CN105807190A - GIS partial discharge ultrahigh frequency live-line detection method - Google Patents
GIS partial discharge ultrahigh frequency live-line detection method Download PDFInfo
- Publication number
- CN105807190A CN105807190A CN201410849631.0A CN201410849631A CN105807190A CN 105807190 A CN105807190 A CN 105807190A CN 201410849631 A CN201410849631 A CN 201410849631A CN 105807190 A CN105807190 A CN 105807190A
- Authority
- CN
- China
- Prior art keywords
- discharge
- partial discharge
- frequency
- gis
- characteristic parameters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 40
- 238000001228 spectrum Methods 0.000 claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 31
- 238000007621 cluster analysis Methods 0.000 claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 10
- 210000002569 neuron Anatomy 0.000 claims description 11
- 238000013528 artificial neural network Methods 0.000 claims description 10
- 239000000284 extract Substances 0.000 claims description 5
- 239000000725 suspension Substances 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 5
- 238000007405 data analysis Methods 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 4
- 238000012549 training Methods 0.000 claims description 3
- 238000013519 translation Methods 0.000 claims description 3
- 238000005339 levitation Methods 0.000 claims description 2
- 238000010606 normalization Methods 0.000 claims description 2
- 208000028659 discharge Diseases 0.000 description 130
- 238000009413 insulation Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000003909 pattern recognition Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Testing Relating To Insulation (AREA)
Abstract
本发明提供一种GIS局部放电超高频带电检测方法,该方法包括:S1超高频传感器接收GIS局部放电产生的电磁脉冲信号,并将电磁脉冲信号转化为高频电压信号后通过屏蔽电缆传输给局部放电检测仪;同时,无线工频信号发生装置向局部放电检测仪发射工频电压信号;S2局部放电检测仪对高频电压信号和工频电压信号进行数据解析得到PRPD放电图谱以及超高频放电脉冲波形;S3,局部放电检测仪对PRPD放电图谱和超高频放电脉冲波形分别进行PRPD聚类分析和脉冲波形时频分析,并根据分析结果识别所述GIS局部放电的放电类型。本发明提供的技术方案结构简单、操作方便、提高了GIS局部放电检测的准确性和可靠性。
The invention provides a GIS partial discharge ultra-high frequency live detection method, the method comprising: S1 ultra-high frequency sensor receives the electromagnetic pulse signal generated by GIS partial discharge, and converts the electromagnetic pulse signal into a high-frequency voltage signal and then transmits it through a shielded cable to the partial discharge detector; at the same time, the wireless power frequency signal generator transmits the power frequency voltage signal to the partial discharge detector; the S2 partial discharge detector analyzes the high frequency voltage signal and the power frequency voltage signal to obtain the PRPD discharge spectrum and the superhigh Frequency discharge pulse waveform; S3, the partial discharge detector performs PRPD cluster analysis and pulse waveform time-frequency analysis on the PRPD discharge map and UHF discharge pulse waveform respectively, and identifies the discharge type of the GIS partial discharge according to the analysis results. The technical scheme provided by the invention has simple structure and convenient operation, and improves the accuracy and reliability of GIS partial discharge detection.
Description
技术领域technical field
本发明涉及一种检测方法,具体讲涉及一种GIS局部放电超高频带电检测方法。The invention relates to a detection method, in particular to a GIS partial discharge ultra-high frequency charged detection method.
背景技术Background technique
GIS是电网系统中最重要的电力设备之一,以其占地面积小、绝缘等级强等特点得到了越来越广泛的使用,随着电网技术的快速发展,GIS的电压等级越来越高,若其发生绝缘故障将直接危害变电站主设备受损,造成供电中断,带来大面积区域停电,影响正常的生活、生产甚至社会稳定。GIS is one of the most important power equipment in the power grid system. It has been used more and more widely due to its small footprint and strong insulation level. With the rapid development of power grid technology, the voltage level of GIS is getting higher and higher. If an insulation fault occurs, it will directly damage the main equipment of the substation, cause power supply interruption, and cause a large area of power outage, affecting normal life, production and even social stability.
绝缘性能是决定GIS安全稳定运行的重要因素,由于制造、安装和运行过程中产生的气泡、毛刺、划痕、螺丝松动甚至脱落等均会导致局部场强升高,产生局部放电。例如,国内江门500kVGIS由于绝缘操作杆上缺陷在投入运行后不久即发生闪络,大亚湾400kVGIS在绝缘试验后发现在GIS和母线连接处的绝缘子有明显的漏电痕迹。因此需要检测GIS设备的局部放电。Insulation performance is an important factor that determines the safe and stable operation of GIS. Bubbles, burrs, scratches, loose screws or even falling off in the process of manufacturing, installation and operation will cause local field strength to increase and generate partial discharge. For example, the 500kV GIS in Jiangmen in China had a flashover shortly after it was put into operation due to the defect on the insulation operating rod. After the insulation test of the 400kV GIS in Daya Bay, it was found that the insulator at the connection between the GIS and the busbar had obvious leakage traces. Therefore, it is necessary to detect the partial discharge of GIS equipment.
GIS内部放电时,由于放电点处电荷的迅速转移,形成纳秒级持续时间的电流脉冲,并产生频率分量极其丰富的电磁信号,对传感局部放电所产生的电信号进行局部放电检测,不仅能提高灵敏度,而且能及时发现早期的局部放电。然而由于现场的电信号干扰主要为母线电晕放电、无线电波、载波通讯和系统内开关动作等,这些干扰主要集中在300MHz以下,常规的脉冲电流法和射频检测法均不能很好地消除此类干扰,而超高频检测法采用天线耦合电磁波的方式,其检测频带主要集中在300MHz-3000MHz范围内,可以有效避开常规脉冲电流检测法所受到的干扰,有效地提高了检测灵敏度。When the internal discharge of GIS, due to the rapid transfer of charges at the discharge point, a current pulse with a duration of nanoseconds is formed, and an electromagnetic signal with extremely rich frequency components is generated. Partial discharge detection of the electrical signal generated by sensing partial discharge is not only The sensitivity can be improved, and the early partial discharge can be detected in time. However, because the electrical signal interference on site is mainly bus corona discharge, radio wave, carrier communication and switching action in the system, etc., these interferences are mainly concentrated below 300MHz, and the conventional pulse current method and radio frequency detection method cannot eliminate this well. The UHF detection method adopts the antenna coupling electromagnetic wave method, and its detection frequency band is mainly concentrated in the range of 300MHz-3000MHz, which can effectively avoid the interference received by the conventional pulse current detection method and effectively improve the detection sensitivity.
现有的超高频检测法采用超高频传感器监测GIS局部放电,由超高频传感器将检测点的局部放电信号通过电缆发送给局部放电检测仪,由电压互感器将检测点的工频电压相位信号通过电缆发送给局部放电检测仪;再由局部放电检测仪器对工频电压相位信号和局部放电信号进行数据解析得到PRPD谱图,依据PRPD谱图诊断GIS的局部放电类型。The existing ultra-high frequency detection method uses ultra-high frequency sensors to monitor GIS partial discharge. The ultra-high frequency sensor sends the partial discharge signal of the detection point to the partial discharge detector through the cable, and the power frequency voltage of the detection point is transmitted by the voltage transformer. The phase signal is sent to the partial discharge detector through the cable; then the partial discharge detection instrument analyzes the power frequency voltage phase signal and the partial discharge signal to obtain the PRPD spectrum, and diagnoses the partial discharge type of the GIS based on the PRPD spectrum.
实际运用中,GIS在放电的最初阶段多产生电晕放电,不同缺陷所产生的PRPD谱图比较相似,而当一个GIS设备内部同时存在多个放电源时,局部放电的PRPD谱图会呈现部分的甚至全部的叠加,这样仅靠局部放电检测仪器依据PRPD图谱判断GIS设备的局部放电类型的办法,有可能导致由于谱图的重叠而造成漏判或误判。In actual application, GIS often produces corona discharge in the initial stage of discharge, and the PRPD spectra generated by different defects are relatively similar. However, when there are multiple discharge sources inside a GIS device, the PRPD spectrum of partial discharge will appear partially The method of judging the partial discharge type of GIS equipment based on the PRPD spectrum only by the partial discharge detection instrument may lead to missing or misjudgment due to the overlap of the spectrum.
另外,现有的超高频检测法利用电缆从检测点的电压互感器处获取工频电压相位信号,实际运用时,现场检测点附近不一定存在可用的电压互感器,若有电压互感器,也因为长电缆连接导致测量十分不便。In addition, the existing ultra-high frequency detection method uses cables to obtain the power frequency voltage phase signal from the voltage transformer at the detection point. In actual use, there may not be available voltage transformers near the on-site detection point. It is also very inconvenient to measure because of the long cable connection.
因此有必要研究一种新的局部放电带电检测方法,以降低GIS局部放电的检测难度,提高GIS局部放电的检测效率,提高GIS局部放电的模式识别准确率。Therefore, it is necessary to study a new detection method for partial discharge, in order to reduce the detection difficulty of partial discharge in GIS, improve the detection efficiency of partial discharge in GIS, and improve the accuracy of pattern recognition in GIS partial discharge.
发明内容Contents of the invention
为了解决现有技术中所存在的上述问题,本发明提供一种GIS局部放电超高频带电检测方法。In order to solve the above-mentioned problems existing in the prior art, the present invention provides a GIS partial discharge ultra-high frequency charged detection method.
本发明提供的技术方案是:一种GIS局部放电超高频带电检测方法,其改进之处在于:所述方法包括如下步骤:The technical solution provided by the present invention is: a GIS partial discharge ultra-high frequency charged detection method, and its improvement is that: the method includes the following steps:
步骤S1超高频传感器接收所述GIS局部放电产生的电磁脉冲信号,并将所述电磁脉冲信号转化为高频电压信号后通过屏蔽电缆传输给局部放电检测仪;同时,无线工频信号发生装置向所述局部放电检测仪发射工频电压信号;Step S1 The ultra-high frequency sensor receives the electromagnetic pulse signal generated by the partial discharge of the GIS, and converts the electromagnetic pulse signal into a high-frequency voltage signal and transmits it to the partial discharge detector through a shielded cable; at the same time, the wireless power frequency signal generating device transmitting a power frequency voltage signal to the partial discharge detector;
步骤S2所述局部放电检测仪对所述高频电压信号和所述工频电压信号进行数据解析得到PRPD放电图谱以及超高频放电脉冲波形;In step S2, the partial discharge detector performs data analysis on the high frequency voltage signal and the power frequency voltage signal to obtain a PRPD discharge spectrum and a UHF discharge pulse waveform;
步骤S3,所述局部放电检测仪对所述PRPD放电图谱和所述超高频放电脉冲波形分别进行PRPD聚类分析和脉冲波形时频分析,并根据所述PRPD聚类分析结果和所述脉冲波形时频分析结果识别所述GIS局部放电的放电类型。Step S3, the partial discharge detector performs PRPD cluster analysis and pulse waveform time-frequency analysis on the PRPD discharge spectrum and the UHF discharge pulse waveform respectively, and according to the PRPD cluster analysis results and the pulse waveform Waveform time-frequency analysis results identify the discharge type of the GIS partial discharge.
优选的,所述步骤S1中,所述超高频传感器为超高频微带贴片天线,所述高频微带贴片天线的长为5cm,宽为3.5cm,厚度为0.2cm,其带宽为0.4GHz~2.7GHz;所述高频微带贴片天线粘贴在所述GIS的内外表面。Preferably, in the step S1, the UHF sensor is a UHF microstrip patch antenna, the high frequency microstrip patch antenna has a length of 5 cm, a width of 3.5 cm, and a thickness of 0.2 cm, which The bandwidth is 0.4GHz-2.7GHz; the high-frequency microstrip patch antenna is pasted on the inner and outer surfaces of the GIS.
优选的,所述步骤S1中,所述无线工频信号发生装置安装在所述超高频微带贴片旁,所述局部放电检测仪内加装有低频信号接收器,所述局部放电检测仪用所述低频信号接收器接收所述无线工频信号发生装置发送的工频电压信号。Preferably, in the step S1, the wireless power frequency signal generating device is installed next to the UHF microstrip patch, and a low frequency signal receiver is installed in the partial discharge detector, and the partial discharge detector The instrument uses the low frequency signal receiver to receive the power frequency voltage signal sent by the wireless power frequency signal generator.
优选的,所述步骤S2中,所述局部放电检测仪对所述高频电压信号的幅值和频率、以及所述工频电压信号的相位进行数据解析,得到所述PRPD放电图谱以及超高频放电脉冲波形。Preferably, in the step S2, the partial discharge detector performs data analysis on the amplitude and frequency of the high-frequency voltage signal and the phase of the power frequency voltage signal to obtain the PRPD discharge spectrum and superhigh Frequency discharge pulse waveform.
优选的,所述步骤S3中的PRPD聚类分析的方法为:提取PRPD放电图谱的特征参数,所述特征参数包括:分型特征参数、矩特征参数、以及统计特征参数;Preferably, the method of the PRPD cluster analysis in the step S3 is: extracting the characteristic parameters of the PRPD discharge spectrum, the characteristic parameters include: type characteristic parameters, moment characteristic parameters, and statistical characteristic parameters;
所述分型特征参数包括:工频正半波局放图像分维数归一化值f1,工频正半波局放高值灰度图像分维数归一化值f2,工频正半波局放图像二阶广义维数归一化值f3,工频负半波局放图像分维数归一化值f4,工频负半波局放高值灰度图像分维数归一化值f5,工频负半波局放图像二阶广义维数归一化值f6;The type characteristic parameters include: the normalized value f1 of the fractal dimension of the power frequency positive half-wave partial discharge image, the normalized value f2 of the fractal dimension of the power frequency positive half wave partial discharge high value grayscale image, the normalized value f2 of the power frequency positive half wave partial discharge image The normalized value of the second-order generalized dimension of the wave partial discharge image is f3, the normalized value of the fractal dimension of the power frequency negative half-wave partial discharge image is f4, and the normalized value of the fractal dimension of the power frequency negative half-wave partial discharge high-value grayscale image The value f5, the second-order generalized dimension normalized value f6 of the power frequency negative half-wave partial discharge image;
所述矩特征参数包括:工频正半波局放图像灰度重心坐标f7,工频负半波局放图像灰度重心坐标f8,工频正半波局放图像主轴方向特征参数f9,工频负半波局放图像主轴方向特征参数f10;The moment feature parameters include: the gray scale center of gravity coordinates f7 of the power frequency positive half-wave partial discharge image, the gray scale center of gravity coordinates f8 of the power frequency negative half wave partial discharge image, the characteristic parameter f9 of the main axis direction of the power frequency positive half wave partial discharge image, The characteristic parameter f10 of the main axis direction of the frequency negative half-wave partial discharge image;
所述统计特征参数包括:工频正半波放电量与总放电量的比值f11,工频正半波放电次数与总放电次数的比值f12,工频正半波起始放电相位的归一化值f13,工频负半波起始放电相位的归一化值f14,工频正、负半波放电图像的相关系数f15。The statistical characteristic parameters include: the ratio f11 of the power frequency positive half-wave discharge volume to the total discharge volume, the ratio f12 of the power frequency positive half-wave discharge times to the total discharge times, and the normalization of the power frequency positive half-wave initial discharge phase The value f13, the normalized value f14 of the initial discharge phase of the power frequency negative half-wave, and the correlation coefficient f15 of the power frequency positive and negative half-wave discharge images.
优选的,所述步骤S3中的脉冲波形时频分析包括如下步骤:Preferably, the pulse waveform time-frequency analysis in the step S3 includes the following steps:
1)采用如下公式(1)对所述超高频放电脉冲波形z(t)进行Gobor变换,得到时频分析图谱Gf(a,b,ω):1) The following formula (1) is used to perform Gobor transformation on the UHF discharge pulse waveform z(t) to obtain the time-frequency analysis spectrum G f (a, b, ω):
其中:为高斯窗函数ga(t-b)的共轭函数;t为时间,ω为角频率,f为频率,b为窗口平移参数,a为窗口尺度调整参数;in: is the conjugate function of the Gaussian window function g a (tb); t is time, ω is the angular frequency, f is the frequency, b is the window translation parameter, and a is the window scale adjustment parameter;
2)提取所述时频分析图谱的特征参数,所述特征参数包括:Gf(a,b,ω)最大幅值点所对应的时间tm,Gf(a,b,ω)最大幅值点所对应的频率fm,放电脉冲起始时间和最大幅值处时间之差Δtm。2) Extracting the characteristic parameters of the time-frequency analysis spectrum, the characteristic parameters include: the time t m corresponding to the maximum amplitude point of G f (a, b, ω), the maximum amplitude of G f (a, b, ω) The frequency f m corresponding to the value point, the difference Δt m between the start time of the discharge pulse and the time at the maximum amplitude.
优选的,所述步骤S3中,所述局部放电检测仪采用BP人工神经网络对所提取的PRPD放电图谱的特征参数、以及所述时频分析图谱的特征参数进行训练,根据训练结果输出对应的所述GIS局部放电的放电类型。Preferably, in the step S3, the partial discharge detector uses a BP artificial neural network to train the characteristic parameters of the extracted PRPD discharge spectrum and the characteristic parameters of the time-frequency analysis spectrum, and output the corresponding The discharge type of the GIS PD.
进一步,所述BP神经网络包括输入层、中间层和输出层;所述输入层包括与所述PRPD放电图谱的15个特征参数以及所述时频分析图谱的3个特征参数分别相对应的18个输入层神经元;所述中间层内置5种典型放电样本数据;所述输出层包括与所述中间层的5种典型放电样本数据相对应的5个输出层神经元。Further, the BP neural network includes an input layer, an intermediate layer and an output layer; the input layer includes 18 corresponding to the 15 characteristic parameters of the PRPD discharge spectrum and the 3 characteristic parameters of the time-frequency analysis spectrum respectively. input layer neurons; the middle layer has 5 typical discharge sample data built in; the output layer includes 5 output layer neurons corresponding to the 5 typical discharge sample data of the middle layer.
进一步,所述中间层的5个典型放电样本数据包括噪声样本数据、针尖放电样本数据、沿面放电样本数据、气隙放电样本数据和悬浮放电样本数据;Further, the five typical discharge sample data of the intermediate layer include noise sample data, needle point discharge sample data, creeping discharge sample data, air gap discharge sample data and suspension discharge sample data;
PRPD放电图谱的特征参数、以及时频分析图谱的特征参数输入到所述BP神经网络的输入层,在所述输入层经过归一化处理后,与所述BP神经网络中间层的5种典型放电样本数据进行训练,得出与所述PRPD放电图谱的特征参数、以及所述时频分析图谱的特征参数相对应的放电类型,并通过所述BP神经网络的输出层输出。The characteristic parameters of the PRPD discharge spectrum and the characteristic parameters of the time-frequency analysis spectrum are input to the input layer of the BP neural network. The discharge sample data is trained to obtain the discharge type corresponding to the characteristic parameters of the PRPD discharge spectrum and the characteristic parameters of the time-frequency analysis spectrum, and output through the output layer of the BP neural network.
进一步,所述放电类型包括噪声、针尖放电、沿面放电、气隙放电和悬浮放电。Further, the discharge types include noise, needle point discharge, creeping discharge, air gap discharge and levitation discharge.
与最接近的技术方案相比,本发明具有如下显著进步:Compared with the closest technical solution, the present invention has the following remarkable progress:
1)本发明提供的技术方案将PRPD放电图谱和超高频放电脉冲波形相结合,通过PRPD聚类分析和脉冲波形时频分析提取相应的特征参数,并利用BP人工神经元网络对特征参数进行训练,得到GIS局部放电的放电类型,提高了GIS局部放电检测的准确性和可靠性;1) The technical solution provided by the present invention combines PRPD discharge spectrum and UHF discharge pulse waveform, extracts corresponding characteristic parameters through PRPD cluster analysis and pulse waveform time-frequency analysis, and utilizes BP artificial neuron network to carry out characteristic parameters Training, get the discharge type of GIS partial discharge, improve the accuracy and reliability of GIS partial discharge detection;
2)采用超高频微带贴片天线检测GIS局部放电产生的电磁脉冲信号与传统的超高频天线相比,具有更小的体积,可以方面粘贴在GIS腔体的内外表面,降低了检测难度;2) Compared with the traditional UHF antenna, the UHF microstrip patch antenna is used to detect the electromagnetic pulse signal generated by the partial discharge of GIS. It has a smaller volume and can be pasted on the inner and outer surfaces of the GIS cavity, reducing the detection difficulty;
3)局部放电检测仪内置无线接收装置,接收现场无线工频信号发生装置产生的工频电压相位信号,局部放电检测仪仅设有与超高频传感器连接的一条电缆,方便了现场操作,降低了检测难度。3) The partial discharge detector has a built-in wireless receiving device to receive the power frequency voltage phase signal generated by the on-site wireless power frequency signal generator. The partial discharge detector is only equipped with a cable connected to the UHF sensor, which facilitates on-site operation and reduces detection difficulty.
附图说明Description of drawings
图1为微带贴片天线的结构示意图;Fig. 1 is the structural representation of microstrip patch antenna;
图2为超高频局部放电带电检测装置在一台GIS上测试示意图;Figure 2 is a schematic diagram of testing the UHF partial discharge charged detection device on a GIS;
图3为Gabor时频变换结果图;Fig. 3 is Gabor time-frequency transformation result figure;
图4为BP人工神经元网络结构图。Figure 4 is a structural diagram of the BP artificial neuron network.
具体实施方式detailed description
为了更好地理解本发明,下面结合说明书附图和实例对本发明的内容做进一步的说明。In order to better understand the present invention, the content of the present invention will be further described below in conjunction with the accompanying drawings and examples.
图1为本发明所设计的微带贴片天线的示意图,该天线长为5cm,宽为3.5cm,厚度为0.2cm,带宽为0.4GHz~2.7GHz,既可以作为内置传感器安装在GIS腔体内,也可以作为外置传感器安装在GIS盆式绝缘子外表面或GIS腔体外表面。Fig. 1 is a schematic diagram of the microstrip patch antenna designed by the present invention, the antenna is 5cm long, 3.5cm wide, 0.2cm thick, and has a bandwidth of 0.4GHz to 2.7GHz, which can be installed in the GIS cavity as a built-in sensor , can also be installed as an external sensor on the outer surface of the GIS pot insulator or the outer surface of the GIS cavity.
图2为本发明对一台110kV单相GIS现场检测示意图。采用超高频传感器、无线工频信号发生装置和局部放电检测仪检测GIS局部放电的放电类型;Fig. 2 is a schematic diagram of on-site detection of a 110kV single-phase GIS according to the present invention. Use ultra-high frequency sensors, wireless power frequency signal generators and partial discharge detectors to detect the discharge type of partial discharge in GIS;
超高频传感器采用微带贴片天线,检测时将超高频传感器粘贴在GIS腔体外侧,无线工频信号发生装置安装在超高频传感器旁,通过超高频传感器将GIS内部缺陷导致的电磁波信号转化为高频电压信号,发送给局部放电检测仪,局部放电检测仪内置低频信号接收器,通过低频信号接收器接收无线工频信号发生装置发送的工频电压信号,局部放电检测仪对超高频传感器发送的高频电压信号的幅值和频率、以及工频电压信号的相位进行数据解析,得到PRPD谱图以及超高频放电脉冲波形;再分别对PRPD放电图谱和超高频放电脉冲波形进行PRPD聚类分析和脉冲波形时频分析;得到PRPD图谱以及时频分析图谱的特征参数,然后利用BP人工神经元网络对特征参数进行训练,识别出GIS局部放电的放电类型,识别结果分为噪声、针尖放电、沿面放电、气隙放电和悬浮放电五种类型。The ultra-high frequency sensor adopts a microstrip patch antenna. The ultra-high frequency sensor is pasted outside the GIS cavity during detection, and the wireless power frequency signal generator is installed next to the ultra-high frequency sensor. The electromagnetic wave signal is converted into a high-frequency voltage signal and sent to the partial discharge detector. The partial discharge detector has a built-in low-frequency signal receiver, and the low-frequency signal receiver receives the power frequency voltage signal sent by the wireless power frequency signal generator. The partial discharge detector The amplitude and frequency of the high-frequency voltage signal sent by the UHF sensor and the phase of the power frequency voltage signal are analyzed to obtain the PRPD spectrum and UHF discharge pulse waveform; and then the PRPD discharge spectrum and UHF discharge are respectively analyzed. Perform PRPD cluster analysis and pulse waveform time-frequency analysis on the pulse waveform; obtain the characteristic parameters of the PRPD map and the time-frequency analysis map, and then use the BP artificial neuron network to train the characteristic parameters to identify the discharge type of GIS partial discharge and the recognition results It is divided into five types: noise, needle point discharge, surface discharge, air gap discharge and suspension discharge.
如下表1所示:PRPD聚类分析主要包括:提取PRPD图谱的分型特征、矩特征以及统计特征共计15个特征参数。As shown in Table 1 below: PRPD cluster analysis mainly includes: extracting 15 characteristic parameters of PRPD spectrum's typing features, moment features and statistical features.
表1PRPD谱图特征参数Table 1 The characteristic parameters of PRPD spectrum
脉冲波形时频分析包括两个步骤:Pulse waveform time-frequency analysis consists of two steps:
1)采用公式(1)对超高频放电脉冲波形z(t)进行Gobor变换,得到z(t)的时频分析图谱Gf(a,b,ω):1) Use formula (1) to perform Gobor transformation on the UHF discharge pulse waveform z(t), and obtain the time-frequency analysis spectrum G f (a,b,ω) of z(t):
为高斯窗函数ga(t-b)的共轭函数;t为时间,f为频率,w为角频率,b为窗口平移参数,a为窗口尺度调整参数; is the conjugate function of Gaussian window function g a (tb); t is time, f is frequency, w is angular frequency, b is window translation parameter, a is window scale adjustment parameter;
2)得到时频分析图谱后,提取时频分析图谱中的特征参数,如表2所示:2) After obtaining the time-frequency analysis spectrum, extract the characteristic parameters in the time-frequency analysis spectrum, as shown in Table 2:
表2时频分析图谱特征参数Table 2 Time-frequency analysis map characteristic parameters
图3为本发明针对测试的一种放电脉冲信号时频变换的结果,可以看出时频联合分析具有良好的时频聚集性。Fig. 3 is the result of the time-frequency transformation of a discharge pulse signal tested by the present invention, it can be seen that the joint time-frequency analysis has good time-frequency aggregation.
得到PRPD放电图谱的特征参数、以及时频分析图谱的特征参数后,局部放电检测仪采用BP人工神经网络对所提取的PRPD放电图谱的特征参数、以及所述时频分析图谱的特征参数进行训练,根据训练结果输出对应的GIS局部放电的放电类型。After obtaining the characteristic parameters of the PRPD discharge spectrum and the characteristic parameters of the time-frequency analysis spectrum, the partial discharge detector adopts the BP artificial neural network to train the characteristic parameters of the extracted PRPD discharge spectrum and the characteristic parameters of the time-frequency analysis spectrum , output the discharge type of the corresponding GIS partial discharge according to the training result.
如图4所示:BP人工神经网络包括输入层、中间层和输出层;由于PRPD数据提取聚类特征参数以及脉冲波形数据提取时频联合分布特征共计18个参数,BP神经元网络的输入层神经元为18个;中间层为内置噪声、针尖放电、沿面放电、气隙放电和悬浮放电五种典型放电样本数据;BP神经元网络的输出层神经元为5个,输出模式为噪声、针尖放电、沿面放电、气隙放电和悬浮放电五种。在输入层输入放电特征数据后,与样本数据进行训练,直到输出误差小于系统设置误差,再由输出层输出与放电特征数据相对应的放电类型,实现GIS局部放电的模式识别。As shown in Figure 4: the BP artificial neural network includes an input layer, an intermediate layer and an output layer; since the PRPD data extracts the clustering feature parameters and the pulse waveform data extracts a total of 18 parameters of the time-frequency joint distribution feature, the input layer of the BP neuron network There are 18 neurons; the middle layer is five typical discharge sample data of built-in noise, needle tip discharge, surface discharge, air gap discharge and suspension discharge; the output layer of BP neuron network has 5 neurons, and the output mode is noise, needle tip There are five types of discharge, creeping discharge, air gap discharge and suspension discharge. After the discharge characteristic data is input in the input layer, it is trained with the sample data until the output error is less than the system setting error, and then the output layer outputs the discharge type corresponding to the discharge characteristic data to realize the pattern recognition of GIS partial discharge.
以上仅为本发明的实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均在申请待批的本发明的权利要求范围之内。The above is only an embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention are all pending applications for the rights of the present invention. within the required range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410849631.0A CN105807190B (en) | 2014-12-29 | 2014-12-29 | A GIS partial discharge ultra-high frequency band electrical detection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410849631.0A CN105807190B (en) | 2014-12-29 | 2014-12-29 | A GIS partial discharge ultra-high frequency band electrical detection method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105807190A true CN105807190A (en) | 2016-07-27 |
CN105807190B CN105807190B (en) | 2019-06-18 |
Family
ID=56421494
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410849631.0A Active CN105807190B (en) | 2014-12-29 | 2014-12-29 | A GIS partial discharge ultra-high frequency band electrical detection method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105807190B (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106353579A (en) * | 2016-08-30 | 2017-01-25 | 浙江图维科技股份有限公司 | Device and method for integrated monitoring of cable current, conductor temperature and internal partial discharge |
CN106443379A (en) * | 2016-09-22 | 2017-02-22 | 广州供电局有限公司 | Transformer partial discharge fault type identifying method and transformer partial discharge fault type identifying device |
CN106841939A (en) * | 2016-12-23 | 2017-06-13 | 西安交通大学 | The portable acoustoelectric combined detection means of GIS partial discharge and its detection method |
CN107505541A (en) * | 2017-06-26 | 2017-12-22 | 广西电网有限责任公司电力科学研究院 | A kind of recognition methods of partial discharge of transformer pattern |
CN107765156A (en) * | 2017-12-07 | 2018-03-06 | 江苏省电力试验研究院有限公司 | A kind of system and method for the power distribution network main equipment live detection based on power line carrier, PLC |
CN107831409A (en) * | 2017-09-22 | 2018-03-23 | 国网山东省电力公司电力科学研究院 | The method and method for detecting abnormality of superfrequency partial discharge detection TuPu method parameter extraction |
CN112308049A (en) * | 2020-12-04 | 2021-02-02 | 广微(中山)智能科技有限公司 | Pulse signal feature extraction and identification method based on multiple types of particles in electrically sensitive area |
CN112990655A (en) * | 2021-02-03 | 2021-06-18 | 中国长江电力股份有限公司 | GIS equipment partial discharge danger degree evaluation algorithm |
CN113156284A (en) * | 2021-04-28 | 2021-07-23 | 西安西电开关电气有限公司 | Method and device for processing interference signals of GIS equipment switching action |
CN114065824A (en) * | 2022-01-17 | 2022-02-18 | 陕西公众电气股份有限公司 | Method for quickly identifying type of partial discharge signal |
CN114137369A (en) * | 2021-11-19 | 2022-03-04 | 国网山东省电力公司电力科学研究院 | Power equipment partial discharge mode identification method and system |
CN114355114A (en) * | 2021-10-18 | 2022-04-15 | 广东电网有限责任公司 | GIS partial discharge detection method, device, medium and terminal equipment |
CN114527360A (en) * | 2022-01-25 | 2022-05-24 | 深圳泰豪数字科技有限公司 | Partial discharge detection method and device for switch cabinet and storage medium |
CN114994587A (en) * | 2022-08-04 | 2022-09-02 | 国网江西省电力有限公司电力科学研究院 | A Quantitative Evaluation Method of Anti-interference Performance of Partial Discharge Detection Instrument |
CN115187527A (en) * | 2022-06-27 | 2022-10-14 | 上海格鲁布科技有限公司 | A Separation and Identification Method of Multi-source Hybrid UHF Partial Discharge Spectrum |
CN117665505A (en) * | 2023-11-30 | 2024-03-08 | 上海吴淞电气实业有限公司 | GTU test equipment, test method and device thereof and storage medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046596A1 (en) * | 2004-10-26 | 2006-05-04 | Matsushita Electric Industrial Co., Ltd. | Radio terminal device, management terminal device, and radio communication method |
CN102353877A (en) * | 2011-06-10 | 2012-02-15 | 河南电力试验研究院 | Partial discharge detection method for realizing phase resolved partial discharge (PRPD) pattern and time resolved partial discharge (TRPD) pattern |
CN102435922A (en) * | 2011-10-26 | 2012-05-02 | 上海交通大学 | Acoustic-electric combined detection system and positioning method for GIS (Gas Insulated Switchgear) local discharge |
CN102608502A (en) * | 2012-03-01 | 2012-07-25 | 华北电力大学 | Intelligent ultrahigh frequency local charge sensor |
CN103091612A (en) * | 2013-01-16 | 2013-05-08 | 重庆市电力公司电力科学研究院 | Separation and recognition algorithm for transformer oiled paper insulation multiple partial discharging source signals |
-
2014
- 2014-12-29 CN CN201410849631.0A patent/CN105807190B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006046596A1 (en) * | 2004-10-26 | 2006-05-04 | Matsushita Electric Industrial Co., Ltd. | Radio terminal device, management terminal device, and radio communication method |
CN102353877A (en) * | 2011-06-10 | 2012-02-15 | 河南电力试验研究院 | Partial discharge detection method for realizing phase resolved partial discharge (PRPD) pattern and time resolved partial discharge (TRPD) pattern |
CN102435922A (en) * | 2011-10-26 | 2012-05-02 | 上海交通大学 | Acoustic-electric combined detection system and positioning method for GIS (Gas Insulated Switchgear) local discharge |
CN102608502A (en) * | 2012-03-01 | 2012-07-25 | 华北电力大学 | Intelligent ultrahigh frequency local charge sensor |
CN103091612A (en) * | 2013-01-16 | 2013-05-08 | 重庆市电力公司电力科学研究院 | Separation and recognition algorithm for transformer oiled paper insulation multiple partial discharging source signals |
Non-Patent Citations (1)
Title |
---|
任重 等: "检测GIS局部放电的超高频微带贴片天线设计", 《绝缘材料》 * |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106353579A (en) * | 2016-08-30 | 2017-01-25 | 浙江图维科技股份有限公司 | Device and method for integrated monitoring of cable current, conductor temperature and internal partial discharge |
CN106443379A (en) * | 2016-09-22 | 2017-02-22 | 广州供电局有限公司 | Transformer partial discharge fault type identifying method and transformer partial discharge fault type identifying device |
CN106443379B (en) * | 2016-09-22 | 2019-08-16 | 广州供电局有限公司 | The recognition methods of partial discharge of transformer fault type and device |
CN106841939A (en) * | 2016-12-23 | 2017-06-13 | 西安交通大学 | The portable acoustoelectric combined detection means of GIS partial discharge and its detection method |
CN107505541A (en) * | 2017-06-26 | 2017-12-22 | 广西电网有限责任公司电力科学研究院 | A kind of recognition methods of partial discharge of transformer pattern |
CN107505541B (en) * | 2017-06-26 | 2019-11-01 | 广西电网有限责任公司电力科学研究院 | A kind of mode identification method of partial discharge of transformer |
CN107831409A (en) * | 2017-09-22 | 2018-03-23 | 国网山东省电力公司电力科学研究院 | The method and method for detecting abnormality of superfrequency partial discharge detection TuPu method parameter extraction |
CN107831409B (en) * | 2017-09-22 | 2020-08-18 | 国网山东省电力公司电力科学研究院 | Ultrahigh frequency partial discharge detection map characteristic parameter extraction method and anomaly detection method |
CN107765156A (en) * | 2017-12-07 | 2018-03-06 | 江苏省电力试验研究院有限公司 | A kind of system and method for the power distribution network main equipment live detection based on power line carrier, PLC |
CN112308049A (en) * | 2020-12-04 | 2021-02-02 | 广微(中山)智能科技有限公司 | Pulse signal feature extraction and identification method based on multiple types of particles in electrically sensitive area |
CN112990655A (en) * | 2021-02-03 | 2021-06-18 | 中国长江电力股份有限公司 | GIS equipment partial discharge danger degree evaluation algorithm |
CN113156284A (en) * | 2021-04-28 | 2021-07-23 | 西安西电开关电气有限公司 | Method and device for processing interference signals of GIS equipment switching action |
CN114355114A (en) * | 2021-10-18 | 2022-04-15 | 广东电网有限责任公司 | GIS partial discharge detection method, device, medium and terminal equipment |
CN114137369A (en) * | 2021-11-19 | 2022-03-04 | 国网山东省电力公司电力科学研究院 | Power equipment partial discharge mode identification method and system |
CN114065824A (en) * | 2022-01-17 | 2022-02-18 | 陕西公众电气股份有限公司 | Method for quickly identifying type of partial discharge signal |
CN114527360A (en) * | 2022-01-25 | 2022-05-24 | 深圳泰豪数字科技有限公司 | Partial discharge detection method and device for switch cabinet and storage medium |
CN115187527A (en) * | 2022-06-27 | 2022-10-14 | 上海格鲁布科技有限公司 | A Separation and Identification Method of Multi-source Hybrid UHF Partial Discharge Spectrum |
CN114994587A (en) * | 2022-08-04 | 2022-09-02 | 国网江西省电力有限公司电力科学研究院 | A Quantitative Evaluation Method of Anti-interference Performance of Partial Discharge Detection Instrument |
CN114994587B (en) * | 2022-08-04 | 2022-12-30 | 国网江西省电力有限公司电力科学研究院 | Energy evaluation method for anti-interference performance of partial discharge detection instrument |
CN117665505A (en) * | 2023-11-30 | 2024-03-08 | 上海吴淞电气实业有限公司 | GTU test equipment, test method and device thereof and storage medium |
CN117665505B (en) * | 2023-11-30 | 2024-05-03 | 上海吴淞电气实业有限公司 | GTU test equipment, test method and device thereof and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN105807190B (en) | 2019-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105807190A (en) | GIS partial discharge ultrahigh frequency live-line detection method | |
CN105676085B (en) | Based on extra-high voltage GIS detection method for local discharge combined of multi-sensor information | |
Qi et al. | Surface discharge initiated by immobilized metallic particles attached to gas insulated substation insulators: process and features | |
Dai et al. | Feature extraction of GIS partial discharge signal based on S‐transform and singular value decomposition | |
CN103176113B (en) | Gas insulated switchgear (GIS) partial discharge calibration method and system | |
CN103926512B (en) | The method of simulation cross-linked polyethylene insulated cable shelf depreciation and analog detection platform | |
CN204044296U (en) | A kind of partial discharge detecting system | |
CN103633629B (en) | Guard method based on wavelet transformation and the HVDC transmission line of energy spectrum analysis | |
CN104166080A (en) | GIS device partial discharge defect simulation device used on non-power-frequency working condition | |
CN102928752A (en) | System and method for monitoring and analyzing insulation states of high-voltage device | |
CN107102244A (en) | A kind of discharge source localization method of GIS ultrahigh frequency local discharge on-line monitoring device | |
CN104330599B (en) | Partial-discharge ultrahigh-frequency signal simulation source | |
CN103698669A (en) | Local discharge pulse separating method for high-voltage power equipment | |
Gu et al. | Gas-insulated switchgear PD signal analysis based on Hilbert-Huang transform with fractal parameters enhancement | |
Robles et al. | Shielding effect of power transformers tanks in the ultra-high-frequency detection of partial discharges | |
CN107544044A (en) | GIS built-in ultrahigh frequency transducer sensitivity on-site calibration devices and method of calibration | |
CN107728014A (en) | Method and system based on multiple sensor signals characteristic identificating equipment insulation defect | |
CN107505551A (en) | Gas-insulated stacked switch equipment superfrequency sensor arrangement experimental rig and application | |
CN104459486A (en) | Method for evaluating insulation of crosslinked polyethylene medium-voltage cable through polarization current | |
CN107036709A (en) | A kind of transformer station's noise matching separation method | |
CN104655914B (en) | Method and device for detecting interference signals and local discharging signals of GIS equipment | |
CN103018642A (en) | Detection method of Geographic Information System (GIS) local discharging ultrahigh-frequency online monitoring device | |
CN203798969U (en) | Cable partial discharge detection system based on frequency conversion resonance voltage resistance | |
CN107167715B (en) | A kind of test loop partial discharge IED intelligence GIS and method | |
CN102508124B (en) | Detection method of partial discharge of electrical equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |