CN105826422A - 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关 - Google Patents

一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关 Download PDF

Info

Publication number
CN105826422A
CN105826422A CN201610313467.0A CN201610313467A CN105826422A CN 105826422 A CN105826422 A CN 105826422A CN 201610313467 A CN201610313467 A CN 201610313467A CN 105826422 A CN105826422 A CN 105826422A
Authority
CN
China
Prior art keywords
layer
gaas
algaas
well structure
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610313467.0A
Other languages
English (en)
Other versions
CN105826422B (zh
Inventor
栾崇彪
肖金水
王波
黄宇鹏
李洪涛
谢卫平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Fluid Physics of CAEP
Original Assignee
Institute of Fluid Physics of CAEP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Fluid Physics of CAEP filed Critical Institute of Fluid Physics of CAEP
Priority to CN201610313467.0A priority Critical patent/CN105826422B/zh
Publication of CN105826422A publication Critical patent/CN105826422A/zh
Application granted granted Critical
Publication of CN105826422B publication Critical patent/CN105826422B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关,包括GaAs基层,所述GaAs基层的电极面的电极区域上外延生长一层高掺杂n+‑GaAs,高掺杂n+‑GaAs层表面淀积有金属层,GaAs基层电极面的电极之间生长一层高反膜,述GaAs基层背电极面外延生长一层AlGaAs,AlGaAs层与GaAs基层之间形成三角形势阱结构AlGaAs表面生长一层增透膜,光导开关的导通电阻小于为0.45Ω。本发明在使用波长1064 nm、能量5.4mJ、触发激光脉宽25 ns的激光脉冲触发光导开关,在脉冲电压9.8 kV时,光导开关的导通电阻仅为0.45Ω,开关在工作电压9.8kV、重复频率1kHz条件下寿命大于100万次,大大提高了光导开关的使用寿命。

Description

一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关
技术领域
本发明属于半导体器件领域,具体涉及量子阱结构的大功率半绝缘AlGaAs GaAs光导开关。
背景技术
近年来,在高新装备和物理研究需求的推动下,脉冲功率技术受到广泛关注,各主要技术强国均投入大量人力物力开展相关研究工作,取得了多项里程碑式的技术进步,其应用领域也获得迅速拓展。目前,脉冲功率技术的发展呈现两大趋势:一方面向单次运行、高峰值功率的方向发展。大型脉冲功率源可为负载提供很高的峰值功率,创造高功率密度、高能量密度的极端环境,推动了核爆模拟、材料物性等极端条件物理研究,此类装置通常为单次运行,如美国的ZR装置;另一方面朝着高重复频率、高平均功率的方向发展。高新装备的发展对系统核心部件脉冲功率源提出了更高的要求,即小型化、模块化、高重复频率运行和长使用寿命。工业应用也要求脉冲功率源具备较高重复频率和高平均功率,以获得工业化生产的产量要求。固态器件具有重复运行频率高、易于维护、使用寿命长等优点,是重复频率脉冲功率技术研究领域的主流方向。目前,高重复频率、高平均功率固态脉冲功率源技术研究已经成为脉冲功率技术研究领域的热点,列入美国多个重点国家科技计划。发展高重复频率、高平均功率、高能量密度的固态脉冲功率装置,开关是最关键的器件。与其它固体开关(如功率半导体开关、半导体断路开关、磁开关等)相比,光导开关具有体积小,重复频率性能好、闭合时间短(ps量级)、时间抖动小(ps量级)、开关电感低(亚纳亨)、同步精度高(ps量级)、电磁兼容性强,使光导开关在固态紧凑型脉冲功率源上有着较为广阔的应用前景。但是,目前制作的大功率GaAs光导开关寿命较低,这主要由两方面原因造成:一是GaAs光导开关导通电阻较大;二是非线性工作模式下GaAs光导开关中的电流丝现象。GaAs光导开关较大的导通电阻会导致光导开关工作状态下焦耳加热现象的发生,造成GaAs光导开关的热损伤和热击穿;电流丝也会对GaAs光导开关造成局部热损伤和热击穿,严重降低GaAs光导开关寿命。
发明内容
本发明的目的是提供一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关,并通过蒸镀增透膜和高反膜的方式增加了GaAs材料对1064 nm激光的吸收效率,降低了光导开关导通电阻。
为实现上述目的,本发明采用如下技术方案:
一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关,包括GaAs基层,所述GaAs基层的电极面的电极区域上设置有高掺杂n+-GaAs层,所述高掺杂n+-GaAs层表面设置有金属层,所述GaAs基层电极面的电极之间设置一层高反膜,所述GaAs基层背电极面设置有AlGaAs层,所述AlGaAs层与GaAs基层之间形成三角形势阱结构,所述AlGaAs表面设置一层增透膜,
所述GaAs光导开关的导通电阻小于为0.45 Ω。
一种制作量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关的方法,包括如下步骤:
步骤一:在GaAs材料的电极面通过MOCVD的方法外延生长AlGaAs层,使得AlGaAs层与GaAs层间形成量子阱结构;
步骤二:在GaAs材料的电极面通过MOCVD的方法外延生长一层高掺杂n+-GaAs层;
步骤三:通过湿法刻蚀的方法将电极区域外的高掺杂n+-GaAs层去除;
步骤四:通过电子束蒸发的方式在高掺杂n+-GaAs表面淀积一层金属层,然后通过快速热退火的方式形成欧姆接触;
步骤五:在GaAs材料电极面的非电极区域外制作一层高反膜;在AlGaAs层表面制作一层增透膜。
在上述技术方案中,所述高掺杂n+-GaAs层掺杂的浓度大于1019 cm-3。
在上述技术方案中,所述金属层从下到上依次包括Ge层、Au层、Ni层、Au层。
在上述技术方案中,由高掺杂n+-GaAs层和金属层组成的欧姆接触,欧姆接触电阻率小于10-6 Ω·cm2。
在上述技术方案中,正电极的电极区域内的欧姆接触电极间隙为10mm。
在上述技术方案中,所述AlGaAs层的厚度为100nm。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
本发明在使用波长1064 nm、能量5.4mJ、触发激光脉宽25 ns的激光脉冲触发设计制作的AlGaAs/GaAs光导开关,在脉冲电压9.8 kV时,通过计算得到光导开关的导通电阻仅为0.45 Ω。开关在工作电压9.8kV、重复频率1kHz条件下寿命大于100万次,大大提高了光导开关的使用寿命。
附图说明
本发明将通过例子并参照附图的方式说明,其中:
图1 AlGaAs/GaAs光导开关示意图;
图2 AlGaAs/GaAs光导开关测试电路图;
图3(a)、图3(b)是AlGaAs/GaAs光导开关输入电压、输出电压和负载光电流波形;
图4是AlGaAs/GaAs光导开关1kHz重频测试波形
其中:1是GaAs基层,2是增透膜,3是高反膜,4是n+-GaAs掺杂层,5是金属层,6是AlGaAs层。
具体实施方式
如图1所示,是 AlGaAs/GaAs光导开关示意图。制作光导开关的半绝缘GaAs材料电阻率大于3×108 Ω•cm,载流子浓度为3.0×1015 cm-3,迁移率为6500 cm2/VS,厚度为1mm。AlGaAs/GaAs光导开关制作过程中,首先在GaAs材料一面通过MOCVD的方法外延生长100nm厚的AlGaAs层,与GaAs层间形成量子阱结构,然后再GaAs材料另一面生长一层n+-GaAs层,掺杂浓度大于1019 cm-3,通过湿法刻蚀的方法将电极区域外的高掺杂n+-GaAs层去除,然后通过电子束蒸发的方式将Ge/Au/Ni/Au金属依次淀积到n+-GaAs层表面,电极间隙为10 mm,尺寸为10 mm×5 mm。通过快速热退火的方式形成欧姆接触,通过TLM方法测试得到欧姆接触电阻率小于10-6 Ω·cm2。最后在AlGaAs面制作增透膜,电极间制作高反膜。
如图2所示是AlGaAs/GaAs光导开关测试电路图。采用固态脉冲形成线对光导开关进行测试,图中使用的固态脉冲形成线材料为ANb2O6-NaNbO3-SiO2玻璃陶瓷,介电常数为340,固态脉冲形成线厚度为5mm,阻抗约为8.1 Ω,输出脉宽为50 ns。使用Pearson线圈测量光导开关的导通电流,线圈灵敏度为0.1 V/A;光导开关加载电压以及输出电压通过TekP6015A高压探头测量。
图3是光导开关输入电压、输出电压和负载光电流波形。图3(a)为非量子阱结构GaAs光导开关在输入电压9.5 kV时测得的光导开关加载电压、输出电压以及负载电流波形图;图3(b)为量子阱结构AlGaAs/GaAs光导开关在输入电压9.8 kV时测得的光导开关加载电压、输出电压以及负载电流波形图。从图中可以看出:量子阱结构AlGaAs/GaAs光导开关在相同的输入电压下,开关输出电压和负载电流均较大。可以由Ron=(Ui-Uo)/IPCSS简单计算得到GaAs光导开关的导通电阻Ron,其中Ui为光导开关导通时的输入电压值,Uout为光导开关输出电压值,IPCSS为光导开关上通过的最大光电流。计算可得:非量子阱结构GaAs光导开关导通电阻约为8.9 Ω;而量子阱结构AlGaAs/GaAs光导开关导通电阻仅为0.45 Ω。
图4是AlGaAs/GaAs光导开关1kHz重频部分测试波形。AlGaAs/GaAs光导开关在工作电压9.8kV、工作电流大于500A、重频1kHz条件下寿命测试波形。AlGaAs/GaAs光导开关寿命大于100万次。
本发明并不局限于前述的具体实施方式。本发明扩展到任何在本说明书中披露的新特征或任何新的组合,以及披露的任一新的方法或过程的步骤或任何新的组合。

Claims (7)

1.一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关,其特征在于包括GaAs基层,所述GaAs基层的电极面的电极区域上外延生长一层高掺杂n+-GaAs,所述高掺杂n+-GaAs层表面淀积有金属层,所述GaAs基层电极面的电极之间生长一层高反膜,所述GaAs基层背电极面外延生长一层AlGaAs,所述AlGaAs层与GaAs基层之间形成三角形势阱结构,所述AlGaAs表面生长一层增透膜,
所述GaAs光导开关的导通电阻小于为0.45 Ω。
2.一种制作如权利要求1所述的一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关的方法,其特征在于包括如下步骤:
步骤一:在GaAs材料的电极面通过MOCVD的方法外延生长AlGaAs层,使得AlGaAs层与GaAs层间形成三角形势阱结构;
步骤二:在GaAs材料的电极面通过MOCVD的方法外延生长一层高掺杂n+-GaAs层;
步骤三:通过湿法刻蚀的方法将电极区域外的高掺杂n+-GaAs层去除;
步骤四:通过电子束蒸发的方式在高掺杂n+-GaAs表面淀积一层金属层,然后通过快速热退火的方式形成欧姆接触;
步骤五:在GaAs材料电极面的非电极区域外制作一层高反膜;在AlGaAs层表面制作一层增透膜。
3.根据权利要求2所述的制作方法,其特征在于所述高掺杂n+-GaAs层掺杂的浓度大于1019 cm-3
4.根据权利要求2所述的制作方法,其特征在于所述金属层从下到上依次包括Ge层、Au层、Ni层、Au层。
5.根据权利要求3或4所述的制作方法,其特征在于由高掺杂n+-GaAs层和金属层组成的欧姆接触,欧姆接触电阻率小于10-6 Ω·cm2
6.根据权利要求5所述的制作方法,其特征在于正电极的电极区域内的欧姆接触电极间隙为10mm。
7.根据权利要求2所述的制作方法,其特征在于所述AlGaAs层的厚度为100nm。
CN201610313467.0A 2016-05-12 2016-05-12 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关及制作方法 Active CN105826422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610313467.0A CN105826422B (zh) 2016-05-12 2016-05-12 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关及制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610313467.0A CN105826422B (zh) 2016-05-12 2016-05-12 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关及制作方法

Publications (2)

Publication Number Publication Date
CN105826422A true CN105826422A (zh) 2016-08-03
CN105826422B CN105826422B (zh) 2017-04-12

Family

ID=56528775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610313467.0A Active CN105826422B (zh) 2016-05-12 2016-05-12 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关及制作方法

Country Status (1)

Country Link
CN (1) CN105826422B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148687A (ja) * 1986-12-12 1988-06-21 Nec Corp 光デバイスおよび光制御方法
US5210428A (en) * 1991-11-01 1993-05-11 At&T Bell Laboratories Semiconductor device having shallow quantum well region
CN101313412A (zh) * 2004-12-07 2008-11-26 派克米瑞斯有限责任公司 光电导器件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63148687A (ja) * 1986-12-12 1988-06-21 Nec Corp 光デバイスおよび光制御方法
US5210428A (en) * 1991-11-01 1993-05-11 At&T Bell Laboratories Semiconductor device having shallow quantum well region
CN101313412A (zh) * 2004-12-07 2008-11-26 派克米瑞斯有限责任公司 光电导器件

Also Published As

Publication number Publication date
CN105826422B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
CN105845770B (zh) 一种带有高反膜和增透膜的低导通电阻GaAs光导开关
US20150214389A1 (en) Apparatus and method for optically initiating collapse of a reverse biased p-type-n-type junction
CN109981082B (zh) 一种基于光导开关的核电磁脉冲模拟器脉冲源
Zhu et al. Improved current and jitter performances of photoconductive semiconductor switch based on reduced graphene oxide/metal electrode
CN105826422B (zh) 一种量子阱结构的大功率半绝缘AlGaAs/GaAs光导开关及制作方法
Liu et al. Avalanche Ruggedness of GaN p‐i‐n Diodes Grown on Sapphire Substrate
CN109994568A (zh) 一种堆栈结构的激光触发大功率半绝缘AlGaN/GaN开关
Faruqe et al. Electret: A method to increase critical flashover voltage in power dense applications
RU2316844C1 (ru) Способ управления автоэмиссионным током лампы и автоэмиссионная лампа для его осуществления
Piwowarski Comparison of photoconductive semiconductor switch parameters with selected switch devices in power systems
JP2006516675A (ja) 電気的接触を確立するための能動的方法及びシステム
TW201411860A (zh) 提高太陽能電池之電極導電性的方法與裝置、以及太陽能電池
Zhou et al. Time delay of a triggered vacuum switch
CN102573259A (zh) 一种抑制丝状放电的方法以及电极结构
Rabia et al. Modeling and dimensioning of a planar inductor for a monolithic integration
Jalali et al. Effects of transverse doping variations on the transient response of silicon avalanche shaper devices
CN211236498U (zh) 一种太赫兹调制器
Nunnally et al. Methods and configurations for improving photo-conductive switch performance
Stearns et al. High frequency characteristics of graphene geometric diodes
CN113380874B (zh) 一种皮秒碳化硅漂移阶跃恢复二极管
Lin et al. Experimental investigations on short-circuit capability of a new structure planar SiC MOSFETs
Wu et al. Study on cut-off characteristics of sub-nanosecond silicon carbide PiN switch
Pan et al. Modelling the Effect of Charge Transport on Surface Flashover in Vacuum
Kambour et al. Simulation of current filaments in photoconductive semiconductor switches
Wu et al. Space charge simulation of electric tree before germination in XLPE at DC voltage based on improved bipolar carrier transport model

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant