
用于窄频带信号的该SBS阈值功率由下面的式1确定:
P B 0 = 21 bA e g B L e - - - ( 1 )
其中b是1和2之间的数,其取决于偏振状态。Ae是有效面积。gB是SBS增益系数。Le是纤维的有效传输长度。
SRS的阈值功率可由下面的式(2)描述
P R 0 = 16 A e g R L e - - - ( 2 )
其中gR是SRS增益系数。
因此,纤维中的光学非线性阈值随着有效面积增加并且随着纤维的有效传输长度减小。有效面积随着纤维的芯直径和纤维的模场直径增加。对于单一模式芯,模场直径通常与纤维的物理芯直径成比例。为了增加纤维激光器的脉冲能量和峰值功率,需要增加增益纤维的光学非线性的阈值。为了增加增益纤维的光学非线性的阈值,增益纤维的长度应该短并且增益纤维的芯直径应该大。
增益纤维的长度受泵浦吸收所限制。包层泵浦纤维放大器常具有数米的长度用于有效吸收泵浦光。高掺杂浓度可以改善该吸收并随后缩短增益纤维的长度。然而,典型氧化硅纤维的掺杂浓度是受限的。因此通常采用几米长的增益纤维。
限制芯直径以确保纤维是单一模式纤维。当纤维的V数值大于2.405时,束品质将劣化并不再是单一模式,
V = 2 π λ a N A - - - ( 3 )
其中λ是真空波长,a是纤维芯的半径,并且NA是数值孔径。如可在式(3)中看到的,较低的NA值可以补偿增加的芯尺寸并保持V数值尽可能的低。
然而,减少常规阶跃折射率纤维的NA也存在限制。US专利8,774,590公开了在氧化硅纤维的芯与包层之间的折射率差为0.05至0.30%。该专利教导了在芯与包层之间的相对折射率差低于0.05%时不能充分获得光学纤维的光储存效应。氧化硅玻璃的折射率为约1.45。芯玻璃的折射率为1.4507。因此采用下面的式4,纤维的NA应该为0.04左右:
N A = n c o r e 2 - n c l a d 2 - - - ( 4 )
Nclad=1.45
Ncore=1.45*(1+0.0005)=1.4507
因此,NA=0.046
当NA为0.046时,根据式(3),单一模式芯直径对于1微米波长激光器为16.65微米、对于1.55微米波长激光器为25.8微米以及对于2微米波长激光器为33.3微米。尽管US专利8,774,590要求用于掺杂镱的纤维激光器(掺杂镱的纤维激光波长为1微米)的20至30微米芯直径,但是该V数值已经大于2.405,这意味着其不再是真正的单一模式纤维。需要纤维弯曲以滤掉较高阶模式。因此1微米左右的真正单一模式芯直径为约16.65微米。
此外,US专利8,774,590的氧化硅纤维是通过MCVD(改进的化学气相沉积)或VAD(气相轴向沉积)方法来沉积芯材料而形成的。然而,这些常规光学纤维所产生的问题是,当前的光学纤维制造方法受到它们精确控制芯材料的折射率(ncore)和包层材料的折射率(nclad)的能力的限制。由于该受限的能力,在商业化的实际纤维中,通常通过设计将ncore和nclad之间的差限制为不小于0.1%。这进而限制对于给定波长的芯直径的设计尺寸,和/或限制对于给定芯直径的纤维的单一模式操作的波长。
例如,一种称作火焰水解的通用光学纤维制造方法采用燃烧器将金属卤化物颗粒和SiO2(称为“烟灰”)的组合烧成在旋转石墨或陶瓷心轴上以制备光学纤维预制体。参见Keiser,OpticalFiberCommunications,第2版,McGraw-Hill(1991),通过引用将其并入本文,第63-68页。
通过控制沉积过程期间金属卤化物蒸气流的成分来控制折射率。该过程是“开路”,没有反馈机制来精确控制光学材料的最终折射率。此外,该金属卤化物蒸气流在其控制能力以及其控制光学材料的最终折射率的能力上受到限制。
在该过程期间,相当一部分材料将蒸发,因此,非常难以控制折射率差接近0.05%(相当于0.046的NA)。因此大部分增益纤维具有0.08或更大的NA。
另一种方法是采用所谓的光子晶体纤维(PCF)设计来实现大芯直径。光子晶体纤维(也称为多孔纤维,孔辅助纤维,微结构纤维或微结构化纤维)是光学纤维,其获得的波导性质不是来自空间变化的玻璃组成,而是来自非常小且紧密间隔的空气孔的布置,该空气孔遍及纤维的整个长度。这样的空气孔可通过使用具有孔的预制体获得,例如通过堆积毛细管和/或实心管并将它们插入较大的管来制备。这些纤维不是阶跃折射率纤维并且它们的引导机制不同于阶跃折射率纤维。
可以制造用于纤维激光器和放大器的激光活性PCF,例如通过采用掺杂稀土的棒作为预制体组件的中心元件。稀土掺杂剂(例如镱或铒)倾向于增加折射率,引导性质只由光子微结构确定而不是通过常规型折射率差来确定。对于高功率纤维激光器和放大器,可采用双包覆PCF,其中泵浦包层被空气包层区域(空气包覆纤维)围绕。由于折射率的非常大的反差,泵浦包层可以具有非常高的数值孔径(NA),这显著降低对于泵浦源的束品质和亮度的要求。
这样的PCF设计还可具有纤维芯的非常大的模式面积,同时只引导用于衍射限制的输出的单一模式,并且因此适于具有优异束品质的非常高的输出功率。
但是PCF(微结构化纤维)具有许多缺点,包括难以制造、难以融合拼接、空气间隙的差的热传导性以及纤维芯的相对低的掺杂。因此,强烈需要有一种具有大芯直径的阶跃折射率纤维,其是真正的单一模式纤维。
申请人公开了一种类型的增益纤维,其具有0.01和0.04之间的数值孔径,导致极大的单一模式芯直径。在这里稀土离子主体(增益元件)是多组分玻璃,这不同于最通常使用的氧化硅玻璃。
众所周知的是,用气相沉积法制备氧化硅纤维,其几乎不包含碱金属离子或碱土金属离子,因为这些离子与气相沉积法不相容。总含量应该小于0.1重量百分比。多组分玻璃总是包含碱金属离子或碱土金属离子,其为至少大于1重量百分比。
该碱金属包括锂(Li)、钠(Na)、钾(K),并且碱土金属为铍(Be)、镁(Mg)、钙(Ca)、锶(Sr)和钡(Ba)。这些碱金属离子或碱土金属离子称为多组分玻璃中的玻璃网络调节剂。其他金属离子例如Zn和Pb可作为玻璃网络调节剂,其也与气相沉积法不相容。
多组分玻璃包括磷酸盐玻璃、硅酸盐玻璃、碲酸盐玻璃、锗酸盐玻璃等。US专利6,816,514以Jiang的名义公开了用于纤维激光器应用的掺杂稀土的磷酸盐玻璃纤维。US专利6,859,606以Jiang的名义公开了用于1.5微米纤维放大的掺杂铒的硼碲酸盐玻璃。US专利7,298,768以Jiang的名义公开了用于纤维激光器的锗酸盐玻璃。Jiang的US8,121,154公开了用于纤维激光器应用的硅酸盐玻璃。将多组分玻璃纤维用于纤维激光器应用是因为它们的高掺杂浓度的能力。这些专利限制了它们采用比氧化硅玻璃纤维相对更短的增益纤维段的优点。
但是对于高脉冲能量纤维激光器,大的芯直径是重要的。申请人发现能够由多组分玻璃增益纤维获得大的芯直径。数值孔径可以从0.01至0.04。因此,芯直径对于1微米波长可以从25微米至60微米,对于1.55微米波长可以从35微米至90微米,并且对于2微米波长可以从45微米至120微米。
申请人将高稀土离子掺杂到纤维中,使得增益纤维的总长度不长于60cm。因此可以笔直地包封增益纤维。不需要弯曲。
由于极大的芯直径以及相对短的增益纤维长度,能够获得大于50kW的峰值功率,而没有光学非线性。
申请人开发了基于硅酸盐材料的新型包层泵浦的保偏Yb掺杂纤维。采用大模式尺寸、高Yb掺杂水平和低NA,该纤维放大器实现了记录非线性效应的高阈值,同时保持优异的衍射限制的束品质。表1将申请人的掺杂Yb的纤维与最大众的商业化包层泵浦Yb纤维的参数进行了对比。
表1
如表1所示,申请人的纤维Yb#35具有为商业化纤维的~640倍的估算非线性阈值功率。
表2对比了申请人的纤维和商业化纤维之间对于不同输入信号的SBS/SRS阈值。申请人的纤维的非线性阈值为商业化纤维的许多倍。申请人的纤维的阈值总是为典型商业化纤维的许多倍,这意味着能够实现高脉冲能量。
表2
虽然已经详细说明了本发明的优选实施方案,但应该明确的是,在不偏离本发明的范围的情况下本领域技术人员可对这些实施方案作出改变和变化。

Claims (20)

1.掺杂镱的多组分玻璃纤维,用于从1.01至1.12微米波长的激光产生和放大,包含:
芯;和
包层;
其中所述芯包含:
至少2重量百分比的玻璃网络调节剂,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合;以及
从约3至约50重量百分比的镱氧化物;
其中:
用芯与包层之间的阶跃折射率差来引导芯的模式;
纤维的数值孔径在0.01和0.04之间;
芯直径为从25至60微米;和
增益纤维的长度短于60cm。
2.权利要求1的掺杂镱的多组分玻璃纤维,其中所述镱氧化物以从约5至约25重量百分比的水平存在。
3.权利要求1的掺杂镱的多组分玻璃纤维,其中芯直径是从约30微米至约50微米。
4.权利要求1的掺杂镱的多组分玻璃纤维,其中纤维长度为从约5cm至约45cm。
5.权利要求1的掺杂镱的多组分玻璃纤维,其中纤维可以是保偏纤维。
6.掺杂铒的多组分玻璃纤维,用于从1.51至1.65微米波长的激光产生和放大,包含:
芯;
包层;
其中:
所述芯包含至少2重量百分比的玻璃网络调节剂,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合;以及
从约0.5至约20重量百分比的铒氧化物;
其中:
用芯与包层之间的阶跃折射率差来引导芯的模式;
纤维的数值孔径在0.01和0.04之间;
芯直径为从约30微米至约90微米;
增益纤维的长度短于60cm。
7.权利要求6的掺杂铒的多组分玻璃纤维,其中所述铒氧化物以从约1至约5重量百分比的水平存在。
8.权利要求6的掺杂铒的多组分玻璃纤维,其中芯直径是从约35微米至约60微米。
9.权利要求6的掺杂铒的多组分玻璃纤维,其中纤维长度为从约4cm至约45cm。
10.权利要求6的掺杂铒的多组分玻璃纤维,其中纤维可以是保偏纤维。
11.掺杂铥的多组分玻璃纤维,用于从1.75至2.05微米波长的激光产生和放大,包含:
芯;
包层;
其中纤维的所述芯包含至少2重量百分比的玻璃网络调节剂,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合;以及
从约2至约30重量百分比的铥氧化物;
其中用芯与包层之间的阶跃折射率差来引导芯的模式;
纤维的数值孔径在约0.01和约0.04之间;
芯直径为从约35至120微米;和
增益纤维的长度短于60cm。
12.权利要求11的掺杂铥的多组分玻璃纤维,其中所述铥氧化物以从约1至约5重量百分比的水平存在。
13.权利要求11的掺杂铥的多组分玻璃纤维,其中芯直径是从约35微米至约60微米。
14.权利要求11的掺杂铥的多组分玻璃纤维,其中纤维长度为从约4cm至约45cm。
15.权利要求11的掺杂铥的多组分玻璃纤维,其中纤维可以是保偏纤维。
16.掺杂钬的多组分玻璃纤维,用于从1.98至2.2微米波长的激光产生和放大,包含:
芯;
包层;
其中:
纤维的所述芯包含至少2重量百分比的玻璃网络调节剂,该玻璃网络调节剂选自BaO、CaO、MgO、ZnO、PbO、K2O、Na2O、Li2O、Y2O3或其组合;
从约0.5至约20重量百分比的钬氧化物;
用芯与包层之间的阶跃折射率差来引导芯的模式;
纤维的数值孔径在约0.01和约0.04之间;
芯直径为从约35至约120微米;
所述增益纤维的长度短于60cm。
17.权利要求16的掺杂钬的多组分玻璃纤维,其中所述钬氧化物以从约1至约5重量百分比的水平存在。
18.权利要求16的掺杂钬的多组分玻璃纤维,其中芯直径是从约40微米至约90微米。
19.权利要求16的掺杂钬的多组分玻璃纤维,其中纤维长度为从约5cm至约45cm。
20.权利要求16的掺杂钬的多组分玻璃纤维,其中纤维可以是保偏纤维。
CN201610143443.5A 2015-01-26 2016-01-26 掺杂稀土的增益纤维 Active CN105826799B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/605,740 2015-01-26
US14/605,740 US9581760B2 (en) 2015-01-26 2015-01-26 Rare-earth doped gain fibers

Publications (2)

Publication Number Publication Date
CN105826799A true CN105826799A (zh) 2016-08-03
CN105826799B CN105826799B (zh) 2019-03-08

Family

ID=56432557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143443.5A Active CN105826799B (zh) 2015-01-26 2016-01-26 掺杂稀土的增益纤维

Country Status (2)

Country Link
US (3) US9581760B2 (zh)
CN (1) CN105826799B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9755739B1 (en) * 2016-06-02 2017-09-05 Google Inc. WFOV and NFOV shared aperture beacon laser
US10158039B1 (en) * 2017-10-16 2018-12-18 International Business Machines Corporation Heterojunction diode having a narrow bandgap semiconductor
EP4361112A2 (en) 2018-11-26 2024-05-01 Owens Corning Intellectual Capital, LLC High performance fiberglass composition with improved elastic modulus
BR112021010112A2 (pt) 2018-11-26 2021-08-24 Owens Corning Intellectual Capital, Llc Composição de fibra de vidro de alto desempenho com módulo específico melhorado
US11509108B2 (en) * 2020-05-01 2022-11-22 Cybel, LLC. Tm-doped fiber amplifier utilizing wavelength conditioning for broadband performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816514B2 (en) * 2002-01-24 2004-11-09 Np Photonics, Inc. Rare-earth doped phosphate-glass single-mode fiber lasers
CN102087378A (zh) * 2009-11-13 2011-06-08 德雷卡通信技术公司 具有小数值孔径的掺稀土光纤
CN102197550A (zh) * 2008-11-04 2011-09-21 株式会社藤仓 掺镱光纤
US20120039361A1 (en) * 2010-08-12 2012-02-16 Draka Comteq B.V. Depressed graded index multi-mode optical fiber

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848998A (en) * 1988-01-21 1989-07-18 Polaroid Corporation Selective volitization method for preparing fiber optics
US6529318B1 (en) * 2001-08-30 2003-03-04 Np Photonics, Inc. Total internal reflection (TIR) coupler and method for side-coupling pump light into a fiber
US6700697B2 (en) * 2002-01-23 2004-03-02 Np Photonics, Inc. Reflective erbium-doped amplifier
US6654390B2 (en) * 2002-01-23 2003-11-25 Np Photonics, Inc. Coupled-cavity tunable glass laser
US6859606B2 (en) 2002-11-27 2005-02-22 Np Photonics, Inc. ER3+ doped boro-tellurite glasses for 1.5 μm broadband amplification
US20040109225A1 (en) * 2002-12-06 2004-06-10 Np Photonics, Inc. Multi-mode pumped ase source using phosphate and tellurite glasses
JP2006053522A (ja) * 2004-07-15 2006-02-23 Asahi Glass Co Ltd ガラス光導波路
US7050686B2 (en) * 2004-08-05 2006-05-23 Nufern Fiber optic article with inner region
US7298768B1 (en) 2004-11-16 2007-11-20 Np Photonics, Inc Thulium-doped heavy metal oxide glasses for 2UM lasers
US7423803B1 (en) * 2006-01-09 2008-09-09 Np Photonics, Inc. 1-μm phosphate-glass fiber amplified spontaneous emission (ASE) source
US8121154B2 (en) 2008-05-01 2012-02-21 Advalue Photonics, Inc. Thulium and/or holmium doped silicated glasses for two micron lasers
US8467423B2 (en) * 2008-05-01 2013-06-18 Advalue Photonics, Inc. Thulium and/or Holmium doped germanosilicate glasses for two micron lasers
EP2374034A1 (en) 2008-12-04 2011-10-12 Imra America, Inc. Highly rare-earth-doped optical fibers for fiber lasers and amplifiers
US7957433B2 (en) * 2009-07-24 2011-06-07 Advalue Photonics, Inc. Mode-locked two micron fiber lasers
US8279900B2 (en) * 2009-07-24 2012-10-02 Advalue Photonics, Inc. Mode-locked two-micron fiber lasers
US8509574B2 (en) * 2009-12-01 2013-08-13 Advalue Photonics, Inc. Faraday rotator and isolator
WO2011160646A1 (en) 2010-06-25 2011-12-29 Nkt Photonics A/S Large core area single mode optical fiber

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816514B2 (en) * 2002-01-24 2004-11-09 Np Photonics, Inc. Rare-earth doped phosphate-glass single-mode fiber lasers
CN102197550A (zh) * 2008-11-04 2011-09-21 株式会社藤仓 掺镱光纤
CN102087378A (zh) * 2009-11-13 2011-06-08 德雷卡通信技术公司 具有小数值孔径的掺稀土光纤
US20120039361A1 (en) * 2010-08-12 2012-02-16 Draka Comteq B.V. Depressed graded index multi-mode optical fiber

Also Published As

Publication number Publication date
US9581760B2 (en) 2017-02-28
US9653870B1 (en) 2017-05-16
CN105826799B (zh) 2019-03-08
US20160216441A1 (en) 2016-07-28
US20170123148A1 (en) 2017-05-04
US20170125966A1 (en) 2017-05-04
US9653871B1 (en) 2017-05-16

Similar Documents

Publication Publication Date Title
US8731358B2 (en) Multi-cladding fiber
CN101316800B (zh) 添加稀土类纤芯光纤及其制造方法
US7203407B2 (en) Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US8542968B2 (en) Rare earth doped and large effective area optical fibers for fiber lasers and amplifiers
CN105826799A (zh) 掺杂稀土的增益纤维
WO2013038794A1 (ja) 光ファイバ、光ファイバレーザおよび光ファイバ増幅器、ならびに光ファイバの製造方法
EP1927167A2 (en) Amplifying optical fiber operating at a wavelength in the range of 1000-1700 nm, methods of fabricating the same, and fiber laser
JPH09159846A (ja) 希土類元素添加マルチコアファイバ及びその製造方法
EP1543593B1 (en) Polarisation-dependent optical fibre amplifier
US9640936B1 (en) Rare-earth doped gain fibers
US20090181842A1 (en) Polarization-maintaining optical fiber and method for manufacturing the same
Hansen et al. Airclad fiber laser technology
US9780520B2 (en) Ultrashort pulse fiber amplifier using rare-earth doped gain fibers
CN106356702B (zh) 超短脉冲光纤放大器
US11417998B2 (en) Bare single mode fiber amplifier/laser
JP2007149766A (ja) フォトニックバンドギャップファイバ
US9812837B2 (en) Ultrashort pulse fiber amplifier with rare-earth doped gain fibers
Wang et al. Nd3+-doped soft glass double-clad fibers with a hexagonal inner cladding
JP7496100B2 (ja) 希土類元素添加光ファイバ
US20230402808A1 (en) Active lma optical fiber with enhanced transverse mode stability
Choudhury et al. TWISTED CLAD OPTICAL GUIDES: CONCEPT, FEATURES AND APPLICATIONS
Dissanayake Design and performance analysis of rare-earth doped fibres with modified silica host
Lou et al. High power fiber lasers
Zlenko et al. Bismuth-ring-doped fibres

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant