CN105805043B - 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法 - Google Patents

一种具有长短叶片特征的不可调轴流泵叶轮的设计方法 Download PDF

Info

Publication number
CN105805043B
CN105805043B CN201610213712.0A CN201610213712A CN105805043B CN 105805043 B CN105805043 B CN 105805043B CN 201610213712 A CN201610213712 A CN 201610213712A CN 105805043 B CN105805043 B CN 105805043B
Authority
CN
China
Prior art keywords
flow pump
pump impeller
stream interface
aerofoil profile
adjustable axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610213712.0A
Other languages
English (en)
Other versions
CN105805043A (zh
Inventor
冯建军
朱国俊
罗兴锜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201610213712.0A priority Critical patent/CN105805043B/zh
Publication of CN105805043A publication Critical patent/CN105805043A/zh
Application granted granted Critical
Publication of CN105805043B publication Critical patent/CN105805043B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/181Axial flow rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/66Combating cavitation, whirls, noise, vibration or the like; Balancing
    • F04D29/68Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers
    • F04D29/688Combating cavitation, whirls, noise, vibration or the like; Balancing by influencing boundary layers especially adapted for liquid pumps

Abstract

本发明公开了一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,具体包括以下步骤:根据流线法设计不可调轴流泵叶轮长叶片的三维叶型;根据设计出的长叶片三维叶型的各参数设计不可调轴流泵叶轮短叶片的三维叶型;将设计出的每个短叶片间隔布置在相邻两个设计的长叶片组成的流道中间,即得到具有长短叶片特征的不可调轴流泵叶轮。解决了轴流泵叶轮运转过程中轴流泵叶轮出口附近叶片吸力面与轮毂相交处出现脱流和旋涡,导致流体输送不稳定的问题。

Description

一种具有长短叶片特征的不可调轴流泵叶轮的设计方法
技术领域
本发明属于流体机械及工程设备技术领域,涉及一种具有长短叶片特征的不可调轴流泵叶轮的设计方法。
背景技术
小型不可调轴流泵广泛应用于渔业、农田的小规模提水和排灌,而轴流泵叶轮则是小型轴流泵装置的核心部件,其性能直接决定整个泵装置的性能,同时,小型轴流泵叶轮还可安装于离心泵叶轮的进口,作为短距诱导轮起到前置增压、改善离心泵汽蚀余量的作用,因此提升、改善小型轴流泵叶轮的性能具有重要意义。
然而,在现有的小型轴流泵叶轮的运转过程中,叶轮出口附近的叶片吸力面与轮毂相交处,经常由于流体的相对速度过低而出现脱流和旋涡,造成泵装置的效率下降,并影响出水管流态的稳定,从而对流体输送过程的稳定性造成恶劣影响。
发明内容
本发明的目的是提供一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,解决了轴流泵叶轮运转过程中轴流泵叶轮出口附近叶片吸力面与轮毂相交处出现脱流和旋涡,导致流体输送不稳定的问题。
本发明所采用的技术方案是,一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,具体包括以下步骤:
步骤1,根据流线法设计不可调轴流泵叶轮长叶片的三维叶型;
步骤2,根据步骤1设计出的长叶片三维叶型的各参数设计不可调轴流泵叶轮短叶片的三维叶型;
步骤3,将步骤2设计出的每个短叶片间隔布置在相邻两个步骤1设计的长叶片组成的流道中间,即得到具有长短叶片特征的不可调轴流泵叶轮。
本发明的特点还在于,
步骤1中具有长短叶片特征的不可调轴流泵叶轮的长叶片三维叶型的设计步骤如下:
步骤1.1,根据给定的不可调轴流泵中的设计扬程H,单位为m,设计流量Q,单位为m3/s和转速n,单位为r/min,按如下公式(1)计算不可调轴流泵叶轮的比转速ns
步骤1.2,根据步骤1.1所得的叶轮的比转速ns确定轴流泵叶轮的轮毂比dh/D及轴流泵叶轮的长叶片数目ZL
步骤1.3,计算不可调轴流泵叶轮的轮毂直径dh,单位m;
步骤1.4,从不可调轴流泵叶轮的轮毂到轮缘按相等的流面间距分为n个设计流面开展流面翼型设计,计算从不可调轴流泵叶轮的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,i=1,2……n;
步骤1.5,依据步骤1.4所得的各设计流面的叶栅稠密度(l/t)i,按照如下公式(7)获得各设计流面上翼型的弦长li
li=(Diπ/ZL)(l/t)i,i=1,2……n (7);
步骤1.6,计算不可调轴流泵叶轮中长叶片的最大厚度dLmax,在不可调轴流泵叶轮的轮毂处翼型使用最大厚度值dLmax,计算过程如公式(8)所示:
根据所得的不可调轴流泵叶轮中长叶片的最大厚度dLmax确定不可调轴流泵叶轮长叶片轮缘处翼型的最大厚度值d0max
d0max=(1/5~1/3)dLmax (9);
步骤1.7,根据步骤1.6所得计算结果求不可调轴流泵叶轮长叶片的轮毂到轮缘间各流面翼型的最大厚度dimax,i=1,2……n,计算过程如公式(10)所示:
其中,Di为各设计流面的直径,i=1,2……n,单位m;dh为不可调轴流泵叶轮的轮毂直径,单位m;
步骤1.8,分别计算编号为i的各流面处的翼型型线进口角βi1,i=1,2……n、翼型型线出口角βi2,i=1,2……n、叶弦安放角βiL,i=1,2……n以及翼型型线半径Ri,i=1,2……n,采用单圆弧型线法绘制各流面翼型型线;
步骤1.9,根据791翼型的相对厚度分布规律与步骤1.7所得的各流面最大翼型厚度值dimax对步骤1.8绘制完成的各流面翼型型线进行加厚,获得长叶片各流面上的有厚翼型,将各流面有厚翼型以翼型型线中点为基点进行组合后获得不可调轴流泵叶轮的长叶片三维叶型。
其中步骤3不可调轴流泵叶轮的轮毂直径dh的具体计算过程如下:
步骤1.3.1,根据鲁德涅夫推荐公式计算不可调轴流泵叶轮进口处的流体轴面速度vm,计算过程如公式(2)所示:
步骤1.3.2,根据步骤1.3.1所得的流体轴面速度vm和步骤1.2确定的轴流泵叶轮的轮毂比dh/D计算轴流泵叶轮长叶片的外径D,计算过程如公式(3)所示:
步骤1.3.3,根据步骤1.3.2计算所得的轴流泵叶轮长叶片的外径D与步骤1.2确定的轴流泵叶轮的轮毂比dh/D计算轴流泵叶轮的轮毂直径dh
其中步骤1.4从不可调轴流泵叶轮的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i的计算过程如下:
步骤1.4.1,由于各设计流面间距相等,故按照如下公式(4)计算各设计流面的直径Di,单位m:
其中,n为设计流面的个数,n=4~7;i为流面编号,i=1时代表轮毂流面,i=n时代表轮缘流面,i从轮毂到轮缘逐渐增大;
步骤1.4.2,根据步骤1.2确定的长叶片数ZL选择不可调轴流泵叶轮长叶片轮缘处叶栅稠密度(l/t)0
步骤1.4.3,已知轴流泵叶轮轮毂处的叶栅稠密度(l/t)h的值为
(l/t)h=(1.3~1.4)(l/t)0 (5);
按线性规律插值计算不可调轴流泵叶轮中长叶片的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,计算过程如公式(6)所示:
其中步骤1.8的具体计算过程如下:
依据如下公式(11)计算各流面处的翼型型线进口角βi1
其中,vim1为翼型进口轴面速度,单位为m/s;ui为圆周速度,单位为m/s,Δβi1为进口冲角,单位为°;
依据如下公式(12)计算各流面处的翼型型线出口角βi2
其中,vim2为翼型出口轴面速度,单位为m/s;viu2为出口速度的圆周分量,单位为m/s;Δβi2为出口冲角,单位为°;
依据如下公式(13)计算各流面处的叶弦安放角βiL
依据如下公式(14)计算各流面处的翼型型线半径Ri为:
其中步骤2中不可调轴流泵叶轮的短叶片三维叶型的具体设计过程如下:
步骤2.1,计算短叶片的轮缘直径Dss,计算过程如公式(15)所示:
其中,D为不可调轴流泵叶轮长叶片外径,单位为m;dh为不可调轴流泵叶轮的轮毂直径,单位为m;
步骤2.2.从短叶片的轮毂到轮缘按相等的流面间距分为nsl个流面开展短叶片翼型设计,根据步骤2.1所得短叶片的轮缘直径Dss,通过如下公式(16)计算各流面的直径Dsj,j=1.2……nsl为:
其中,nsl为短叶片设计流面的个数,nsl=3或4;j为流面编号,j=1时代表轮毂流面,j=nsl时代表轮缘流面,j从轮毂到轮缘逐渐增大;
步骤2.3,依据步骤2.2所得的各流面的直径Dsj计算各流面叶栅稠密度(l/t)j,计算过程如公式(17)所示:
其中,(l/t)h为不可调轴流泵叶轮长叶片轮毂处的叶栅稠密度;(l/t)0为不可调轴流泵叶轮长叶片轮缘处的叶栅稠密度;
步骤2.4,根据步骤2.3计算出的各流面叶栅稠密度(l/t)j,通过如下公式(18)计算各设计流面上翼型型线弦长lj为:
lj=(Dsjπ/ZL)(l/t)j,j=1.2……nsl (18);
其中,ZL为不可调轴流泵叶轮长叶片的叶片数;
步骤2.5,计算不可调轴流泵叶轮短叶片轮毂处翼型最大厚度dsmax,计算过程如公式(19)所示:
其中,dLmax为不可调轴流泵叶轮长叶片轮毂处翼型的最大厚度值;
步骤2.6,计算不可调轴流泵叶轮短叶片轮缘处翼型最大厚度ds0max,求解过程如公式(20)所示:
其中,d0max为不可调轴流泵叶轮长叶片轮缘处翼型的最大厚度值,dh为轴流泵叶轮的轮毂直径;
步骤2.7,根据步骤2.5所得的不可调轴流泵叶轮短叶片轮毂处翼型最大厚度dsmax与步骤2.6所得的不可调轴流泵叶轮短叶片轮缘处翼型最大厚度ds0max,计算短叶片轮毂到轮缘间各流面翼型的最大厚度djmax,计算过程如公式(21)所示:
步骤2.8,分别计算各流面处翼型型线进口角βj1、翼型型线出口角βj2、叶弦安放角βjL以及翼型型线半径Rj,然后采用单圆弧型线法绘制各流面翼型型线;
步骤2.9,采用相同的方法对步骤2.8绘制的短叶片各流面上的翼型型线进行修改,获得不可调轴流泵的短叶片翼型型线;
步骤2.10,根据791翼型的相对厚度分布规律与步骤2.5计算出的短叶片轮毂处翼型最大厚度dsmax、步骤2.6计算出的短叶片轮缘处翼型最大厚度ds0max及步骤2.7计算出的短叶片轮毂到轮缘间各流面翼型的最大厚度djmax对各流面上的短叶片翼型型线进行加厚,获得各流面上的短叶片有厚翼型,将各流面上的短叶片有厚翼型以翼型型线中点为基点进行组合后获得不可调轴流泵叶轮的短叶片三维叶型。
其中步骤2.8的具体计算过程如下:
采用如下公式(22)计算各流面处的翼型型线进口角βj1为:
其中,vjm1为翼型进口轴面速度,单位为m/s;uj为圆周速度,单位为m/s,Δβj1为进口冲角,单位为°;
采用如下公式(23)计算各流面处的翼型型线出口角βj2为:
其中,vjm2为翼型出口轴面速度,单位为m/s;vju2为出口速度的圆周分量,单位为m/s,Δβj2为出口冲角,单位为°;
采用如下公式(24)计算各流面处的叶弦安放角βjL为:
采用如下公式(25)计算翼型型线半径Rj为:
其中步骤2.9的具体修改过程如下:
针对步骤2.8绘制的编号为j的流面上的翼型型线,从距翼型进口点弧长距离为sj的位置处将翼型型线进行截断,删除这段弧长为sj的型线而保留编号为j的流面上的剩余翼型型线,剩余的翼型型线即为编号为j的流面处的短叶片翼型型线,sj的取值如下式(26)所示:
sj=αjLj,j=1,2……nsl (26);
其中,Lj为编号为j的流面处翼型型线弧长,通过圆弧弧长计算公式求得,单位为m;αj为无量纲截断系数,取值范围为[1/3,1/2],αj在短叶片的轮毂流面处取最小值,在短叶片的轮缘流面处取最大值,中间各流面处的值按轮毂到轮缘线性分布插值获得,具体计算公式如下:
其中步骤3所得的具有长短叶片特征的不可调轴流泵叶轮中短叶片与长叶片的数量相等。
本发明的有益效果是,通过在不可调轴流泵叶轮两个相邻长叶片间的流道内增加一个短叶片,消除了运转过程中不可调轴流泵叶轮出口附近叶片吸力面与轮毂相交处的脱流和旋涡,改善了不可调轴流泵叶轮出口的流体流态,解决了脱流和旋涡造成的不可调轴流泵叶轮输送流体的不稳定问题,从而提升不可调轴流泵输送流体的稳定性。
附图说明
图1是本发明一种具有长短叶片特征的不可调轴流泵叶轮的设计方法设计出的不可调轴流泵叶轮轴面投影图;
图2是本发明一种具有长短叶片特征的不可调轴流泵叶轮的设计方法设计出的短叶片翼型型线示意图;
图3是本发明一种具有长短叶片特征的不可调轴流泵叶轮的设计方法设计出的不可调轴流泵叶轮示意图;
图4是本发明一种具有长短叶片特征的不可调轴流泵叶轮的设计方法设计出的短叶片翼型安放型式示意图;
图5是本发明一种具有长短叶片特征的不可调轴流泵叶轮的设计方法的一种实施例的结构示意图。
图中,1.长叶片,2.短叶片,3.长叶片进口边,4.叶长叶片出口边,5.不可调轴流泵叶轮旋转中心线,6.短叶片翼型型线,7.具有长短叶片特征的不可调轴流泵叶轮。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种具有长短叶片特征的不可调轴流泵叶轮7的设计方法,具体包括以下步骤:
步骤1.根据流线法设计不可调轴流泵叶轮的长叶片1三维叶型,具体过程如下:
步骤1.1,根据给定的不可调轴流泵中的设计扬程H(单位为m)、设计流量Q(单位为m3/s)和转速n(单位为r/min)按如下公式(1)计算叶轮的比转速ns
步骤1.2,根据步骤1.1所得的叶轮的比转速ns确定轴流泵叶轮的轮毂比dh/D及不可调轴流泵叶轮的长叶片1数目ZL,不可调轴流泵叶轮7的轮毂比dh/D参照如下表1确定:
表1
ns 500 600 700 800 900 1000 1100
dh/D 0.5~0.63 0.46~0.59 0.44~0.56 0.4~0.53 0.37~0.50 0.35~0.48 0.33~0.46
不可调轴流泵叶轮7的长叶片1数目ZL参照如下表2确定:
表2
ns ≤500 500~800 >800
ZL 6 4或5 3或4
步骤1.3,计算不可调轴流泵叶轮的轮毂直径dh及叶轮长叶片外径D,具体过程如下:
步骤1.3.1,根据鲁德涅夫推荐公式计算不可调轴流泵叶轮进口处的流体轴面速度vm,计算过程如公式(2)所示:
步骤1.3.2,根据步骤1.3.1所得的流体轴面速度vm和步骤1.2确定的不可调轴流泵叶轮的轮毂比dh/D计算不可调轴流泵叶轮长叶片1的外径D,计算过程如公式(3)所示:
步骤1.3.3,根据步骤1.3.2计算所得的不可调轴流泵叶轮长叶片1的外径D与步骤1.2确定的不可调轴流泵叶轮的轮毂比dh/D计算不可调轴流泵叶轮的轮毂直径dh
步骤1.4,从不可调轴流泵叶轮的轮毂到轮缘按相等的流面间距分为n个设计流面开展流面翼型设计,计算从不可调轴流泵叶轮的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,具体计算过程如下:
步骤1.4.1,由于各设计流面间距相等,因此可按照如下公式(4)计算各设计流面的直径Di,单位m:
其中,n为设计流面的个数,n=4~7;i为流面编号,i=1时代表轮毂流面,i=n时代表轮缘流面,i从轮毂到轮缘逐渐增大;
步骤1.4.2,根据步骤1.2确定的长叶片数ZL选择不可调轴流泵叶轮长叶片1轮缘处叶栅稠密度(l/t)0,轴流泵叶轮长叶片1轮缘处叶栅稠密度(l/t)0参照如下表3确定:
表3
ZL=3 ZL=4 ZL=5 ZL=6
(l/t)0=0.65~0.75 (l/t)0=0.75~0.85 (l/t)0=0.84~0.094 (l/t)0=0.92~1.02
步骤1.4.3,已知不可调轴流泵叶轮轮毂处的叶栅稠密度(l/t)h的值为
(l/t)h=(1.3~1.4)(l/t)0 (5);
按线性规律插值计算轴流泵叶轮中长叶片1的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,计算过程如公式(6)所示:
步骤1.5,依据步骤1.4所得的各设计流面的叶栅稠密度(l/t)i,按照如下公式(7)获得各设计流面上翼型的弦长li
li=(Diπ/ZL)(l/t)i(i=1,2……n) (7);
步骤1.6,计算不可调轴流泵叶轮中长叶片1的最大厚度dLmax,计算过程如公式(8)所示:
在不可调轴流泵叶轮的轮毂处翼型使用最大厚度值dLmax,轮缘处翼型的最大厚度值d0max按制造工艺取(1/5~1/3)dLmax
步骤1.7,已知轮缘处翼型的最大厚度值
d0max=(1/5~1/3)dLmax (9);
依据步骤1.6所得的不可调轴流泵叶轮中长叶片1的最大厚度dLmax计算轮毂到轮缘间各流面翼型的最大厚度dimax(i=1,2……n),计算过程如公式(10)所示:
其中Di为各设计流面的直径,单位m;dh为不可调轴流泵叶轮的轮毂直径;
步骤1.8,分别计算各流面处的翼型型线进口角βi1(i=1,2……n)、翼型型线出口角βi2(i=1,2……n)、叶弦安放角βiL(i=1,2……n)以及翼型型线半径Ri(i=1,2……n),采用单圆弧型线法绘制流面翼型型线;
依据如下公式(11)计算各流面处的翼型型线进口角βi1
其中,vim1为翼型进口轴面速度,单位为m/s;ui为圆周速度,单位为m/s,Δβi1为进口冲角,单位为°;
依据如下公式(12)计算各流面处的翼型型线出口角βi2
其中,vim2为翼型出口轴面速度,单位为m/s;viu2为翼型出口速度的圆周分量,单位为m/s;Δβi2为出口冲角,单位为°;
依据如下公式(13)计算各流面处的叶弦安放角βiL
依据如下公式(14)计算各流面处的翼型型线半径Ri为:
步骤1.9,根据791翼型的相对厚度分布规律与步骤1.7所得的各流面最大翼型厚度值dimax对各流面翼型型线进行加厚,获得各流面上的有厚翼型,将各流面有厚翼型以翼型型线中点为基点进行组合后获得不可调轴流泵叶轮的长叶片1三维叶型;
步骤2.根据步骤1设计出的不可调轴流泵叶轮中长叶片1的各参数设计不可调轴流泵叶轮的短叶片2,具体步骤如下:
步骤2.1,计算短叶片2的轮缘直径Dss,计算过程如公式(15)所示:
其中,如图1所示(图1中3代表长叶片进口边,4代表长叶片出口边,5代表不可调轴流泵叶轮旋转中心线),D为步骤1.3.2计算所得的不可调轴流泵叶轮长叶片1的外径,单位为m;dh为步骤1.3.3计算所得的不可调轴流泵叶轮7的轮毂直径,单位为m;
步骤2.2.从短叶片2的轮毂到轮缘按相等的流面间距分为nsl个流面开展短叶片2翼型设计,根据步骤2.1所得短叶片2的轮缘直径Dss,通过如下公式(16)计算各流面的直径Dsj(单位m)为:
其中,nsl为短叶片2设计流面的个数,nsl=3或4;j为流面编号,j=1时代表轮毂流面,j=nsl时代表轮缘流面,j从轮毂到轮缘逐渐增大;
步骤2.3,依据步骤2.2所得的各流面的直径Dsj计算编号为j的流面的叶栅稠密度(l/t)j,计算过程如公式(17)所示:
其中,(l/t)h为步骤1.4所得长叶片1轮毂处的叶栅稠密度;(l/t)0为步骤1.4所得长叶片1轮缘处的叶栅稠密度;
步骤2.4,根据步骤2.3计算出的各流面的叶栅稠密度(l/t)j,通过如下公式(18)计算各设计流面上翼型型线弦长lj为:
lj=(Dsjπ/ZL)(l/t)j(j=1,2……nsl) (18);
其中,ZL为步骤1.2所得的长叶片1的叶片数;
步骤2.5,计算短叶片2轮毂处翼型最大厚度dsmax,计算过程如公式(19)所示:
其中,dLmax为步骤1.6获得的长叶片1轮毂处翼型的最大厚度值;
步骤2.6,计算短叶片2轮缘处翼型最大厚度ds0max,求解过程如公式(20)所示:
其中,d0max为步骤1.6获得的长叶片1轮缘处翼型的最大厚度值,dh为步骤1.2所得的不可调轴流泵叶轮的轮毂直径;
步骤2.7,根据步骤2.5所得的短叶片2轮毂处翼型最大厚度dsmax与步骤2.6所得的短叶片2轮缘处翼型最大厚度ds0max,计算短叶片2轮毂到轮缘间各流面翼型的最大厚度djmax,计算过程如公式(21)所示:
步骤2.8,分别计算步骤2.2所划分的各流面上的翼型型线进口角βj1、翼型型线出口角βj2、叶弦安放角βjL以及翼型型线半径Rj,然后采用单圆弧型线法绘制各流面翼型型线;
采用如下公式(22)计算各流面处的翼型型线进口角βj1为:
其中,vjm1为翼型进口轴面速度,单位为m/s;uj为圆周速度,单位为m/s,Δβj1为进口冲角,单位为°;
采用如下公式(23)计算各流面处的翼型型线出口角βj2为:
其中,vjm2为翼型出口轴面速度,单位为m/s;vju2为出口速度的圆周分量,单位为m/s,Δβj2为出口冲角,单位为°;
采用如下公式(24)计算各流面处的叶弦安放角βjL为:
采用如下公式(25)计算翼型型线半径Rj为:
步骤2.9,采用相同的方法对步骤2.8绘制的各流面上的翼型型线进行修改,获得不可调轴流泵的短叶片翼型型线6,具体修改过程如下:
如图2所示,对编号为j的流面上的翼型型线AC,从距翼型进口点A弧长距离为sj的B点将翼型型线进行截断,删除型线AB只保留型线BC,将保留的型线BC作为编号为j的各流面处的短叶片翼型型线6,sj的取值如下式(26)所示:
sj=αjLj(j=1,2……nsl) (26);
其中,Lj为按步骤2.8获得的编号为j的流面处翼型型线的弧长,可通过圆弧弧长计算公式求得,单位为m;αj为无量纲截断系数,取值范围为[1/3,1/2],αj在轮毂流面处取最小值,在轮缘流面处取最大值,中间各流面处的值按轮毂到轮缘线性分布插值获得,具体计算公式如下:
步骤2.10,根据791翼型的相对厚度分布规律与步骤2.5计算出的短叶片2轮毂处翼型最大厚度dsmax、步骤2.6计算出的短叶片2轮缘处翼型最大厚度ds0max及步骤2.7计算的短叶片轮毂到轮缘间各流面翼型的最大厚度djmax对各流面短叶片翼型型线6进行加厚,获得各流面上的短叶片的有厚翼型,将各流面上短叶片的有厚翼型以翼型型线6中点为基点进行组合后获得不可调轴流泵叶轮的短叶片2三维叶型;
步骤3,将步骤2设计出的每个短叶片2布置在两个相邻(步骤1所得的)长叶片1组成的流道中间(即短叶片2与长叶片1间隔设置),且不可调流泵上长叶片1与短叶片2的数量相等,即得到具有长短叶片特征的不可调轴流泵叶轮(如图3所示),短叶片2在轴流泵上的布置方式如图4所示(t代表叶栅距离)。
采用本发明方法对某单级单吸离心泵叶轮的前置增压用小型不可调轴流泵叶轮进行了设计,具有长短叶片特征的不可调轴流泵叶轮7的设计参数为:扬程H=16m,Q=0.08m3/s,n=3000r/min,单级单吸离心泵叶轮的参数为:扬程H=100m,Q=0.08m3/s,n=3000r/min,结构图如图5所示。通过全三维粘性计算流体动力学分析计算证明,该单级单吸离心泵叶轮在装备了本发明方法设计所得的具有长短叶片特征的小型轴流泵叶轮后,整泵装置的必须汽蚀余量NPSHr由6m降低到了3m,整泵装置的汽蚀性能获得了提升,因此提升了整泵装置输送流体的稳定性。

Claims (5)

1.一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,其特征在于:具体包括以下步骤:
步骤1,根据流线法设计不可调轴流泵叶轮长叶片(1)的三维叶型;
步骤2,根据步骤1设计出的长叶片(1)三维叶型的各参数设计不可调轴流泵叶轮短叶片(2)的三维叶型;
步骤3,将步骤2设计出的每个短叶片(2)间隔布置在相邻两个步骤1设计的长叶片(1)组成的流道中间,即得到具有长短叶片特征的不可调轴流泵叶轮(7);
所述步骤1中具有长短叶片特征的不可调轴流泵叶轮(7)的长叶片(1)三维叶型的设计步骤如下:
步骤1.1,根据给定的不可调轴流泵中的设计扬程H,单位为m,设计流量Q,单位为m3/s和转速n,单位为r/min,按如下公式(1)计算不可调轴流泵叶轮的比转速ns
步骤1.2,根据步骤1.1所得的叶轮的比转速ns确定轴流泵叶轮的轮毂比dh/D及轴流泵叶轮的长叶片数目ZL
步骤1.3,计算不可调轴流泵叶轮的轮毂直径dh,单位m;
步骤1.4,从不可调轴流泵叶轮的轮毂到轮缘按相等的流面间距分为n个设计流面开展流面翼型设计,计算从不可调轴流泵叶轮的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,i=1,2……n;
步骤1.5,依据步骤1.4所得的各设计流面的叶栅稠密度(l/t)i,按照如下公式(7)获得各设计流面上翼型的弦长li
li=(Diπ/ZL)(l/t)i,i=1,2……n (7);
步骤1.6,计算不可调轴流泵叶轮中长叶片的最大厚度dLmax,在不可调轴流泵叶轮的轮毂处翼型使用最大厚度值dLmax,计算过程如公式(8)所示:
根据所得的不可调轴流泵叶轮中长叶片的最大厚度dLmax确定不可调轴流泵叶轮长叶片轮缘处翼型的最大厚度值d0max
d0max=(1/5~1/3)dLmax (9);
步骤1.7,根据步骤1.6所得计算结果求不可调轴流泵叶轮长叶片(1)的轮毂到轮缘间各流面翼型的最大厚度dimax,i=1,2……n,计算过程如公式(10)所示:
其中,Di为各设计流面的直径,i=1,2……n,单位m;dh为不可调轴流泵叶轮的轮毂直径,单位m;
步骤1.8,分别计算编号为i的各流面处的翼型型线进口角βi1,i=1,2……n、翼型型线出口角βi2,i=1,2……n、叶弦安放角βiL,i=1,2……n以及翼型型线半径Ri,i=1,2……n,采用单圆弧型线法绘制各流面翼型型线;
步骤1.9,根据791翼型的相对厚度分布规律与步骤1.7所得的各流面最大翼型厚度值dimax对步骤1.8绘制完成的各流面翼型型线进行加厚,获得长叶片(1)各流面上的有厚翼型,将各流面有厚翼型以翼型型线中点为基点进行组合后获得不可调轴流泵叶轮的长叶片(1)三维叶型;
所述步骤1.3不可调轴流泵叶轮的轮毂直径dh的具体计算过程如下:
步骤1.3.1,根据鲁德涅夫推荐公式计算不可调轴流泵叶轮进口处的流体轴面速度vm,计算过程如公式(2)所示:
步骤1.3.2,根据步骤1.3.1所得的流体轴面速度vm和步骤1.2确定的轴流泵叶轮的轮毂比dh/D计算轴流泵叶轮长叶片的外径D,计算过程如公式(3)所示:
步骤1.3.3,根据步骤1.3.2计算所得的不可调轴流泵叶轮长叶片(1)的外径D与步骤1.2确定的轴流泵叶轮的轮毂比dh/D计算轴流泵叶轮的轮毂直径dh
所述步骤1.4从不可调轴流泵叶轮的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,i=1,2……n的计算过程如下:
步骤1.4.1,由于各设计流面间距相等,故按照如下公式(4)计算各设计流面的直径Di,单位m:
其中,n为设计流面的个数,n=4~7;i为流面编号,i=1时代表轮毂流面,i=n时代表轮缘流面,i从轮毂到轮缘逐渐增大;
步骤1.4.2,根据步骤1.2确定的长叶片数ZL选择不可调轴流泵叶轮长叶片(1)轮缘处叶栅稠密度(l/t)0
步骤1.4.3,已知轴流泵叶轮轮毂处的叶栅稠密度(l/t)h的值为
(l/t)h=(1.3~1.4)(l/t)0 (5);
按线性规律插值计算不可调轴流泵叶轮中长叶片的轮毂到轮缘间的各设计流面的叶栅稠密度值(l/t)i,计算过程如公式(6)所示:
所述步骤2中不可调轴流泵叶轮的短叶片三维叶型的具体设计过程如下:
步骤2.1,计算短叶片(2)的轮缘直径Dss,计算过程如公式(15)所示:
其中,D为不可调轴流泵叶轮长叶片(1)外径,单位为m;dh为不可调轴流泵叶轮的轮毂直径,单位为m;
步骤2.2.从短叶片(2)的轮毂到轮缘按相等的流面间距分为nsl个流面开展短叶片翼型设计,根据步骤2.1所得短叶片的轮缘直径Dss,通过如下公式(16)计算各流面的直径Dsj,j=1,2……nsl为:
其中,nsl为短叶片设计流面的个数,nsl=3或4;j为流面编号,j=1时代表轮毂流面,j=nsl时代表轮缘流面,j从轮毂到轮缘逐渐增大;
步骤2.3,依据步骤2.2所得的各流面的直径Dsj计算各流面叶栅稠密度(l/t)j,计算过程如公式(17)所示:
其中,(l/t)h为不可调轴流泵叶轮长叶片(1)轮毂处的叶栅稠密度;(l/t)0为不可调轴流泵叶轮长叶片轮缘处的叶栅稠密度;
步骤2.4,根据步骤2.3计算出的各流面叶栅稠密度(l/t)j,通过如下公式(18)计算各设计流面上翼型型线弦长lj为:
lj=(Dsjπ/ZL)(l/t)j,j=1,2……nsl (18);
其中,ZL为不可调轴流泵叶轮长叶片的叶片数;
步骤2.5,计算不可调轴流泵叶轮短叶片轮毂处翼型最大厚度dsmax,计算过程如公式(19)所示:
其中,dLmax为不可调轴流泵叶轮长叶片轮毂处翼型的最大厚度值;
步骤2.6,计算不可调轴流泵叶轮短叶片轮缘处翼型最大厚度ds0max,求解过程如公式(20)所示:
其中,d0max为不可调轴流泵叶轮长叶片轮缘处翼型的最大厚度值,dh为轴流泵叶轮的轮毂直径;
步骤2.7,根据步骤2.5所得的不可调轴流泵叶轮短叶片轮毂处翼型最大厚度dsmax与步骤2.6所得的不可调轴流泵叶轮短叶片轮缘处翼型最大厚度ds0max,计算短叶片轮毂到轮缘间各流面翼型的最大厚度djmax,计算过程如公式(21)所示:
步骤2.8,分别计算各流面处翼型型线进口角βj1、翼型型线出口角βj2、叶弦安放角βjL以及翼型型线半径Rj,然后采用单圆弧型线法绘制各流面翼型型线;
步骤2.9,采用相同的方法对步骤2.8绘制的短叶片(2)各流面上的翼型型线进行修改,获得不可调轴流泵的短叶片翼型型线;
步骤2.10,根据791翼型的相对厚度分布规律与步骤2.5计算出的短叶片轮毂处翼型最大厚度dsmax、步骤2.6计算出的短叶片轮缘处翼型最大厚度ds0max及步骤2.7计算出的短叶片轮毂到轮缘间各流面翼型的最大厚度djmax对各流面上的短叶片翼型型线进行加厚,获得各流面上的短叶片有厚翼型,将各流面上的短叶片有厚翼型以翼型型线中点为基点进行组合后获得不可调轴流泵叶轮的短叶片(2)三维叶型。
2.根据权利要求1所述的一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,其特征在于:所述步骤1.8的具体计算过程如下:
依据如下公式(11)计算各流面处的翼型型线进口角βi1
其中,vim1为翼型进口轴面速度,单位为m/s;ui为圆周速度,单位为m/s,Δβi1为进口冲角,单位为°;
依据如下公式(12)计算各流面处的翼型型线出口角βi2
其中,vim2为翼型出口轴面速度,单位为m/s;viu2为出口速度的圆周分量,单位为m/s;Δβi2为出口冲角,单位为°;
依据如下公式(13)计算各流面处的叶弦安放角βiL
依据如下公式(14)计算各流面处的翼型型线半径Ri为:
3.根据权利要求1所述的一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,其特征在于:所述步骤2.8的具体计算过程如下:
采用如下公式(22)计算各流面处的翼型型线进口角βj1为:
其中,vjm1为翼型进口轴面速度,单位为m/s;uj为圆周速度,单位为m/s,Δβj1为进口冲角,单位为°;
采用如下公式(23)计算各流面处的翼型型线出口角βj2为:
其中,vjm2为翼型出口轴面速度,单位为m/s;vju2为出口速度的圆周分量,单位为m/s,Δβj2为出口冲角,单位为°;
采用如下公式(24)计算各流面处的叶弦安放角βjL为:
采用如下公式(25)计算翼型型线半径Rj为:
4.根据权利要求1所述的一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,其特征在于:所述步骤2.9的具体修改过程如下:
针对步骤2.8绘制的编号为j的流面上的翼型型线,从距翼型进口点弧长距离为sj的位置处将翼型型线进行截断,删除这段弧长为sj的型线而保留编号为j的流面上的剩余翼型型线,剩余的翼型型线即为编号为j的流面处的短叶片翼型型线,sj的取值如下式(26)所示:
sj=αjLj,j=1,2……nsl (26);
其中,Lj为编号为j的流面处翼型型线弧长,通过圆弧弧长计算公式求得,单位为m;αj为无量纲截断系数,取值范围为[1/3,1/2],αj在短叶片的轮毂流面处取最小值,在短叶片的轮缘流面处取最大值,中间各流面处的值按轮毂到轮缘线性分布插值获得,具体计算公式如下:
5.根据权利要求1所述的一种具有长短叶片特征的不可调轴流泵叶轮的设计方法,其特征在于:所述步骤3所得的具有长短叶片特征的不可调轴流泵叶轮(7)中短叶片(2)与长叶片(1)的数量相等。
CN201610213712.0A 2016-04-07 2016-04-07 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法 Active CN105805043B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610213712.0A CN105805043B (zh) 2016-04-07 2016-04-07 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610213712.0A CN105805043B (zh) 2016-04-07 2016-04-07 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法

Publications (2)

Publication Number Publication Date
CN105805043A CN105805043A (zh) 2016-07-27
CN105805043B true CN105805043B (zh) 2018-04-27

Family

ID=56459717

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610213712.0A Active CN105805043B (zh) 2016-04-07 2016-04-07 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法

Country Status (1)

Country Link
CN (1) CN105805043B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106438455B (zh) * 2016-11-18 2019-03-15 江苏省水利勘测设计研究院有限公司 一种带副翼的低空化系数轴流式叶片泵
CN106823029B (zh) * 2017-01-23 2019-03-01 中南大学 一种带非等长分流叶片结构的微型轴流式血泵
CN107701505A (zh) * 2017-11-17 2018-02-16 哈尔滨电气动力装备有限公司 核主泵轴流式叶轮
CN109800482B (zh) * 2018-12-29 2020-12-18 合肥工业大学 一种小轮毂比叶轮的设计方法
CN109763995B (zh) * 2019-02-13 2020-08-28 江苏大学 一种基于轴距的轴流泵叶轮设计方法
CN110173385A (zh) * 2019-05-27 2019-08-27 浙江富春江水电设备有限公司 一种带导流叶片超高水头段混流式水轮机转轮设计方法
CN110665392A (zh) * 2019-10-10 2020-01-10 常熟理工学院 高效节能的轴流式搅拌装置及设计方法
CN111561451B (zh) * 2020-05-22 2021-08-06 扬州大学 一种带副叶片的新型全贯流泵及其设计方法
CN112685887A (zh) * 2020-12-25 2021-04-20 江苏大学 一种可提高轴流泵过鱼特征的轴流泵叶轮的设计办法
CN115788908B (zh) * 2022-11-25 2024-03-15 扬州大学 一种双向轴流泵叶片空间坐标设计及其构造方法
CN117404325B (zh) * 2023-12-13 2024-03-01 湖南凯利特泵业有限公司 一种离心泵设备及机械密封保护壳体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822854A (zh) * 2010-05-06 2010-09-08 北京航空航天大学 人工心脏血液泵的带分流叶片的前导流式转子结构
CN103206402A (zh) * 2013-04-02 2013-07-17 武汉科技大学 一种可植入式两级轴流血泵转子结构
CN103307008A (zh) * 2012-03-08 2013-09-18 江苏大学 一种核主泵的带长短叶片的诱导轮设计方法
CN104564694A (zh) * 2014-12-26 2015-04-29 江苏大学 一种紧凑型轴流泵

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1706644A4 (en) * 2003-12-05 2009-12-09 Carter Cryogenics Company Llc HIGH PERFORMANCE INDUCTOR

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101822854A (zh) * 2010-05-06 2010-09-08 北京航空航天大学 人工心脏血液泵的带分流叶片的前导流式转子结构
CN103307008A (zh) * 2012-03-08 2013-09-18 江苏大学 一种核主泵的带长短叶片的诱导轮设计方法
CN103206402A (zh) * 2013-04-02 2013-07-17 武汉科技大学 一种可植入式两级轴流血泵转子结构
CN104564694A (zh) * 2014-12-26 2015-04-29 江苏大学 一种紧凑型轴流泵

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
基于组合优化方法的平面叶栅优化设计;朱国俊 等;《大电机技术》;20101231(第1期);第50-53页 *
潜水轴流泵特性试验研究与数值模拟;侯丽燕;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20110515(第05期);C029-127:第7-31页 *

Also Published As

Publication number Publication date
CN105805043A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105805043B (zh) 一种具有长短叶片特征的不可调轴流泵叶轮的设计方法
CN106194819B (zh) 一种基于斜v对称翼型的双向轴流泵叶轮的设计方法
CN107061321B (zh) 采用安装角和稠度耦合可变的非对称有叶扩压器的压气机
CN107061368A (zh) 采用周向可变叶片稠度非对称有叶扩压器的离心压气机
CN106382253A (zh) 流量系数0.02管线压缩机模型级及叶轮设计方法
CN109236726B (zh) 一种高比转速轴流泵叶轮出口角和厚度设计方法
CN103883555B (zh) 混流式双吸泵叶轮水力设计方法
CN107461362A (zh) 一种开式侧流道泵水力设计方法
CN104047890B (zh) 一种轴流式低扬程前置诱导轮的设计方法
CN106870462B (zh) 一种泵站用的肘形进水流道的设计方法
CN104533829B (zh) 一种斜流泵叶轮水力设计方法
CN106971019B (zh) 一种高比转速轴流泵导叶水力设计方法
CN107989831A (zh) 风机集流器设计方法及风机
CN104165156A (zh) 一种不等出口环量分布的轴流泵叶轮设计方法
CN206943079U (zh) 一种提高抗汽蚀性能的轴流泵叶轮
CN107762965B (zh) 一种高扬程低噪声的轴流泵
CN107906047A (zh) 流量系数0.0472轻介质高能头压缩机模型级及设计方法
CN104791292B (zh) 一种轴流泵叶轮导水锥
CN108561331A (zh) 流量系数0.0264轻介质高能头压缩机模型级及设计方法
CN108223431A (zh) 流量系数0.04轻介质高能头压缩机模型级及设计方法
CN106382256A (zh) 流量系数0.0293管线压缩机模型级及叶轮设计方法
CN107906048A (zh) 流量系数0.0154轻介质高能头压缩机模型级及设计方法
CN107906050A (zh) 流量系数0.014轻介质高能头压缩机模型级及设计方法
CN108488098A (zh) 流量系数0.0298轻介质高能头压缩机模型级及设计方法
CN108180167A (zh) 流量系数0.0366轻介质高能头压缩机模型级及设计方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant