CN105819570B - 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法 - Google Patents

一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法 Download PDF

Info

Publication number
CN105819570B
CN105819570B CN201610192607.3A CN201610192607A CN105819570B CN 105819570 B CN105819570 B CN 105819570B CN 201610192607 A CN201610192607 A CN 201610192607A CN 105819570 B CN105819570 B CN 105819570B
Authority
CN
China
Prior art keywords
fluoride
sludge
ammonium oxidation
anaerobic ammonium
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610192607.3A
Other languages
English (en)
Other versions
CN105819570A (zh
Inventor
金仁村
徐佳佳
姬玉欣
张正哲
陈倩倩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Normal University
Original Assignee
Hangzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Normal University filed Critical Hangzhou Normal University
Priority to CN201610192607.3A priority Critical patent/CN105819570B/zh
Publication of CN105819570A publication Critical patent/CN105819570A/zh
Application granted granted Critical
Publication of CN105819570B publication Critical patent/CN105819570B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • C02F3/307Nitrification and denitrification treatment characterised by direct conversion of nitrite to molecular nitrogen, e.g. by using the Anammox process
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria

Abstract

本发明公开了一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法,所述方法为:采用上流式厌氧污泥床反应器,以厌氧氨氧化颗粒污泥为接种源,以含有氨氮和亚硝氮的模拟废水为进水,在厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h的条件下运行稳定后,通过分阶段递增的方式向反应器进水中加入氟化物,所述氟化物递增幅度为50mg·L‑1,当氮去除率达到2~6kg·m‑3·d‑1时,获得耐受氟化物厌氧氨氧化颗粒污泥;本发明培养出来的厌氧氨氧化颗粒污泥在模拟废水中添加F为400mg·L‑1时,可以快速培养出粒径大、沉降性能高和污泥活性高的颗粒污泥,从而有效地提高反应器负荷。

Description

一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法
(一)技术领域
本发明涉及一种厌氧氨氧化颗粒污泥的培养方法,特别涉及一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法。
(二)背景技术
厌氧氨氧化作为一种新型高效生物脱氮工艺,以高效低耗的优势给目前污水处理界面临的低碳比废水脱氮难、能耗高、污泥产量大等问题带来了曙光。
目前,厌氧氨氧化生物脱氮工艺已经成功应用于处理多种废水。其中,氟化物普遍存在于各种工业废水中,如:有色冶金、钢铁和铝加工、化肥和农药厂等。厌氧氨氧化系统中,当存在氟化物且浓度超过特定值时,可能影响生物活性和工艺性能。因此,在厌氧氨氧化工艺处理这些废水时,需考虑到氟化物对厌氧氨氧化污泥的综合作用,尤其是长期作用,且培养耐受氟化物的厌氧氨氧化污泥十分有必要。本发明经过逐步提高氟化物浓度的驯化期,能够使厌氧氨氧化颗粒污泥具备耐受氟化物的能力,且活性高。
(三)发明内容
本发明目的是为获得耐受氟化物厌氧氨氧化颗粒污泥,经过逐步提高氟化物浓度的驯化期,能够使厌氧氨氧化颗粒污泥具备耐受氟化物的能力。
本发明采用的技术方案是:
本发明提供一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法,所述方法为:采用上流式厌氧污泥床反应器,以厌氧氨氧化颗粒污泥为接种源,以含有氨氮和亚硝氮的模拟废水为进水,在厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h的条件下运行稳定后,通过分阶段递增的方式向反应器进水中加入氟化物,所述氟化物递增幅度为50mg·L-1,当氮去除率达到4.13±1.54kg·m-3·d-1时,获得耐受氟化物厌氧氨氧化颗粒污泥;
所述模拟废水组成为:氨氮140~280mg·L-1,亚硝氮140~280mg·L-1,KH2PO410mg·L-1,CaCl2·2H2O 5.6mg·L-1,MgSO4·7H2O 300mg·L-1,KHCO3 1250mg·L-1和微量元素Ⅰ、Ⅱ,溶剂为水;
微量元素Ⅰ组成:EDTA 5g·L-1,FeSO4·7H2O 9.14g·L-1
微量元素Ⅱ组成:EDTA 15g·L-1,ZnSO4·7H2O 0.43g·L-1,CoCl2·6H2O0.24g·L-1,MnCl2·4H2O 0.99g·L-1,CuSO4·5H2O 0.25g·L-1,NaMoO4·2H2O0.22g·L-1,NiCl2·6H2O 0.21g·L-1,H3BO4 0.014g·L-1
进一步,所述进水中氨氮和亚硝氮的物质的量之比为1:1。
进一步,所述氟化物为NaF,所述氟化物添加总量为10~400mg·L-1
进一步,所述氟化物添加方法为:当反应器运行稳定后,污泥活性维持在接种时污泥活性(即0.211g TN·g-1VSS·d-1左右)时,向反应器中逐步递增添加终浓度10~250mg·L-1的氟化物,运行至反应器出水中氮去除率为13~19kg·m-3·d-1,降低反应器进水中氨氮浓度至初始运行稳定时的50%,维持反应器中的氟化物终浓度250mg·L-1,培养3~4周运行至氮去除率为6~7kg·m-3·d-1时,再向反应器进水中加入终浓度300~350mg·L-1的氟化物(进水氨氮浓度不变),培养2~3周运行至氮去除率达到6~9kg·m-3·d-1时,最后向反应器进水中加入终浓度400mg·L-1的氟化物(进水氨氮浓度不变),培养1周运行至氮去除率达到2~6kg·m-3·d-1
进一步,以活性为0.211g TN·g-1VSS·d-1的厌氧氨氧化颗粒污泥为接种源,接种后反应器的污泥浓度为15~20g·L-1
更优选,本发明所述耐受氟化物厌氧氨氧化颗粒污泥的培养方法按如下步骤进行:采用上流式厌氧污泥床反应器,以厌氧氨氧化颗粒污泥为接种源,以含有氨氮和亚硝氮的模拟废水为进水,在厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h的条件下运行稳定后,进水NH4 +-N和NO2 --N终浓度均为280mg·L-1,依次向进水中添加终浓度为10mg·L-1、50mg·L-1、100mg·L-1、150mg·L-1、200mg·L-1和250mg·L-1的氟化物,每个浓度各培养20d达到氮去除率为15.9±2.58kg·m-3·d-1;然后将进水NH4 +-N和NO2 --N浓度分别降至140mg·L-1,而氟化物的终浓度固定为250mg·L-1,培养3~4周至氮去除率为6~7kg·m-3·d-1;维持进水NH4 +-N和NO2 --N浓度均为140mg·L-1,依次添加终浓度为300mg·L-1和350mg·L-1的氟化物,各培养1周至氮去除率为7.19±0.91kg·m-3·d-1;维持进水NH4 +-N和NO2 --N浓度均为140mg·L-1,向进水中添加终浓度400mg·L-1的氟化物,培养1周至氮去除率4.13±1.54kg·m-3·d-1,获得耐受氟化物厌氧氨氧化颗粒污泥。
与现有技术相比,本发明有益效果主要体现在:本发明培养出来的厌氧氨氧化颗粒污泥在模拟废水中添加F-为400mg·L-1时,可以快速培养出粒径大、沉降性能高和污泥活性高的颗粒污泥,从而有效地提高反应器负荷。
(四)附图说明
图1是上流式厌氧污泥床反应器的结构示意图;图1中:1.下锥体;2.进水口;3.反应器主体;4.上锥台;5.沉淀区;6.出水口;7.三相分离器。
(五)具体实施方式
下面结合具体实施例对本发明进行进一步描述,但本发明的保护范围并不仅限于此:
本发明实施例中F-以NaF的形式加入。
实施例1:
所述模拟废水组成为:氨氮140~280mg·L-1,亚硝氮140~280mg·L-1,KH2PO410mg·L-1,CaCl2·2H2O 5.6mg·L-1,MgSO4·7H2O 300mg·L-1,KHCO31250mg·L-1,微量元素Ⅰ、Ⅱ浓度分别为:
微量元素Ⅰ(g·L-1):EDTA 5,FeSO4·7H2O 9.14。
微量元素Ⅱ(g·L-1):EDTA 15,ZnSO4·7H2O 0.43,CoCl2·6H2O 0.24,MnCl2·4H2O0.99,CuSO4·5H2O 0.25,NaMoO4·2H2O 0.22,NiCl2·6H2O0.21,H3BO40.014。
在连续流中,采用有效体积为1L上流式厌氧污泥床反应器(如图1),以活性为0.211g TN·g-1VSS·d-1的厌氧氨氧化颗粒污泥为接种源。接种后反应器的污泥浓度为15~20g·L-1。反应器运行的条件为厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h。
反应器稳定运行的第7d开始添加氟化物,采用逐步提高氟化物浓度的方式加入,加入量以进水中F-的质量终浓度计,分为四个阶段,每一阶段逐步提高F-的质量终浓度,增加步幅为50mg·L-1:第一阶段进水NH4 +-N和NO2 --N(1:1)终浓度分别为280mg·L-1,F-的质量终浓度为逐步增加,浓度分别为10mg·L-1、50mg·L-1、100mg·L-1、150mg·L-1、200mg·L-1和250mg·L-1,每个浓度各培养20d,第140d时,氮去除率为15.9±2.58kg·m-3·d-1,消耗的NO2 --N与NH4 +-N的化学计量摩尔比RS(1.12±0.18)和生成的NO3 --N与消耗的NH4 +-N的化学计量摩尔比RP(0.20±0.05)接近理论值(RS=1.32,RP=0.26);第二阶段为了避免基质和氟化物的协同抑制作用,将进水NH4 +-N和NO2 --N(1:1)浓度分别降至140mg·L-1,而F-的质量终浓度固定为250mg·L-1,培养3~4周,RS和RP也接近理论值,氮去除率为6~7kg·m-3·d-1;第三阶段进水NH4 +-N和NO2 --N(1:1)浓度分别为140mg·L-1,F-的质量终浓度逐步增加,增加步幅为50mg·L-1,即浓度依次为300mg·L-1和350mg·L-1,各培养1周,氮去除率为7.19±0.91kg·m-3·d-1;第四阶段进水NH4 +-N和NO2 --N(1:1)浓度同第二和第三阶段,但F-的质量终浓度增加至400mg·L-1,培养1周后,氮去除率可以达到4.13±1.54kg·m-3·d-1,此时实现耐受氟化物厌氧氨氧化颗粒污泥的培养。
通过190d连续运行,不同氟化物浓度下的活性变化不明显,由初始的0.21g·g- 1VSS·d-1仅减小到0.131g·g-1VSS·d-1。污泥的粒径逐渐增大,平均直径由0.968±1.11增加到1.72±2.98mm,沉降性能高,最后一个阶段高达111.59±27.23m·h-1。因而,厌氧氨氧化培养物在经过逐步提高氟化物浓度的驯化期后,厌氧氨氧化工艺能忍受氟化物的浓度低于400mg·L-1,且颗粒特性优良,活性高。

Claims (4)

1.一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法,其特征在于所述方法为:采用上流式厌氧污泥床反应器,以厌氧氨氧化颗粒污泥为接种源,以含有氨氮和亚硝氮的模拟废水为进水,在厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h的条件下运行稳定后,污泥活性维持在接种时污泥活性时,向反应器中逐步递增添加终浓度10~250mg·L-1的氟化物,运行至反应器出水中氮去除率为13~19kg·m-3·d-1,降低反应器进水中氨氮浓度至初始运行稳定时的50%,维持反应器中的氟化物终浓度250mg·L-1,培养3~4周运行至氮去除率为6~7kg·m-3·d-1时,再向反应器进水中加入终浓度300~350mg·L-1的氟化物,培养2~3周运行至氮去除率达到6~9kg·m-3·d-1时,最后向反应器进水中加入终浓度400mg·L-1的氟化物,培养1周运行至氮去除率达到2~6kg·m-3·d-1时,获得耐受氟化物厌氧氨氧化颗粒污泥;所述氟化物为NaF;
所述模拟废水组成为:氨氮140~280mg·L-1,亚硝氮140~280mg·L-1,KH2PO4 10mg·L-1,CaCl2·2H2O 5.6mg·L-1,MgSO4·7H2O 300mg·L-1,KHCO3 1250mg·L-1和微量元素Ⅰ、Ⅱ,溶剂为水;
微量元素Ⅰ组成:EDTA 5g·L-1,FeSO4·7H2O 9.14g·L-1
微量元素Ⅱ组成:EDTA 15g·L-1,ZnSO4·7H2O 0.43g·L-1,CoCl2·6H2O 0.24g·L-1,MnCl2·4H2O 0.99g·L-1,CuSO4·5H2O 0.25g·L-1,NaMoO4·2H2O 0.22g·L-1,NiCl2·6H2O0.21g·L-1,H3BO4 0.014g·L-1
2.如权利要求1所述耐受氟化物厌氧氨氧化颗粒污泥的培养方法,其特征在于所述进水中氨氮和亚硝氮的物质的量之比为1:1。
3.如权利要求1所述耐受氟化物厌氧氨氧化颗粒污泥的培养方法,其特征在于以活性为0.211g TN·g-1VSS·d-1的厌氧氨氧化颗粒污泥为接种源,接种后反应器的污泥浓度为15~20g·L-1
4.如权利要求1所述耐受氟化物厌氧氨氧化颗粒污泥的培养方法,其特征在于所述培养方法按如下步骤进行:采用上流式厌氧污泥床反应器,以厌氧氨氧化颗粒污泥为接种源,以含有氨氮和亚硝氮的模拟废水为进水,在厌氧、避光、温度为35±1℃、进水pH为7.91±0.21、水力停留时间为0.74h的条件下运行稳定后,进水NH4 +-N和NO2 --N终浓度均为280mg·L-1,依次向进水中添加终浓度为10mg·L-1、50mg·L-1、100mg·L-1、150mg·L-1、200mg·L-1和250mg·L-1的氟化物,每个浓度各培养20d达到氮去除率为15.9±2.58kg·m-3·d-1;然后将进水NH4 +-N和NO2 --N浓度分别降至140mg·L-1,而氟化物的终浓度固定为250mg·L-1,培养3~4周至氮去除率为6~7kg·m-3·d-1;维持进水NH4 +-N和NO2 --N浓度均为140mg·L-1,依次添加终浓度为300mg·L-1和350mg·L-1的氟化物,各培养1周至氮去除率为7.19±0.91kg·m-3·d-1;维持进水NH4 +-N和NO2 --N浓度均为140mg·L-1,向进水中添加终浓度400mg·L-1的氟化物,培养1周至氮去除率4.13±1.54kg·m-3·d-1,获得耐受氟化物厌氧氨氧化颗粒污泥。
CN201610192607.3A 2016-03-30 2016-03-30 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法 Active CN105819570B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610192607.3A CN105819570B (zh) 2016-03-30 2016-03-30 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610192607.3A CN105819570B (zh) 2016-03-30 2016-03-30 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法

Publications (2)

Publication Number Publication Date
CN105819570A CN105819570A (zh) 2016-08-03
CN105819570B true CN105819570B (zh) 2018-11-02

Family

ID=56524562

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610192607.3A Active CN105819570B (zh) 2016-03-30 2016-03-30 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法

Country Status (1)

Country Link
CN (1) CN105819570B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107601661A (zh) * 2017-08-21 2018-01-19 杭州师范大学 一种含锰废水厌氧氨氧化脱氮反应器的运行方法
CN109133365A (zh) * 2018-08-27 2019-01-04 杭州师范大学 一种耐受含镍高氨氮废水的厌氧氨氧化菌的培养方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891651A (zh) * 2015-05-08 2015-09-09 杭州师范大学 快速重启动重金属污染的厌氧氨氧化反应器的运行方法
CN104891650A (zh) * 2015-04-30 2015-09-09 杭州师范大学 一种同步脱氮除硫颗粒污泥的快速培养方法
CN105036324A (zh) * 2015-08-07 2015-11-11 杭州师范大学 提升厌氧氨氧化反应器处理含铜废水脱氮性能的运行方法
CN105254004A (zh) * 2015-09-29 2016-01-20 杭州师范大学 一种耐受硫化物厌氧氨氧化颗粒污泥培养物的培养方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104891650A (zh) * 2015-04-30 2015-09-09 杭州师范大学 一种同步脱氮除硫颗粒污泥的快速培养方法
CN104891651A (zh) * 2015-05-08 2015-09-09 杭州师范大学 快速重启动重金属污染的厌氧氨氧化反应器的运行方法
CN105036324A (zh) * 2015-08-07 2015-11-11 杭州师范大学 提升厌氧氨氧化反应器处理含铜废水脱氮性能的运行方法
CN105254004A (zh) * 2015-09-29 2016-01-20 杭州师范大学 一种耐受硫化物厌氧氨氧化颗粒污泥培养物的培养方法

Also Published As

Publication number Publication date
CN105819570A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
McCarty What is the best biological process for nitrogen removal: when and why?
Du et al. Flexible nitrite supply alternative for mainstream anammox: advances in enhancing process stability
Zhi et al. Enhanced long-term nitrogen removal and its quantitative molecular mechanism in tidal flow constructed wetlands
Lotti et al. Anammox growth on pretreated municipal wastewater
Wang et al. Light irradiation enables rapid start-up of nitritation through suppressing nxrB gene expression and stimulating ammonia-oxidizing bacteria
Kouba et al. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pretreatment
Zheng et al. Ultrasonic treatment enhanced ammonia-oxidizing bacterial (AOB) activity for nitritation process
Erguder et al. Partial nitrification achieved by pulse sulfide doses in a sequential batch reactor
Zekker et al. Anammox bacteria enrichment and phylogenic analysis in moving bed biofilm reactors
Cheng et al. Anammox granules acclimatized to mainstream conditions can achieve a volumetric nitrogen removal rate comparable to sidestream systems
CN100526231C (zh) Uasb-生物膜厌氧氨氧化方法及其设备
Chen et al. Controlling denitrification accompanied with nitrite accumulation at the sediment-water interface
CN109179684A (zh) 利用微生物电解池辅助sani系统处理氨氮废水的方法与装置
Zhao et al. Achieving an extraordinary high organic and hydraulic loadings with good performance via an alternative operation strategy in a multi-stage constructed wetland system
Thalla et al. Nitrification kinetics of activated sludge-biofilm system: A mathematical model
CN106006956A (zh) 一种同步处理高浓度no3--n废水、污泥消化液和城市污水的装置与方法
Chini et al. Recirculation and aeration effects on deammonification activity
CN105692891A (zh) 一种富集高效能厌氧氨氧化污泥的装置及方法
CN105819570B (zh) 一种耐受氟化物厌氧氨氧化颗粒污泥的培养方法
CN104710007B (zh) 一种实现同步亚硝化-厌氧氨氧化与反硝化工艺稳定运行的方法
CN104163494B (zh) 垃圾渗滤液自养脱氮装置及运行方法
CN104016478B (zh) 一种快速启动厌氧氨氧化反应器的方法
CN105692896A (zh) 一种耐受铜离子的反硝化颗粒污泥的培养方法
Wang et al. Feasibility of iron scraps for enhancing nitrification of domestic wastewater at low temperatures
Tomar et al. Performance evaluation of the anammox hybrid reactor seeded with mixed inoculum sludge

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant