CN105808848A - Method for processing discrete standard optimization design variable - Google Patents
Method for processing discrete standard optimization design variable Download PDFInfo
- Publication number
- CN105808848A CN105808848A CN201610131016.5A CN201610131016A CN105808848A CN 105808848 A CN105808848 A CN 105808848A CN 201610131016 A CN201610131016 A CN 201610131016A CN 105808848 A CN105808848 A CN 105808848A
- Authority
- CN
- China
- Prior art keywords
- value
- optimization
- variable
- interval
- random number
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005457 optimization Methods 0.000 title claims abstract description 44
- 238000013461 design Methods 0.000 title claims abstract description 31
- 238000000034 method Methods 0.000 title claims abstract description 19
- 238000012545 processing Methods 0.000 title claims abstract description 6
- 238000012795 verification Methods 0.000 abstract description 4
- 230000000875 corresponding effect Effects 0.000 description 16
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002596 correlated effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 238000009827 uniform distribution Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computational Mathematics (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
技术领域technical field
本发明涉及结构优化设计技术领域,具体涉及一种处理离散标准化设计变量的方法,用于机械结构优化设计。The invention relates to the technical field of structural optimization design, in particular to a method for processing discrete standardized design variables, which is used in the optimal design of mechanical structures.
背景技术Background technique
在结构优化设计中常常会遇到离散变量的优化问题,若设计变量间不相关,定义优化设计变量时只需把离散值输入即可;若设计变量间相关,则还要考虑变量间的相关性。目前结构分析一般需要有限元分析软件,建立参数化模型时需要输入单元的实常数,如结构有限元软件ANSYS在利用管单元Pipe16进行网格划分时,需要输入管单元的两个实常数,即管单元的外径和壁厚;在对结构进行尺寸优化时,外径和壁厚就成为了设计变量,且这两个变量间具有关联性,其原因在于钢管尺寸均是标准化的,同一外径可能对应不同的壁厚。若在定义优化设计变量时不考虑外径与壁厚的关联性,直接输入外径和壁厚的离散值,就会产生很多错误解。例如,主弦杆外径有57mm、65mm、76mm、85mm和95mm五种选择,壁厚有4mm、5mm、5.5mm和6.5mm四种选择,优化后最优解为外径85mm,壁厚5mm,而该优化结果与现有钢管尺寸不匹配,没有对应的钢管,该最优解没有在设计变量的取值范围内,故为错误解。显而易见,随着钢管外径和壁厚个数的增多,利用这种处理方式优化出外径与壁厚,并能满足对应关系的概率会大大降低,从而导致优化效率低下,优化迭代时间增加,甚至可能得不到最优解。In structural optimization design, the optimization problem of discrete variables is often encountered. If the design variables are not correlated, only the discrete values need to be input when defining the optimal design variables; if the design variables are correlated, the correlation between variables should also be considered sex. At present, structural analysis generally requires finite element analysis software, and the real constants of the elements need to be input when establishing a parametric model. For example, when the structural finite element software ANSYS uses the pipe element Pipe16 for mesh division, it needs to input two real constants of the pipe element, namely The outer diameter and wall thickness of the pipe unit; when optimizing the size of the structure, the outer diameter and wall thickness become design variables, and there is correlation between these two variables, the reason is that the steel pipe size is standardized, the same outer diameter Diameters may correspond to different wall thicknesses. If the correlation between outer diameter and wall thickness is not considered when defining the optimal design variables, and the discrete values of outer diameter and wall thickness are directly input, many erroneous solutions will be generated. For example, there are five options for the outer diameter of the main chord: 57mm, 65mm, 76mm, 85mm, and 95mm, and four options for the wall thickness: 4mm, 5mm, 5.5mm, and 6.5mm. After optimization, the optimal solution is 85mm for the outer diameter and 5mm for the wall thickness. , but the optimization result does not match the size of the existing steel pipe, there is no corresponding steel pipe, and the optimal solution is not within the value range of the design variable, so it is an incorrect solution. Obviously, with the increase in the number of outer diameters and wall thicknesses of steel pipes, the probability of optimizing the outer diameters and wall thicknesses by using this processing method and satisfying the corresponding relationship will be greatly reduced, resulting in low optimization efficiency, increased optimization iteration time, and even The optimal solution may not be obtained.
目前对这种情况的处理办法是将设计变量视为连续变量,优化结束后对最优解进行圆整处理或取最优解附近的标准化值为优化结果,再检验该优化结果是否满足约束条件;但是这种处理办法需要增加额外的验证过程,若设计变量较多,圆整后的优化结果不满足约束条件,则需要重新优化或重新圆整,导致优化效率更加低下,同时还不能保证优化结果是最优解。The current solution to this situation is to treat the design variable as a continuous variable, round the optimal solution after the optimization, or take the standardized value near the optimal solution as the optimization result, and then check whether the optimization result satisfies the constraint conditions ; but this approach needs to add an additional verification process. If there are many design variables and the rounded optimization result does not meet the constraint conditions, it needs to be re-optimized or re-rounded, resulting in lower optimization efficiency, and at the same time, the optimization cannot be guaranteed. The result is the optimal solution.
发明内容Contents of the invention
为了克服现有技术中存在的缺陷,本发明的目的在于提供一种处理离散标准化设计变量的方法,这种方法减少了现有技术中的验证过程,提高了优化效率。In order to overcome the defects in the prior art, the purpose of the present invention is to provide a method for dealing with discrete standardized design variables, which reduces the verification process in the prior art and improves optimization efficiency.
为了达到上述目的,本发明采用以下技术方案予以解决。In order to achieve the above object, the present invention adopts the following technical solutions.
一种处理离散标准化优化设计变量的方法,其特征在于,包括以下步骤:A method for processing discrete standardized optimization design variables, characterized in that it comprises the following steps:
步骤1,设存在一设计变量x和一优化变量y,xi表示所述设计变量x的第i个取值,xij表示对应所述xi下的优化变量y的第j个取值,i、j分别为自然数;Step 1, assuming that there is a design variable x and an optimization variable y, x i represents the i-th value of the design variable x, x ij represents the j-th value of the optimization variable y corresponding to the x i , i and j are natural numbers respectively;
步骤2,设有一区间[0,s],其中,s为设计变量x对应优化变量y的取值的数目,然后将区间[0,s]等分为s个子区间[0,1),[1,2),[2,3),...,[s-1,s],且每个子区间都有一个优化变量y的取值与该子区间对应;Step 2, set an interval [0, s], wherein, s is the number of values of the design variable x corresponding to the optimization variable y, and then divide the interval [0, s] into s subintervals [0, 1), [ 1, 2), [2, 3), ..., [s-1, s], and each sub-interval has an optimization variable y value corresponding to the sub-interval;
步骤3,产生一个随机数rand,确定随机数rand落入的子区间,若随机数rand落入子区间[s-1,s],则所在子区间[s-1,s]内的xij值为优化变量y的取值。Step 3, generate a random number rand, determine the subinterval that the random number rand falls into, if the random number rand falls into the subinterval [s-1, s], then x ij in the subinterval [s-1, s] The value is the value of the optimization variable y.
所述随机数rand在所述区间[0,s]上服从均匀分布。The random number rand is uniformly distributed on the interval [0, s].
与现有技术相比,本发明的有益效果是:本发明处理离散标准化设计变量的方法在每次迭代优化时通过随机选择来确定,不需要对优化结果进行圆整或取最优解附近的标准化值为优化结果,再对优化结果进行检验,这样处理方法减少了验证过程,提高了优化效率,解决了离散标准化设计变量的关联性问题。Compared with the prior art, the beneficial effect of the present invention is that the method for dealing with discrete standardized design variables in the present invention is determined by random selection in each iterative optimization, without rounding the optimization result or taking the value near the optimal solution. The standardized value is the optimization result, and then the optimization result is tested. This method reduces the verification process, improves the optimization efficiency, and solves the correlation problem of discrete standardized design variables.
具体实施方式detailed description
下面结合具体实施例对本发明作进一步详细说明,但以下实施例并不作为限制本发明的保护范围。The present invention will be described in further detail below in conjunction with specific examples, but the following examples are not intended to limit the protection scope of the present invention.
表1Table 1
参考表1所示,表1为本实施例的离散设计变量取值列表,即为主弦杆的外径和壁厚数据,外径和壁厚都是标准化钢管,外径用x来表示,壁厚用y来表示,xi表示外径x的取值,xij表示壁厚y的取值,每一外径对应的壁厚不完全一样,有单值也有多值。Shown with reference to table 1, table 1 is the value list of the discrete design variable of the present embodiment, namely the outer diameter and wall thickness data of the main chord, and the outer diameter and wall thickness are standardized steel pipes, and the outer diameter is represented by x, The wall thickness is represented by y, x i represents the value of the outer diameter x, and x ij represents the value of the wall thickness y. The wall thickness corresponding to each outer diameter is not exactly the same, and there are single values and multiple values.
设有一区间[0,s],s为外径x对应的壁厚y的取值的数目;There is an interval [0, s], s is the number of values of the wall thickness y corresponding to the outer diameter x;
将区间[0,s]等分为s个子区间[0,1),[1,2),[2,3),...,[s-1,s],其中每个子区间有且仅有一个值与壁厚y的取值xij对应;Divide the interval [0, s] into s subintervals [0, 1), [1, 2), [2, 3), ..., [s-1, s], where each subinterval has and only There is a value corresponding to the value x ij of the wall thickness y;
设有一随机数rand,随机数rand∈[0,s],从随机数rand所在子区间[s-1,s]选取壁厚y的值。Assume a random number rand, random number rand∈[0, s], select the value of wall thickness y from the subinterval [s-1, s] where the random number rand is located.
当优化方法确定所述主弦杆的外径x的取值xi后,若其对应的壁厚y的取值xij是一个值时(即s=1),则壁厚y即为该值;若外径x的取值xi对应的壁厚y的取值xij有多个值时(即s>1),可以采用随机定位的方法来确定每次迭代优化时xij的取值。After the optimization method determines the value x i of the outer diameter x of the main chord, if the value x ij of the corresponding wall thickness y is a value (i.e. s=1), then the wall thickness y is the value; if the value x ij of the wall thickness y corresponding to the value x i of the outer diameter x has multiple values (that is, s > 1), the random positioning method can be used to determine the value of x ij during each iterative optimization value.
具体操作方法如下:The specific operation method is as follows:
(1)当i=1时,主弦杆的外径x的取值xi为57mm,其所对应的壁厚y的取值xij有且仅有一个,即s=1,那么壁厚y的取值xij为4mm。(1) When i=1, the value x i of the outer diameter x of the main chord is 57mm, and there is only one value x ij of the corresponding wall thickness y, that is, s=1, then the wall thickness The value x ij of y is 4mm.
(2)当i=2时,主弦杆的外径x的取值xi为65mm,其所对应的壁厚y的取值xij有且仅有一个,即s=1,那么壁厚y的取值xij为4mm。(2) When i=2, the value x i of the outer diameter x of the main chord is 65mm, and there is only one value x ij of the corresponding wall thickness y, that is, s=1, then the wall thickness The value x ij of y is 4mm.
(3)当i=3时,主弦杆的外径x的取值xi为76mm,其所对应的壁厚y的取值xij有三个,那么壁厚y的取值xij为可取值为4mm、5.5mm,6.5mm,即s=3。(3) When i=3, the value x i of the outer diameter x of the main chord is 76 mm, and there are three values x ij of the corresponding wall thickness y, so the value x ij of the wall thickness y can be The values are 4mm, 5.5mm, and 6.5mm, that is, s=3.
此时,设有一区间[0,3],则子区间为[0,1)、[1,2)和[2,3];Now, if an interval [0,3] is set, then the sub-intervals are [0,1), [1,2) and [2,3];
设产生有一随机数rand,随机数rand在区间[0,s]上服从均匀分布,当随机数rand落入区间[0,1)内时,则壁厚y的取值xij为4mm;若随机数rand落入区间[1,2)内时,则壁厚y的取值xij为5.5mm,若随机数rand落入区间[2,3]内时,则壁厚y的取值xij为6.5mm;Assume that a random number rand is generated, and the random number rand obeys the uniform distribution on the interval [0, s]. When the random number rand falls within the interval [0, 1), the value x ij of the wall thickness y is 4mm; if When the random number rand falls within the interval [1, 2), the value x ij of the wall thickness y is 5.5 mm; if the random number rand falls within the interval [2, 3], then the value x ij of the wall thickness y ij is 6.5mm;
不妨设随机数rand=1.234,则随机数rand落入区间[1,2)内,故此次迭代xij取5.5mm进行优化。It may be advisable to set the random number rand=1.234, then the random number rand falls within the interval [1, 2), so this iteration x ij takes 5.5mm for optimization.
(4)当i=4时,主弦杆的外径x的取值xi为85mm,其所对应的壁厚y的取值xij有且仅有一个,即s=1,那么壁厚xij取值为4mm。(4) When i=4, the value x i of the outer diameter x of the main chord is 85mm, and there is only one value x ij of the corresponding wall thickness y, that is, s=1, then the wall thickness The value of x ij is 4mm.
(5)当i=5时,主弦杆的外径x的取值xi为95mm,其所对应的壁厚y的取值xij有两个,那么壁厚y的取值xij为可取值为4mm、5mm,即s=2。(5) When i=5, the value x i of the outer diameter x of the main chord is 95mm, and there are two values x ij of the corresponding wall thickness y, then the value x ij of the wall thickness y is Possible values are 4mm and 5mm, that is, s=2.
此时,设有一区间[0,2],则子区间为[0,1)、[1,2];At this time, if there is an interval [0, 2], then the sub-intervals are [0, 1), [1, 2];
设产生有一随机数rand,随机数rand在区间[0,s]上服从均匀分布,当随机数rand落入区间[0,1)内时,则壁厚y的取值xij为4mm;若随机数rand落入区间[1,2]内时,则壁厚y的取值xij为5mm;Assume that a random number rand is generated, and the random number rand obeys the uniform distribution on the interval [0, s]. When the random number rand falls within the interval [0, 1), the value x ij of the wall thickness y is 4mm; if When the random number rand falls within the interval [1, 2], the value x ij of the wall thickness y is 5mm;
不妨设随机数rand=1.234,则随机数rand落入区间[1,2]内,故此次迭代xij取5mm进行优化。It may be advisable to set the random number rand=1.234, then the random number rand falls within the interval [1, 2], so this iteration x ij takes 5 mm for optimization.
这种处理方法能保证壁厚y的取值xij不会超出其取值范围,保证了钢管外径与壁厚间的对应关系。This processing method can ensure that the value x ij of the wall thickness y will not exceed its value range, and ensure the corresponding relationship between the outer diameter of the steel pipe and the wall thickness.
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。Obviously, those skilled in the art can make various changes and modifications to the present invention without departing from the spirit and scope of the present invention. Thus, if these modifications and variations of the present invention fall within the scope of the claims of the present invention and equivalent technologies thereof, the present invention also intends to include these modifications and variations.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610131016.5A CN105808848A (en) | 2016-03-08 | 2016-03-08 | Method for processing discrete standard optimization design variable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610131016.5A CN105808848A (en) | 2016-03-08 | 2016-03-08 | Method for processing discrete standard optimization design variable |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105808848A true CN105808848A (en) | 2016-07-27 |
Family
ID=56467891
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610131016.5A Pending CN105808848A (en) | 2016-03-08 | 2016-03-08 | Method for processing discrete standard optimization design variable |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105808848A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106777626A (en) * | 2016-12-07 | 2017-05-31 | 西安科技大学 | A kind of trusses with discrete variables Multidisciplinary systems Optimization Design |
CN108647321A (en) * | 2018-05-11 | 2018-10-12 | 长安大学 | A kind of intelligence multi-source heterogeneous manufacture big data integrated model in workshop and semantic computation method |
-
2016
- 2016-03-08 CN CN201610131016.5A patent/CN105808848A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106777626A (en) * | 2016-12-07 | 2017-05-31 | 西安科技大学 | A kind of trusses with discrete variables Multidisciplinary systems Optimization Design |
CN106777626B (en) * | 2016-12-07 | 2019-02-15 | 西安科技大学 | A non-probabilistic reliability optimization design method for discrete variable truss |
CN108647321A (en) * | 2018-05-11 | 2018-10-12 | 长安大学 | A kind of intelligence multi-source heterogeneous manufacture big data integrated model in workshop and semantic computation method |
CN108647321B (en) * | 2018-05-11 | 2021-10-01 | 长安大学 | A tree-shaped intelligent workshop manufacturing big data integration modeling and semantic computing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018157805A1 (en) | Automatic questioning and answering processing method and automatic questioning and answering system | |
CN104036009B (en) | A kind of method, image searching method and device for searching for matching picture | |
US20150074289A1 (en) | Detecting error pages by analyzing server redirects | |
WO2018036549A1 (en) | Distributed database query method and device, and management system | |
CN102880612B (en) | Image annotation method and device thereof | |
CN111460155B (en) | A method and device for evaluating information credibility based on knowledge graph | |
CN109165309B (en) | Negative example training sample collection method and device, and model training method and device | |
CN109460775B (en) | A data filling method and device based on information entropy | |
CN104657450A (en) | Big data environment-oriented summary information dynamic constructing and querying method and device | |
CN104199842A (en) | Similar image retrieval method based on local feature neighborhood information | |
CN108629375B (en) | Electric power customer classification method, system, terminal and computer-readable storage medium | |
CN109271380A (en) | A kind of tables of data mass data method of calibration and terminal device | |
WO2015192798A1 (en) | Topic mining method and device | |
WO2020134819A1 (en) | Method for searching face, and related device | |
WO2018120726A1 (en) | Data mining based modeling method, system, electronic device and storage medium | |
CN105808848A (en) | Method for processing discrete standard optimization design variable | |
CN111008299B (en) | Quality assessment method, device and computer storage medium for speech database | |
CN110019806A (en) | A kind of document clustering method and equipment | |
CN105426425A (en) | Big data marketing method based on mobile signaling | |
CN110334104A (en) | A list update method, device, electronic equipment and storage medium | |
CN104123354A (en) | Query optimization method based on MySOL database | |
CN108932228B (en) | Live broadcast industry news and partition matching method and device, server and storage medium | |
CN114430829A (en) | Fault case processing method, system and computer readable medium | |
CN111310121A (en) | New energy output probability prediction method and system | |
CN109949867B (en) | An optimization method, system, and storage medium for multiple sequence alignment algorithms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160727 |