CN105823169A - 一种基于空气质量的人体舒适度指数改进系统 - Google Patents

一种基于空气质量的人体舒适度指数改进系统 Download PDF

Info

Publication number
CN105823169A
CN105823169A CN201610149490.0A CN201610149490A CN105823169A CN 105823169 A CN105823169 A CN 105823169A CN 201610149490 A CN201610149490 A CN 201610149490A CN 105823169 A CN105823169 A CN 105823169A
Authority
CN
China
Prior art keywords
air quality
lambda
index
body comfort
processing module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610149490.0A
Other languages
English (en)
Other versions
CN105823169B (zh
Inventor
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Integrated Electronic Systems Lab Co Ltd
Original Assignee
Integrated Electronic Systems Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Integrated Electronic Systems Lab Co Ltd filed Critical Integrated Electronic Systems Lab Co Ltd
Priority to CN201610149490.0A priority Critical patent/CN105823169B/zh
Publication of CN105823169A publication Critical patent/CN105823169A/zh
Application granted granted Critical
Publication of CN105823169B publication Critical patent/CN105823169B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Abstract

一种基于空气质量的人体舒适度指数改进系统,包括温度处理模块、湿度处理模块、风速处理模块以及空气质量处理模块,其中所述的空气质量处理模块通过空气质量影响函数,引入空气质量指数对人体舒适度指数进行改进,在空气质量对人体舒适度的影响和表述方面具有重要现实意义,可有效指导人的部分行为、户外活动或其他行为习惯。

Description

一种基于空气质量的人体舒适度指数改进系统
技术领域
本发明涉及气象预报和负荷预测领域,具体涉及一种基于空气质量的人体舒适度指数改进系统。
背景技术
人体舒适度是指人体对外界环境的感知反应程度,具体包括对温度冷暖的反应、空气湿度及降水的反应、风力大小的反应、空气质量及污染程度的反应等,例如,当气温35℃,空气相对湿度在40%~50%,平均风速在3m/s以上,人体就不会感到很热;但同样的温度下,若湿度增大到70%以上,风速较小时,人体就会产生闷热难熬的感觉,甚至有中暑现象。同理,低温环境下,不同的湿度和风速也会给人体不同的寒冷感受。人体舒适度指数是一种度量人体舒适度的方法。
目前人体舒适度指数考虑了温度、湿度、风速对人体舒适度的影响,可对一定时间内的空调制冷及制热负荷产生影响。但是随着我国工业发展进程加速,环境压力显著增大,空气质量逐步恶化,雾霾天气频发,特别是秋冬季节,雾霾几乎席卷大半个中国。导致人们的户外活动明显减少,相同时间内的居民用电负荷显著增加。
发明内容
本发明的目的在于解决气象预报中对人体舒适度指数的准确表述及有效指导人们的户外活动和负荷预测问题,结合空气质量指数和人体舒适度指数的特点,给出一种基于空气质量的人体舒适度指数改进系统。
为解决上述问题,本发明的设计方案为:一种基于空气质量的人体舒适度指数改进系统,包括温度处理模块、湿度处理模块、风速处理模块以及空气质量处理模块,其中所述的空气质量处理模块通过空气质量影响函数,引入空气质量指数对人体舒适度指数进行改进,所述的人体舒适度指数改进如下:
D=f(Ta)+g(U)+h(V)+h(A)
其中,D为人体舒适度指数,Ta为日平均温度(℃),U为日平均相对湿度(%),V为平均风速(m/s),A为空气质量指数,h(A)为空气质量指数影响函数;
所述的空气质量影响函数包括三种:线性函数、幂函数、三角函数,空气质量处理模块可利用模式切换功能实现对三者的自由切换。
运用线性函数和幂函数、三角函数这两种非线性函数作为空气质量影响函数对人体舒适度指数进行了改进,以表述空气质量对人体舒适度的线性和非线性影响。
人体舒适度指数的变化规律一定程度上反映人的活动行为习惯,在一定程度上也能反映用电负荷变化情况及经济热度变化情况,对于雾霾发生不频繁的南方地区可以选择空气质量影响函数为三角函数,其变化幅度较小;对于雾霾发生较为频繁的北方地区可以选择空气质量影响函数为幂函数,其变化幅度较大;对于雾霾发生介于两者之间的地区可以选择空气质量影响函数为线性函数。
根据分析可以发现在气温和湿度较高的夏、春季节,人体舒适度指数越高越不舒适,空气质量指数对人体舒适度指数的影响应该是上升的。在气温较低和风力较大的秋、冬、初春季节,人体舒适度指数越低越不舒适,空气质量指数对人体舒适度指数的影响应该是下降的,其空气质量指数影响函数运用线性函数进行表述。
优选的,所述的线性函数公式如下:
h ( A ) = &lambda;&alpha; 1 D 2 - D 1 50 A 0 &le; A &le; 50 &lambda;&alpha; 2 D 3 - D 2 50 ( A - 50 ) 51 &le; A &le; 100 &lambda;&alpha; 3 D 4 - D 3 50 ( A - 100 ) 101 &le; A &le; 150 &lambda;&alpha; 4 D 5 - D 4 50 ( A - 150 ) 151 &le; A &le; 200 &lambda;&alpha; 5 D 6 - D 5 100 ( A - 200 ) 201 &le; A &le; 300 &lambda;&alpha; 6 D 7 - D 6 700 ( A - 300 ) A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,α1~α6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数,D1~D7分别为人体舒适度指数在不同等级的边界值,其具体取值需根据实际情况而定。实际使用中,该系统根据检测的空气质量指数和当前时刻温度确定选用的计算公式及空气质量函数符号因子,再根据预先确定的空气质量指数影响权重以及人体舒适度指数在不同等级的边界值计算出空气质量对人体舒适度指数的影响。
优选的,所述的幂函数,公式如下;
h ( A ) = &lambda;&beta; 1 e A 50 0 &le; A &le; 50 &lambda;&beta; 2 e A - 51 49 51 &le; A &le; 100 &lambda;&beta; 3 e A - 101 49 101 &le; A &le; 150 &lambda;&beta; 4 e A - 151 49 151 &le; A &le; 200 &lambda;&beta; 5 e A - 101 99 201 &le; A &le; 300 &lambda;&beta; 6 e A - 301 699 A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,β1~β6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。
优选的,所述的三角函数,公式如下;
其中,λ为空气质量函数符号因子,为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。
有益效果:本发明建立一种基于空气质量的人体舒适度指数改进系统,该系统在空气质量对人体舒适度的影响和表述方面具有重要现实意义,更好的进行负荷预测,可有效指导人的部分行为、户外活动或其他行为习惯。
具体实施方式
一种基于空气质量的人体舒适度指数改进系统,包括温度处理模块、湿度处理模块、风速处理模块以及空气质量处理模块,其中所述的空气质量处理模块通过空气质量影响函数,引入空气质量指数对人体舒适度指数进行改进,所述的人体舒适度指数改进如下:
D=f(Ta)+g(U)+h(V)+h(A)
其中,D为人体舒适度指数,Ta为日平均温度(℃),U为日平均相对湿度(%),V为平均风速(m/s),A为空气质量指数,h(A)为空气质量指数影响函数;
所述的空气质量影响函数包括三种:线性函数、幂函数、三角函数,空气质量处理模块可利用模式切换功能实现对三者的自由切换。
所述的线性函数公式如下:
h ( A ) = &lambda;&alpha; 1 D 2 - D 1 50 A 0 &le; A &le; 50 &lambda;&alpha; 2 D 3 - D 2 50 ( A - 50 ) 51 &le; A &le; 100 &lambda;&alpha; 3 D 4 - D 3 50 ( A - 100 ) 101 &le; A &le; 150 &lambda;&alpha; 4 D 5 - D 4 50 ( A - 150 ) 151 &le; A &le; 200 &lambda;&alpha; 5 D 6 - D 5 100 ( A - 200 ) 201 &le; A &le; 300 &lambda;&alpha; 6 D 7 - D 6 700 ( A - 300 ) A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,α1~α6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数,D1~D7分别为人体舒适度指数在不同等级的边界值,其具体取值需根据实际情况而定。
所述的幂函数,公式如下:
h ( A ) = &lambda;&beta; 1 e A 50 0 &le; A &le; 50 &lambda;&beta; 2 e A - 51 49 51 &le; A &le; 100 &lambda;&beta; 3 e A - 101 49 101 &le; A &le; 150 &lambda;&beta; 4 e A - 151 49 151 &le; A &le; 200 &lambda;&beta; 5 e A - 101 99 201 &le; A &le; 300 &lambda;&beta; 6 e A - 301 699 A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,β1~β6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。
所述的三角函数,公式如下:
其中,λ为空气质量函数符号因子,为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。

Claims (4)

1.一种基于空气质量的人体舒适度指数改进系统,其特征在于:包括温度处理模块、湿度处理模块、风速处理模块以及空气质量处理模块,其中所述的空气质量处理模块通过空气质量影响函数,引入空气质量指数对人体舒适度指数进行改进,所述的人体舒适度指数改进如下:
D=f(Ta)+g(U)+h(V)+h(A)
其中,D为人体舒适度指数,Ta为日平均温度(℃),U为日平均相对湿度(%),V为平均风速(m/s),A为空气质量指数,h(A)为空气质量指数影响函数;
所述的空气质量影响函数包括三种:线性函数、幂函数、三角函数,空气质量处理模块可利用模式切换功能实现对三者的自由切换。
2.根据权利要求1所述的基于空气质量的人体舒适度指数改进系统,其特征在于:所述的线性函数如下:
h ( A ) = &lambda;&alpha; 1 D 2 - D 1 50 A 0 &le; A &le; 50 &lambda;&alpha; 2 D 3 - D 2 50 ( A - 50 ) 51 &le; A &le; 100 &lambda;&alpha; 3 D 4 - D 3 50 ( A - 100 ) 101 &le; A &le; 150 &lambda;&alpha; 4 D 5 - D 4 50 ( A - 150 ) 151 &le; A &le; 200 &lambda;&alpha; 5 D 6 - D 5 100 ( A - 200 ) 201 &le; A &le; 300 &lambda;&alpha; 6 D 7 - D 6 700 ( A - 300 ) A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,α1~α6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数,D1~D7分别为人体舒适度指数在不同等级的边界值,其具体取值需根据实际情况而定。
3.根据权利要求1中所述的基于空气质量的人体舒适度指数改进系统,其特征在于:所述的幂函数,如下:
h ( A ) = &lambda;&beta; 1 e A 50 0 &le; A &le; 50 &lambda;&beta; 2 e A - 51 49 51 &le; A &le; 100 &lambda; &beta; 3 e A - 101 49 101 &le; A &le; 150 &lambda;&beta; 4 e A - 151 49 151 &le; A &le; 200 &lambda;&beta; 5 e A - 101 99 201 &le; A &le; 300 &lambda; &beta; 6 e A - 301 699 A > 300 &lambda; = 1 T &GreaterEqual; T N - 1 T < T N
其中,λ为空气质量函数符号因子,β1~β6为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。
4.根据权利要求1中所述的基于空气质量的人体舒适度指数改进系统,其特征在于:所述的三角函数,如下:
其中,λ为空气质量函数符号因子,为空气质量指数影响权重,T为当前时刻温度(℃),TN为基准温度(℃),A为空气质量指数。
CN201610149490.0A 2016-03-16 2016-03-16 一种基于空气质量的人体舒适度指数改进系统 Active CN105823169B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610149490.0A CN105823169B (zh) 2016-03-16 2016-03-16 一种基于空气质量的人体舒适度指数改进系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610149490.0A CN105823169B (zh) 2016-03-16 2016-03-16 一种基于空气质量的人体舒适度指数改进系统

Publications (2)

Publication Number Publication Date
CN105823169A true CN105823169A (zh) 2016-08-03
CN105823169B CN105823169B (zh) 2018-09-18

Family

ID=56987895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610149490.0A Active CN105823169B (zh) 2016-03-16 2016-03-16 一种基于空气质量的人体舒适度指数改进系统

Country Status (1)

Country Link
CN (1) CN105823169B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256341A (zh) * 2017-05-12 2017-10-17 四川省绵阳太古软件有限公司 一种生态环境健康质量评估方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603702A (zh) * 2008-06-13 2009-12-16 Tcl集团股份有限公司 一种自动调节空气质量的空调器及其调节方法
US20150032264A1 (en) * 2013-07-26 2015-01-29 Honeywell International Inc. Air quality based ventilation control for hvac systems
CN105222272A (zh) * 2015-09-17 2016-01-06 广东美的制冷设备有限公司 一种舒适性控制方法、控制器及空调系统
CN105371432A (zh) * 2015-11-20 2016-03-02 Tcl空调器(中山)有限公司 空调器及空调器的控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101603702A (zh) * 2008-06-13 2009-12-16 Tcl集团股份有限公司 一种自动调节空气质量的空调器及其调节方法
US20150032264A1 (en) * 2013-07-26 2015-01-29 Honeywell International Inc. Air quality based ventilation control for hvac systems
CN105222272A (zh) * 2015-09-17 2016-01-06 广东美的制冷设备有限公司 一种舒适性控制方法、控制器及空调系统
CN105371432A (zh) * 2015-11-20 2016-03-02 Tcl空调器(中山)有限公司 空调器及空调器的控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张方方: "《室内环境多信息融合算法的研究》", 《中国优秀硕士论文全文数据库信息科技辑 第201105期》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256341A (zh) * 2017-05-12 2017-10-17 四川省绵阳太古软件有限公司 一种生态环境健康质量评估方法
CN107256341B (zh) * 2017-05-12 2020-10-09 四川省绵阳太古软件有限公司 一种生态环境健康质量评估方法

Also Published As

Publication number Publication date
CN105823169B (zh) 2018-09-18

Similar Documents

Publication Publication Date Title
Li et al. Interaction between urban microclimate and electric air-conditioning energy consumption during high temperature season
CN105825294A (zh) 基于气象因素的电网电力负荷预测方法及系统
CN101763084A (zh) 农药生产废液焚烧炉化学耗氧量排放最小化系统及方法
Li et al. Response of energy consumption for building heating to climatic change and variability in Tianjin City, China
Fan et al. Impact of climatic factors on monthly electricity consumption of China’s sectors
CN105823169A (zh) 一种基于空气质量的人体舒适度指数改进系统
Rose Impact of urbanization on the thermal comfort conditions in the hot humid city of Chennai, India
Zhang et al. Economic value of freshwater provisioning services of the cryosphere in the Urumqi River, Northwest China
Ayata et al. An investigation for predicting the effect of green roof utilization on temperature decreasing over the roof surface with Gene Expression Programming
Sailor et al. 7.1 The potential of urban heat island mitigation to alleviate heat-related mortality: Methodological overview and preliminary modeling results FOR PHILADELPHIA
Kim et al. Impact of climate change on Yongdam Dam basin
Zhang et al. Simulation and optimization analysis of summer indoor thermal environment for school buildings in hot summer and cold winter zone
CN205079333U (zh) 电控门开关
Výleta et al. An HBV-model based approach for studying the effects of projected climate change on water resources in Slovakia
Liua et al. Simulation of crop water relations on large scales with high spatial resolutions
LIU et al. NUMERICAL SIMULATION OF THE INFLUENCE OFO 3, CO 2 AND SPECTRUM VARIATION ON THE PHOTOSYNTHESIS OF CROP CANOPY*
Chen et al. Hourly air temperature mapping in Guangdong province utilizing machine learning
Ling et al. Evaluation of Environmental Efficiency of Runoff Responsibility Distribution from the Perspective of Equity and Efficiency
Najibi et al. A Bayesian quantile regression framework for scaling precipitation with temperature and weather regimes in the Northeast US
Teng et al. Are Long short-term memory (LSTM) model simulations of watershed discharge improved when water storage is included as input? The Case Study at Rum River Watershed, MN
Mu et al. Attribution of Diurnal Temperature Range Trends to Radiative and Physiological Effects of Rising Atmospheric Carbon Dioxide
Jahan et al. Improving Wind Gust Prediction with the Combination of WRF and Machine Learning Algorithms
Fluteau et al. Modelling the climatic consequences of the Messinian Salinity Crisis
Parolari et al. Attributing Asymmetric Productivity Responses to Internal Ecosystem Dynamics and External Drivers Using Probabilistic Models
Liu et al. Predictions on water sources and environment carrying ability in Hanjiang River after the implementation of south to north water diversion project- Possibilities of algal blooming occurrence in backwater area in Xinglong hinge and Xiangfan reach of the Hanjiang River

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant