CN105820371B - 一种反应性气氛制备纳米多孔材料的方法 - Google Patents

一种反应性气氛制备纳米多孔材料的方法 Download PDF

Info

Publication number
CN105820371B
CN105820371B CN201610388071.2A CN201610388071A CN105820371B CN 105820371 B CN105820371 B CN 105820371B CN 201610388071 A CN201610388071 A CN 201610388071A CN 105820371 B CN105820371 B CN 105820371B
Authority
CN
China
Prior art keywords
nano
porous materials
solvent
glass
reaction unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610388071.2A
Other languages
English (en)
Other versions
CN105820371A (zh
Inventor
李磊
罗天婵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201610388071.2A priority Critical patent/CN105820371B/zh
Publication of CN105820371A publication Critical patent/CN105820371A/zh
Application granted granted Critical
Publication of CN105820371B publication Critical patent/CN105820371B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0502Elimination by evaporation or heat degradation of a liquid phase the liquid phase being organic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/05Elimination by evaporation or heat degradation of a liquid phase
    • C08J2201/0504Elimination by evaporation or heat degradation of a liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/08Copolymers of styrene
    • C08J2325/14Copolymers of styrene with unsaturated esters

Abstract

一种反应性气氛制备纳米多孔材料的方法,涉及纳米多孔材料。包括以下步骤:1)在反应装置中加入溶剂,静置,使反应装置内充满溶剂蒸汽;2)将溶质溶解在有机溶剂中,配成溶液;3)将玻璃片放置在步骤1)充满溶剂蒸汽的反应装置内,将步骤2)配成的溶液滴在玻璃片上;4)密闭反应装置后静置,待溶剂完全挥发后,取出玻璃片,即可在玻璃片表面得到纳米多孔材料。制备方法简单、反应速度快、重复性好、价格低廉,拓展了静态呼吸图的应用范围,为呼吸图的形成机理提供了直观有力的证据。

Description

一种反应性气氛制备纳米多孔材料的方法
技术领域
本发明涉及纳米多孔材料,尤其是涉及一种反应性气氛制备纳米多孔材料的方法。
背景技术
呼吸图法是自组装方法中最为简单有效的一种制备大面积二维有序多孔结构的手段。呼吸图法由水气凝结在基板上,形成雾状水滴而得名。这种现象早在1911年Rayleig就进行了研究(Rayleigh,L.,Breath figures.Nature 1911,86(2169),416-417.)。1994年,等(Widawski,G.;Rawiso,M.;B.,Self-organized honeycombmorphology of star-polymer polystyrene films.Nature 1994,369,387-389.)基于这种方法得到了有序多孔聚合物膜。相比传统的二维有序多孔结构的制备方法(光刻蚀、纳米压印、模板法等),呼吸图法具有操作简单、价格低廉、可重复性好等优势,近年来受到了广泛的关注。
传统的呼吸图法是把聚合物溶解于和水不相溶的低沸点有机溶剂中(常用的多为氯仿或者二硫化碳),然后在潮湿气流创造的高湿度环境下,滴在基板上。溶液中的溶剂快速挥发,溶液表面的温度随之降低,使高湿度环境中的水蒸气在聚合物溶液表面凝结成微小的球状液滴。液滴在表面对流和热毛细管力的作用下,通过自组装形成有序排列而分散在聚合物溶液中。由于水的表面张力作用,随着溶剂的挥发,聚合物会吸附并沉淀在水/有机溶剂界面处,把水滴的有序排列结构复制并固定下来,同时又防止了水滴的凝聚。最后,当溶剂和水完全挥发后,蜂窝状有序排列的孔就会留在聚合物膜上,这样的具有规整的蜂窝状孔的聚合物膜叫做呼吸图阵列。星型、嵌段和接枝共聚物以及具有刚性链段的共轭高分子都可以用呼吸图法来制备蜂窝状多孔膜,其孔径尺寸可介于几百纳米到几百微米之间。传统呼吸图法制备的聚合物多孔膜的孔径尺寸往往在几百纳米以上,制备一百纳米以下的多孔材料相对比较困难,操作复杂,重复性差,因此使得呼吸图法制备的多孔材料在应用上具有较大的局限性。
发明内容
本发明的目的在于针对现有呼吸图法制备的聚合物多孔膜在尺寸及形貌上的局限性,提供一种反应性气氛制备纳米多孔材料的方法。
本发明包括以下步骤:
1)在反应装置中加入溶剂,静置,使反应装置内充满溶剂蒸汽;
2)将溶质溶解在有机溶剂中,配成溶液;
3)将玻璃片放置在步骤1)充满溶剂蒸汽的反应装置内,将步骤2)配成的溶液滴在玻璃片上;
4)密闭反应装置后静置,待溶剂完全挥发后,取出玻璃片,即可在玻璃片表面得到纳米多孔材料。
在步骤1)中,所述反应装置可采用干燥带盖的玻璃瓶;所述溶剂可采用质量浓度为98%的甲酸、纯吡啶、去离子水等中的一种;所述静置时反应装置最好密封;所述静置的时间可为1h;所述蒸汽的饱和度可为95%。
在步骤2)中,所述溶质可选自聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP)、聚(苯乙烯-甲基丙烯酸甲酯)(PSPAA)、四氯化硅(SiCl4)、四氯化钛(TiCl4)等中的一种;所述有机溶剂可为二硫化碳(CS2);所述溶液的质量浓度可为1%~5%。
在步骤3)中,所述将步骤2)配成的溶液滴在玻璃片上可采用传统的静态呼吸图的方法将溶液滴在玻璃片上。
在步骤4)中,所述静置的时间可为5~10min;所述纳米多孔材包括纳米多孔薄膜和纳米空心球等;所述纳米多孔薄膜的平均孔径为60nm,孔间距为90nm,纳米多孔薄膜具有很好的减反射效果,反射率可达0.5%;所述纳米空心球的平均粒径为80nm,孔间距约110nm,开口大小为20nm。
在本发明中,当溶剂采用98%的甲酸时,溶质采用聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP),有机溶剂采用二硫化碳(CS2);
当溶剂采用纯吡啶时,溶质采用聚(苯乙烯-甲基丙烯酸甲酯)(PSPAA),有机溶剂采用二硫化碳(CS2);
当溶剂采用去离子水时,溶质采用四氯化硅(SiCl4)或四氯化钛(TiCl4),有机溶剂采用二硫化碳(CS2)。
本发明通过静态呼吸图法,以水或有机溶剂作为反应气氛,利用聚合物溶质与气氛间的共价键或者化合物的水解作用制备纳米多孔材料。制备得到的聚合物多孔薄膜具有很好的减反射效果,反射率可达0.5%,并且该方法为呼吸图机理的研究提供了有力的直接证据。
本发明成功地制备了纳米多孔薄膜和纳米空心球两种不同结构,同时所制备的纳米多孔材料在呼吸图机理证明和减反射等方面得到了应用。
本发明的技术方案采用的是非破坏性的方法,利用溶质和气氛的化学反应,使其在短时间内快速反应并固定,以此形成了一种纳米尺度的材料(包括纳米多孔膜和纳米空心球)。
将溶液滴到反应性气氛的反应装置中,通过共价键键合或化合物水解作用等化学反应,待溶剂完全挥发后即可得到纳米多孔材料。
所述纳米多孔薄膜的平均孔径为60nm,孔间距为90nm,纳米多孔薄膜具有很好的减反射效果,反射率可达0.5%;所述纳米空心球的平均粒径为80nm,孔间距约110nm,开口大小为20nm,该空心球的成功制备进一步验证了反应性气氛制备纳米多孔材料机理的正确性和普适性,为传统呼吸图的机理探究提供了直观有力的证据。
本发明所述的纳米多孔材料具有制备方法简单、反应速度快、重复性好、价格低廉等优点,相比于制备纳米材料的传统方法(光刻蚀、纳米压印、模板法等),具有明显的优势,同时突破了传统呼吸图在孔径尺寸上的局限,拓展了静态呼吸图的应用范围,为呼吸图的形成机理提供了直观有力的证据。
附图说明
图1为本发明实施例1的聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP)所形成的纳米孔的扫描电镜照片(SEM)。
图2为本发明实施例1的聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP)所形成的纳米孔的原子力显微镜照片(AFM)。
图3为本发明实施例6的纳米空心球的扫描电镜照片。
图4为本发明实施例6的纳米空心球的原子力显微镜照片。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1
(1)在干燥带盖的玻璃瓶(以下简称“反应装置”)中滴加98%的甲酸5mL,盖严盖子,静置1h,使其内部充满甲酸蒸汽,蒸汽饱和度约为95%;
(2)将PSP2VP溶解在二硫化碳(CS2)中,配成浓度为1wt%的溶液;
(3)将玻璃片放置在充满甲酸蒸汽的反应装置内,并用滴管滴10μL溶液滴在玻璃片上;
(4)密闭反应装置,并静置5min,待聚合物溶剂完全挥发后,取出玻璃片,即可在玻璃片表面得到纳米多孔材料,该材料为聚合物多孔薄膜,孔径大小为60nm,孔间距为90nm,具有减反射效果,反射率最低为0.5%。
实施例1的聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP)所形成的纳米孔的扫描电镜照片(SEM)参见图1,实施例1的聚(苯乙烯-2-乙烯基吡啶)(PS-P2VP)所形成的纳米孔的原子力显微镜照片(AFM)参见图2。
实施例2
步骤同实施例1,改变步骤(2)的溶液浓度为2wt%,3wt%,4wt%,5wt%,在其他条件不变的情况下,均可得到纳米多孔材料,材料的孔径大小和孔间距与实施例1得到的纳米多孔材料基本相同,反射率随溶液浓度升高而增大,依次为0.7%,1%,1.4%和2%。
实施例3
步骤同实施例1,改变步骤(4)的静置时间为10min,其他条件不变的情况下,均可得到纳米多孔材料,材料孔径和孔间距与实施例1相比有明显增大,孔径为95nm,孔间距为130nm,反射率与实施例1几乎相同。
实施例4
(1)在干燥带盖玻璃瓶(以下简称“反应装置”)中滴加纯吡啶5mL,盖严盖子,静置1h,使其内部充满吡啶蒸汽,蒸汽饱和度约为95%;
(2)将PSPAA溶解在二硫化碳(CS2)中,配成浓度为1wt%的溶液;
(3)将玻璃片放置在充满吡啶蒸汽的反应装置内,并用滴管滴10μL溶液滴在玻璃片上;
(4)密闭反应装置,并静置5min,待聚合物溶剂完全挥发后,取出玻璃片,即可在玻璃片表面得到纳米多孔材料,该材料为聚合物多孔薄膜,孔径大小为60nm,孔间距为90nm。
实施例5
步骤同实施例4,改变步骤(2)的溶液浓度为2wt%,3wt%,4wt%,5wt%,在其他条件不变的情况下,均可得到纳米多孔材料,材料的孔径大小和孔间距基本没有变化。
实施例6
(1)在干燥带盖玻璃瓶(以下简称“反应装置”)中滴加去离子水5mL,盖严盖子,静置1h,使其内部充满水蒸汽,蒸汽饱和度约为95%;
(2)将SiCl4溶解在二硫化碳(CS2)中,配成浓度为1wt%的溶液;
(3)将玻璃片放置在充满水蒸汽的反应装置内,并用滴管滴10μL溶液滴在玻璃片上;
(4)密闭反应装置,并静置5min,待聚合物溶剂完全挥发后,取出玻璃片,即可在玻璃片表面得到纳米多孔材料,该材料为纳米空心球,粒径大小为80nm,孔间距约110nm,开口大小为20nm。
实施例6的纳米空心球的扫描电镜照片参见图3,实施例6的纳米空心球的原子力显微镜照片参见图4。
实施例7
步骤同实施例6,改变步骤(2)的溶质为TiCl4,在其他条件不变的情况下,也可得到纳米多孔材料,该材料为纳米空心球,孔径大小、孔间距和开口大小与实施例6基本相同。

Claims (6)

1.一种反应性气氛制备纳米多孔材料的方法,其特征在于包括以下步骤:
1)在反应装置中加入溶剂,静置,使反应装置内充满溶剂蒸汽;所述溶剂采用质量浓度为98%的甲酸、纯吡啶、去离子水中的一种;
当溶剂采用98%的甲酸时,溶质采用聚(苯乙烯-2-乙烯基吡啶),有机溶剂采用二硫化碳;
当溶剂采用纯吡啶时,溶质采用聚(苯乙烯-甲基丙烯酸甲酯),有机溶剂采用二硫化碳;
当溶剂采用去离子水时,溶质采用四氯化硅或四氯化钛,有机溶剂采用二硫化碳;
2)将溶质溶解在有机溶剂中,配成溶液;
3)将玻璃片放置在步骤1)充满溶剂蒸汽的反应装置内,将步骤2)配成的溶液滴在玻璃片上;
4)密闭反应装置后静置,待溶剂完全挥发后,取出玻璃片,即在玻璃片表面得到纳米多孔材料。
2.如权利要求1所述一种反应性气氛制备纳米多孔材料的方法,其特征在于在步骤1)中,所述反应装置采用干燥带盖的玻璃瓶。
3.如权利要求1所述一种反应性气氛制备纳米多孔材料的方法,其特征在于在步骤1)中,所述静置时反应装置密封;所述静置的时间为1h;所述蒸汽的饱和度为95%。
4.如权利要求1所述一种反应性气氛制备纳米多孔材料的方法,其特征在于在步骤2)中,所述溶液的质量浓度为1%~5%。
5.如权利要求1所述一种反应性气氛制备纳米多孔材料的方法,其特征在于在步骤3)中,所述将步骤2)配成的溶液滴在玻璃片上采用传统的静态呼吸图的方法将溶液滴在玻璃片上。
6.如权利要求1所述一种反应性气氛制备纳米多孔材料的方法,其特征在于在步骤4)中,所述静置的时间为5~10min;所述纳米多孔材料包括纳米多孔薄膜和纳米空心球;所述纳米多孔薄膜的平均孔径为60nm,孔间距为90nm;所述纳米空心球的平均粒径为80nm,孔间距为110nm,开口大小为20nm。
CN201610388071.2A 2016-06-02 2016-06-02 一种反应性气氛制备纳米多孔材料的方法 Active CN105820371B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610388071.2A CN105820371B (zh) 2016-06-02 2016-06-02 一种反应性气氛制备纳米多孔材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610388071.2A CN105820371B (zh) 2016-06-02 2016-06-02 一种反应性气氛制备纳米多孔材料的方法

Publications (2)

Publication Number Publication Date
CN105820371A CN105820371A (zh) 2016-08-03
CN105820371B true CN105820371B (zh) 2018-09-04

Family

ID=56531914

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610388071.2A Active CN105820371B (zh) 2016-06-02 2016-06-02 一种反应性气氛制备纳米多孔材料的方法

Country Status (1)

Country Link
CN (1) CN105820371B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110010762B (zh) * 2019-04-16 2021-09-24 南京工业大学 一种非易失性双模阻变存储器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937017A (zh) * 2014-04-17 2014-07-23 浙江大学 一种纳米孔蜂窝状膜的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191152A (ja) * 2008-02-14 2009-08-27 Univ Of Tokyo 樹状π共役系高分子からなるハニカム構造体、及びその製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103937017A (zh) * 2014-04-17 2014-07-23 浙江大学 一种纳米孔蜂窝状膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Multi-length scale porous polymer films from hypercrosslinked breath figure arrays;Lei Ding, et al.;《Journal of Colloid and Interface Science》;20150911;第461卷;第179-184页 *
基于静态呼吸图技术的图案化方法;李磊等;《物理化学学报》;20100430;第26卷(第4期);第1135-1142页 *

Also Published As

Publication number Publication date
CN105820371A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
Li et al. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse
Du et al. Facile fabrication of raspberry-like composite nanoparticles and their application as building blocks for constructing superhydrophilic coatings
Wang et al. Reversible superhydrophobic coatings on lifeless and biotic surfaces via dry-painting of aerogel microparticles
JP5792823B2 (ja) 超疎水性表面を有するpvdf膜
US11402547B2 (en) Methods of forming particulate films and films and devices made therefrom
Bui et al. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern
Artus et al. Directed In Situ Shaping of Complex Nano‐and Microstructures during Chemical Synthesis
Nandiyanto et al. Highly ordered porous monolayer generation by dual-speed spin-coating with colloidal templates
Xia et al. Biomimetic hygroscopic fibrous membrane with hierarchically porous structure for rapid atmospheric water harvesting
CN105820371B (zh) 一种反应性气氛制备纳米多孔材料的方法
WO2012036634A1 (en) Process for altering the wetting properties of a substrate surface
CN103937017A (zh) 一种纳米孔蜂窝状膜的制备方法
Bazilevsky et al. Selective intercalation of polymers in carbon nanotubes
Shi et al. Unidirectional moisture delivery via a janus photothermal interface for indoor dehumidification: A smart roof
Gugliuzza et al. Water droplets as template for next-generation self-assembled poly-(etheretherketone) with cardo membranes
Boley et al. Hybrid self-assembly during evaporation enables drop-on-demand thin film devices
CN103113613A (zh) 一种自支撑贯通型聚电解质有序多孔膜的制备方法
Ogihara et al. Spraying carbon nanotube dispersions to prepare superhydrophobic films
Lee et al. Hierarchical polymer structures using templates and the modified breath figure method
Luo et al. Breath figure in reactive vapor: A new route to nanopore array
Paul et al. Hierarchical surface coatings of polystyrene nanofibers and silica microparticles with rose petal wetting properties
Liu et al. Effects of graft architecture on cellulose-based ordered porous film prepared by breath figures
El‐Maghraby et al. Bioinspired asymmetric surface property of functionalized mesh to maximize the efficiency of fog harvesting
CN1676204A (zh) 三维有序微米孔聚合物膜及其制备方法
Kokonou et al. Polymeric nanowires and nanopillars fabricated by template wetting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant