CN105809671B - 前景区域标注与深度次序推理的联合学习方法 - Google Patents

前景区域标注与深度次序推理的联合学习方法 Download PDF

Info

Publication number
CN105809671B
CN105809671B CN201610119870.XA CN201610119870A CN105809671B CN 105809671 B CN105809671 B CN 105809671B CN 201610119870 A CN201610119870 A CN 201610119870A CN 105809671 B CN105809671 B CN 105809671B
Authority
CN
China
Prior art keywords
image
region
depth
label
boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610119870.XA
Other languages
English (en)
Other versions
CN105809671A (zh
Inventor
马健翔
周瑜
宋桂岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI BUPT PERCEPTIVE TECHNOLOGY INDUSTRY INSTITUTE Co Ltd
Original Assignee
WUXI BUPT PERCEPTIVE TECHNOLOGY INDUSTRY INSTITUTE Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WUXI BUPT PERCEPTIVE TECHNOLOGY INDUSTRY INSTITUTE Co Ltd filed Critical WUXI BUPT PERCEPTIVE TECHNOLOGY INDUSTRY INSTITUTE Co Ltd
Priority to CN201610119870.XA priority Critical patent/CN105809671B/zh
Publication of CN105809671A publication Critical patent/CN105809671A/zh
Application granted granted Critical
Publication of CN105809671B publication Critical patent/CN105809671B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Landscapes

  • Image Analysis (AREA)

Abstract

本发明公开了一种前景区域标注与深度次序推理的联合学习方法,包括,分割图像,构造分割图像的图模型,建立基于多类三元组预测的联合框架,基于结构化支持向量机进行最大幅度训练,从而得出图像中各个区域的深度次序关系以及前后景标记。针对单目图像的深度估计和前景区域标记进行回顾和总结,并基于其单一推测的局限性和缺陷作出改进和优化,提出一种联合估计的框架,并且使用了Geometric Context数据集和Cornell Depth‑Order数据集的部分图片验证算法的正确性和有效性。达到提升推测结果的有效性的目的。

Description

前景区域标注与深度次序推理的联合学习方法
技术领域
本发明涉及图像处理领域,具体地,涉及一种前景区域标注与深度次序推理的联合学习方法。
背景技术
深度估计的研究一直是计算机视觉领域中基础又重要的问题。研究者们一开始着重于发掘图像的绝对深度次序,后来由于精确估计的困难性,并发现可以通过有效提取单目图像的深度线索,如遮挡和几何信息等,来推测物体之间的相对深度次序,并用于处理像显著性检测和三维场景理解等高级视觉问题。
现有技术大多使用各种从轮廓和T角点结构提取出的局部线索来计算相对深度次序。然而,这一方法自然是有缺陷的,例如天空、地面这样的背景区域显然是在图像场景的最后面,而从边界和角点进行深度次序推断时却没有考虑图像场景区域的前景背景的布局特征,并且某一区域的几何信息有助于理解相邻区域间的相对深度布局。当估计区域标签时,成对区域的相对深度次序也提高了它的区域标签推测的正确性。D.Hoiem等(“Recovering occlusion boundaries from an image”,International Journal ofComputer Vision,91(3):328-346,2011)的研究就得到了极大的关注。他们推测物体区域间的相对深度次序,并计算推测这一过程的场景布局置信度,对其分析效果。实验结果表明有了几何置信度线索的帮助,推测效果有了极大的改善。然而,一旦几何置信度被估计出来,相对深度次序的结果非常依赖于几何置信度的准确性。
深度估计是计算机视觉领域中最有挑战性的问题之一。传统研究中大部分都聚焦在基于多视角的图像和运动线索估计精确深度值这一方面。然而,只依靠单目图像,这一任务很难完成。于是,研究者们使用各种从单目图像的轮廓和T角点结构提取出的局部线索来计算相对深度次序。然而,从角点和边界估计出的深度次序由于没有考虑到图像中区域前景背景的布局特征而具有天生的缺陷。
D.Hoiem等人的研究在传统单目线索的基础上添加了几何置信度线索,从而改善了推测效果。然而,一旦几何置信度被估计出来,相对深度次序的结果非常依赖于几何置信度的准确性。若几何置信度的偏差较大,则会严重影响最终的效果,使得系统缺乏较强的鲁棒性。深度次序估计和前景区域的标记是相辅相成的,然而现有的技术方法并未考虑到这一点,使得未能体现出它们的联系。
发明内容
本发明的目的在于,针对上述问题,提出一种前景区域标注与深度次序推理的联合学习方法,以实现提升推测结果的有效性的优点。
为实现上述目的,本发明采用的技术方案是:
一种前景区域标注与深度次序推理的联合学习方法,包括以下步骤:
步骤1、分割图像,对图像进行物体级别的分割,即保留图像物体区域间的遮挡边界,并提取图像中区域和边界的特征向量;
步骤2、构造分割图像的图模型,即给定分割图像X,分割图像X是由N个区域 和区域间边界组成,将分割图像X抽象建立成一 个无向图模型,图的顶点代表区域,边表示需要被预测的深度次序,从而确定区域标签R= {ri|i=1,...,N}∈{0,1}N和相对深度次序
步骤3、建立基于多类三元组预测的联合框架,为了衡量图模型表示的图像中区域间深度次序和几何关系的判别能力,基于步骤1提取的区域和边界的特征向量和步骤2构造的图模型,定义一个线性判别函数F(X,B,R;w,v);
其中,w和v为相应特征的权系数向量,然后训练一个把区域标签R和相对深度次序B联合起来的特征映射到联合标签的单一分类器,即定义一个三元组标签集T,并将线性判别函数进行更新为F(X,T;W);
步骤4、基于结构化支持向量机进行最大幅度训练,从而估计线性判别函数F(X,T;W)中的权系数矩阵W,根据估计的权系数矩阵W得出图像中各个区域的深度次序关系以及前后景标记。
优选的,所述步骤1中的区域的特征向量中区域的特征,包括颜色、纹理、位置和形状,所述边界的特征向量中边界的特征,包括几何、凹凸性、位置和显著度。
优选的,步骤1中还包括,使用视觉词特征代表每一归属区域的后验概率。
优选的,步骤2中,对于区域标签R={ri|i=1,...,N}∈{0,1}N和相对深度次序其中bij=0代表区域xi在xj前面;否则,bij=1;且当xi为背景区域时,ri=0;否则,ri=1。
优选的,三元组标签集
且三元组标签集的约束条件为:给定一个角点由三个 顶点xi、xj和xk组成,则对所有角点J在边界标签上都要满足如下的环形不等式:
则线性判别函数为:
其中,W为权系数矩阵,U(tij;xi,xj,W)即为线性判别函数,φij表示从分割图像提取出的边界特征向量,ψij分别表示从区域i和j提取的区域特征向量。
本发明的技术方案具有以下有益效果:
本发明技术方案针对单目图像的深度估计和前景区域标记进行回顾和总结,并基于其单一推测的局限性和缺陷作出改进和优化,提出一种联合估计的框架,并且使用了Geometric Context数据集和Cornell Depth-Order数据集的部分图片验证算法的正确性和有效性。
具体效果如下:
(1)提出了一种联合的深度次序推测和前景区域标记的共同学习框架,利用它们之间的关联信息,维持物理场景中近似真实的物体区域布局,从而提升推测结果的有效性;(2)建立一个无向图模型进行图像分割表达,并将为区域和边缘分配二值标签转化成带有约束的整数规划问题进行求解;(3)创新性地定义一个三元组变量用来描述相邻区域对以及之间的边缘,从而将问题转化成对多类别三元组量进行预测分类的问题,并且将原来不可解的硬约束规划问题转化成可解的软约束规划问题,从而简单有效的在全局上惩罚边界和区域标记推测不一致的情况。(4)由于定义的判别函数是线性的,因而使用结构化支持向量机技术进行参数学习,再用线性规划松弛化方法去求解,从而进行有效推测。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明实施例所述的前景区域标注与深度次序推理的联合学习方法的流程示意图;
图2为本发明实施例所述的分割图像示意图;
图3a和图3b为本发明实施例所述的无向图模型示意图。
具体实施方式
以下结合附图对本发明的优选实施例进行说明,应当理解,此处所描述的优选实施例仅用于说明和解释本发明,并不用于限定本发明。
如图1所示,本技术方案主要从以下四个步骤进行说明:分割图像,构造图模型,建立基于多类三元组预测的联合框架和基于结构化支持向量机的最大幅度训练。
1.分割图像:
首先,对图像进行物体级别的分割,也就是保留物体区域间的遮挡边界,并提取区域和边界特征向量用作之后的推测。一方面,区域特征包含颜色、纹理、位置和形状特征。除此以外,还使用视觉词特征来代表每一归属区域的后验概率。另一方面,边缘特征向量则用来估计深度次序,包括几何、凹凸性、位置和显著度特征。
2.构造图模型:
给定分割图像X,它是由N个区域和区域之间的边界组成。将其抽象建立成一个无向图模型G=(V,E),图的顶点代表区域,边表示需要被预测的深度次序,从而确定区域标签R和相对深度次序B。
3.建立基于多类三元组预测的联合框架:
为了衡量图模型表示的图像中区域间深度次序和几何关系的判别能力,基于第一步骤提取的相应特征向量和第二步骤构造的图模型,定义一个线性判别函数F(X,B,R;w,v)。
在给定的图模型中,每一个二值标签必须满足物理上的近似真实条件,即三个相邻区域两两之间的前景/背景关系是有效的,为此对区域间标签是有效深度次序关系进行数学化定义。另外,区域标签也必须和相对深度次序一致,从而前景区域保持在背景区域的前面。因此,需要联合估计,即训练一个能把它们联合起来的特征映射到联合标签的单一分类器,而不是对区域和边缘标签分别训练各自的分类器。为此,定义一个三元组标签集T,从而把问题转化成包含8个类别的多类分类问题,并将线性判别函数进行更新为F(X,T;W)。
既然深度次序必须物理上近似真实的,对三元组变量的约束应当遵循上述定义的有效的深度次序关系。因而,寻求最佳三元组标签的最优化问题可进行公式化,并利用线性规划的松弛变量法进行求解,从而得出最优三元组标签T*,因而最佳相对深度次序推测B*可由最优三元组标签T*直接确定出来。但是,区域标签R由于包含多种三元组变量组合情况而无法直接得出,于是通过多数投票机制来确定最优区域标签R*,这一机制在经验上是有效的。
4.基于结构化支持向量机的最大幅度训练:
这一步骤利用基于结构化支持向量机的技术进行大幅度的训练。为了估计线性判别函数F(X,T;W)中的权系数矩阵W,参考I.Tsochantaridis等(“Large margin methodsfor structured and interdependent output variables”,JMLR,6:1453–1484,2005)利用真实标签Tn和预测标签T并基于汉明损失函数求解相应的约束最优化问题。而此最优化问题涉及到关于T维度的指数级约束。因此,使用割平面算法降低约束的数量级。从而,可定义出关于第n个训练数据的最违反约束标签,然后把它添加到约束集中。得出约束集后,最优化问题可由二次规划解决,从而求出最终结果。
以下结合实际应用对本发明技术方案具体说明如下:
分割图像:
首先,对图像进行物体级别的分割,也就是保留物体区域间的遮挡边界,如图2所示,,并提取区域和边界特征向量用作之后的深度推测。一方面,区域特征是一个52维的低层次的特征向量(D.Hoiem et al,“Recovering surface layout from an image”,IJCV,75(1):151–172,2007),包含颜色、纹理、位置和形状特征。除此以外,还使用150维的视觉词特征(D.Batra et al,“Learning class-
specific affinities for image labelling”,CVPR,2008)来代表每一归属区域的后验概率。另一方面,边缘特征向量则用来估计深度次序,包括几何(4维)、凹凸性(2维)、位置(2维)和显著度特征(27维)。
构造图模型:
给定分割图像X,它是由N个区域和区域间边界组成。将其抽象建立成一个无向图模型G =(V,E),图的顶点代表区域,边表示需要被预测的深度次序,从而确定区域标签R={ri|i =1,...,N}∈{0,1}N和相对深度次序如图3a和图3b 所示,其中bij=0代表区域xi在xj前面;否则,bij=1。当xi为背景区域时,ri=0;否则,ri=1。
建立基于多类三元组预测的联合框架:
为了衡量图模型表示的图像中区域间深度次序和几何关系的判别能力,定义如下线性判别函数:
其中,w和v为相应特征的权系数向量,D(xi,xi;w)用来衡量哪一区域在前面,得出较大的负值意味着区域xi在前面,反之较大正值意味着xj在前面。类似地,E(xi;v)若为负值则意味xi为前景区域,正值则为背景区域。φij分别表示从分割图像提取出的边缘特征向量和区域特征向量。
在给定的图模型中,每一个二值标签必须满足物理上的近似真实条件。三个相邻区域两两之间的适当前景/背景关系的可靠例子如表1所示,“0”意味着第i个分割区域在前面,“1”意味着第j个分割区域在前面。
表1、环形深度次序的标签有效性表。
区域间标签bij的约束可据如下数学化定义:
定义1(有效的深度次序关系)给定一个角点它由三个顶点xi、xj和xk组成,则对所有角点J在边界标签上都要满足如下的环形不等式:
除了上述约束,区域标签R也必须和相对深度次序B一致,从而前景区域保持在背景区域的前面。因此,R和B必须联合估计,即训练一个能把它们联合起来的特征映射到联合标签的单一分类器,而不是对区域和边缘标签分别训练各自的分类器。为此,定义一个三元组标签集既然ri和bij都是二值的,那么tij则可以有8种不同的值,从而对于它的推测可被考虑成包含8个类别的多类分类问题。加入这一约束后的判别函数可定义成:
其中,W为权系数矩阵,U(tij;xi,xj,W)即为线性判别函数,联合特征φjoint就是把边缘特征和区域特征相连接形成,即
既然深度次序必须物理上近似真实的,对三元组变量的约束应当遵循等式(2)。因而,寻求最佳三元组标签的最优化问题可公式化为:
这里,
利用线性规划的松弛变量法,等式(4)可通过如下方式求解:
这里,
得出的Z*即为最优三元组标签T*,并且tij和bij之间是一一对应的,因而B*可由T*直接确定出来。但是,R由于包含多种三元组变量组合情况而无法直接得出,于是通过多数投票机制来确定区域标签R*,这一机制在经验上是有效的。
4.基于结构化支持向量机的最大幅度训练
这一步骤利用基于结构化支持向量机的技术进行大幅度的训练。为了估计线性判别函数F(X,T;W)中的权系数矩阵W,参考I.Tsochantaridis等的研究方法(“Large marginmethods for structured and interdependent output variables”,JMLR,6:1453–1484,2005)求解如下的约束最优化问题:
其中,d(Xn,T;W)表示真实标签Tn和预测标签T之间的判别函数值的差,例如
d(Xn,T;W)=F(Xn,Tn;W)-F(Xn,T;W) (9)
ξn是用来允许Xn存在训练误差的松弛变量,C是用来权衡训练误差最小化和幅度最大化的平衡系数。损失函数Δ(Tn,T)用来在给定正确标签Tn的情况下对预测标签T进行误差衡量。这里利用的是改进的汉明损失函数(S.Kim et al,“Task-specific imagepartitioning”,2012)。
公式(8)的最优化问题涉及到关于T维度的指数级约束。因此,使用割平面算法降低约束的数量级。从而,关于第n个训练数据的最违反约束标签可由如下定义式得出:
然后把它添加到约束集中。这里考虑的损失函数可在测试边缘上分解从而对进行有效推测。得出约束集后,最优化问题可由二次规划解决,从而求出最终结果。
综上所述,本发明的有益效果具体可通过表2看出:
表2列出了是本发明方法和其余两种方法进行前景/后景推理的比较结果,结果的数值越大表示推理的结果越准确。另外对于推理前的准备步骤,即图像分割,本发明技术方案采用了两种不同的分割算法:“Seg-ho”为D.Hoiem等使用的图像分割算法,而“GT seg”则表示Z.Jia等(“A learning-based framework for depth ordering”,CVPR,2012,pp:294-301)使用的基于真实标记的分割。从表2中可以看出,本发明方法都取得了优于其它方法的最高准确率。其中(I)D.Hoiem等提出的方法,(II)Z.Jia等提出的方法,(III)本技术方案提出的方法。
表1基于Geometric Context和Cornell Depth-Order数据集的前景/后景推理的准确率。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种前景区域标注与深度次序推理的联合学习方法,其特征在于,包括以下步骤:
步骤1、分割图像,对图像进行物体级别的分割,即保留图像物体区域间的遮挡边界,并提取图像中区域和边界的特征向量;
步骤2、构造分割图像的图模型,即给定分割图像X,分割图像X是由N个区域和区域间边界组成,将分割图像X抽象建立成一个无向图模型,图的顶点代表区域,边表示需要被预测的深度次序,从而确定区域标签R={ri|i=1,...,N}∈{0,1}N和相对深度次序
步骤3、建立基于多类三元组预测的联合框架,为了衡量图模型表示的图像中区域间深度次序和几何关系的判别能力,基于步骤1提取的区域和边界的特征向量和步骤2构造的图模型,定义一个线性判别函数F(X,B,R;w,v);
其中,w和v为相应特征的权系数向量,然后训练一个把区域标签R和相对深度次序B联合起来的特征映射到联合标签的单一分类器,即定义一个三元组标签集T,并将线性判别函数进行更新为F(X,T;W);
步骤4、基于结构化支持向量机进行最大幅度训练,从而估计线性判别函数F(X,T;W)中的权系数矩阵W,根据估计的权系数矩阵W得出图像中各个区域的深度次序关系以及前后景标记。
2.根据权利要求1所述的前景区域标注与深度次序推理的联合学习方法,其特征在于,所述步骤1中的区域的特征向量中区域的特征,包括颜色、纹理、位置和形状,所述边界的特征向量中边界的特征,包括几何、凹凸性、位置和显著度。
3.根据权利要求1所述的前景区域标注与深度次序推理的联合学习方法,其特征在于,步骤2中,对于区域标签R={ri|i=1,...,N}∈{0,1N}和相对深度次序其中bij=0代表区域xi在xj前面;否则,bij=1;且当xi为背景区域时,ri=0;否则,ri=1。
4.根据权利要求3所述的前景区域标注与深度次序推理的联合学习方法,其特征在于,三元组标签集
且三元组标签集的约束条件为:给定一个角点由三个顶点xi、xj和xk组成,则对所有角点J在边界标签上都要满足如下的环形不等式:
则线性判别函数为:
其中,W为权系数矩阵,U(tij;xi,xj,W)即为线性判别函数,φij表示从分割图像提取出的边界特征向量,ψij分别表示从区域i和j提取的区域特征向量。
CN201610119870.XA 2016-03-02 2016-03-02 前景区域标注与深度次序推理的联合学习方法 Expired - Fee Related CN105809671B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610119870.XA CN105809671B (zh) 2016-03-02 2016-03-02 前景区域标注与深度次序推理的联合学习方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610119870.XA CN105809671B (zh) 2016-03-02 2016-03-02 前景区域标注与深度次序推理的联合学习方法

Publications (2)

Publication Number Publication Date
CN105809671A CN105809671A (zh) 2016-07-27
CN105809671B true CN105809671B (zh) 2018-10-16

Family

ID=56465953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610119870.XA Expired - Fee Related CN105809671B (zh) 2016-03-02 2016-03-02 前景区域标注与深度次序推理的联合学习方法

Country Status (1)

Country Link
CN (1) CN105809671B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018112137A1 (en) * 2016-12-15 2018-06-21 General Electric Company System and method for image segmentation using a joint deep learning model
CN106887009B (zh) * 2017-01-04 2020-01-03 深圳市赛维电商股份有限公司 一种实现交互式图像分割的方法、装置及终端
CN107066984A (zh) * 2017-04-20 2017-08-18 四川大学 基于子空间集成学习的步态识别算法
CN108898221B (zh) * 2018-06-12 2021-12-14 中国科学技术大学 基于状态特征和后继特征的特征与策略的联合学习方法
CN111192678B (zh) * 2019-10-31 2023-06-02 上海杏脉信息科技有限公司 病理显微图像诊断、模型训练方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061765A2 (en) * 2003-01-06 2004-07-22 Koninklijke Philips Electronics N.V. Method and apparatus for depth ordering of digital images
CN102542302A (zh) * 2010-12-21 2012-07-04 中国科学院电子学研究所 基于分等级对象语义图的复杂目标自动识别方法
CN104077352A (zh) * 2014-05-27 2014-10-01 浙江大学 基于能量模型的图像语义标注方法
CN105354826A (zh) * 2015-10-04 2016-02-24 北京航空航天大学 一种图像对象共定位及无关样本判定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4522129B2 (ja) * 2004-03-31 2010-08-11 キヤノン株式会社 画像処理方法および画像処理装置
US7298370B1 (en) * 2005-04-16 2007-11-20 Apple Inc. Depth ordering of planes and displaying interconnects having an appearance indicating data characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004061765A2 (en) * 2003-01-06 2004-07-22 Koninklijke Philips Electronics N.V. Method and apparatus for depth ordering of digital images
CN102542302A (zh) * 2010-12-21 2012-07-04 中国科学院电子学研究所 基于分等级对象语义图的复杂目标自动识别方法
CN104077352A (zh) * 2014-05-27 2014-10-01 浙江大学 基于能量模型的图像语义标注方法
CN105354826A (zh) * 2015-10-04 2016-02-24 北京航空航天大学 一种图像对象共定位及无关样本判定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEARNING DISCRIMINATIVE OCCLUSION FEATURE FOR DEPTH ORDERING INFERENCE ON MONOCULAR IMAGE;Anlong Ming 等;《2015 IEEE International Conference on Image Processing(ICIP)》;20151110;2525-2529 *
Monocular Depth-Ordering Reasioning with Occlusion Edge Deptection and Couple Layers Inference;Anlong Ming 等;《IEEE Intelligent Systems》;20151111;第31卷(第2期);54-65 *

Also Published As

Publication number Publication date
CN105809671A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105809671B (zh) 前景区域标注与深度次序推理的联合学习方法
Li et al. PMSC: PatchMatch-based superpixel cut for accurate stereo matching
CN102810158B (zh) 一种基于多尺度语义模型的高分辨率遥感目标提取方法
Osher et al. Geometric level set methods in imaging, vision, and graphics
Mnih et al. Learning to label aerial images from noisy data
CN103325142B (zh) 一种基于Kinect的计算机三维模型建模方法
Xiao et al. Joint affinity propagation for multiple view segmentation
US7995841B2 (en) Hybrid graph model for unsupervised object segmentation
Zhang et al. Efficient inductive vision transformer for oriented object detection in remote sensing imagery
CN105389569B (zh) 一种人体姿态估计方法
CN110443818A (zh) 一种基于涂鸦的弱监督语义分割方法与系统
CN110121733A (zh) 用于场景的联合分割和3d重构的方法和设备
CN107424161B (zh) 一种由粗至精的室内场景图像布局估计方法
CN102938066A (zh) 一种基于多元数据重建建筑物外轮廓多边形的方法
CN102509327B (zh) 一种图像空洞填补的多尺度全局采样方法
CN103226708A (zh) 一种基于Kinect的多模型融合视频人手分割方法
CN104166988B (zh) 一种融入稀疏匹配信息的立体图像同步分割方法
CN112837338B (zh) 一种基于生成对抗网络的半监督医学图像分割方法
CN108921942A (zh) 对图像进行2d转制3d的方法及装置
CN101739683A (zh) 基于图分割和多线索融合的单幅图深度估计方法及其系统
Li et al. An aerial image segmentation approach based on enhanced multi-scale convolutional neural network
CN111144466B (zh) 一种图像样本自适应的深度度量学习方法
CN104574379A (zh) 一种基于目标多部件学习的视频分割算法
CN102034102B (zh) 图像显著对象提取方法、互补显著度图学习方法及系统
Xia et al. Building instance mapping from ALS point clouds aided by polygonal maps

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181016

Termination date: 20200302

CF01 Termination of patent right due to non-payment of annual fee