CN105790813A - Method for selecting codebooks based on deep learning under large scale MIMO - Google Patents

Method for selecting codebooks based on deep learning under large scale MIMO Download PDF

Info

Publication number
CN105790813A
CN105790813A CN201610327115.0A CN201610327115A CN105790813A CN 105790813 A CN105790813 A CN 105790813A CN 201610327115 A CN201610327115 A CN 201610327115A CN 105790813 A CN105790813 A CN 105790813A
Authority
CN
China
Prior art keywords
channel
information
test section
pilot frequency
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610327115.0A
Other languages
Chinese (zh)
Other versions
CN105790813B (en
Inventor
龙恳
刘月贞
余翔
王维维
闫冰冰
杜飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201610327115.0A priority Critical patent/CN105790813B/en
Publication of CN105790813A publication Critical patent/CN105790813A/en
Application granted granted Critical
Publication of CN105790813B publication Critical patent/CN105790813B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention relates to a method for selecting codebooks based on deep learning under large scale MIMO(Multiple-Input Multiple-Output) and belongs to the technical field of wireless communication. The method comprises following steps: acquiring pilot frequency information of a test zone to establish a pilot frequency training sequence and further obtaining a pilot frequency training sample; performing neural network iteration learning to the pilot frequency sample to obtain a final network weight value; selecting optical code words from a complete codebook according to the signal channel output by the neural network after learning. performing signal channel information matching to an unknown zone and the test zone to obtain a wireless signal channel thereof, and further obtaining code words corresponding to the wireless signal channel. By means of the method, wireless signal model and codebook query can be effectively, accurately and quickly established to avoid signal channel estimation of unknown zones and greatly reduce the complexity of unknown zone signal channel codebook selection.

Description

A kind of codebook selecting method based on degree of depth study under extensive MIMO
Technical field
The invention belongs to wireless communication technology field, relate to a kind of extensive MIMO (Multiple-Input Multiple-Output, Multiple-input and multiple-output) under based on the degree of depth study codebook selecting method.
Background technology
Any one communication system, channel is requisite ingredient.Wireless channel is typical " variable-parameter channel ", nothing The characteristic of line channel and communication environments, such as: landform, atural object, climate characteristic, electromagnetic interference situation, communication body translational speed and making Frequency range etc. closely related.The communication capacity of wireless communication system, service quality (Quality of Service, QoS) etc. are all Closely related with the quality of radio channel performance.Therefore, want high-quality, Large Copacity as far as possible on limited frequency spectrum resource to pass Defeated useful information, it is necessary to grasp the characteristic of wireless channel well, especially at big data age, to ensure the most as far as possible The error rate of the wireless channel obtained is less.
Wireless channel model be wireless propagation environment and propagation characteristic had be fully understood by after, one of wireless channel abstract is retouched State, some critical natures of wireless propagation environment can be reflected well.The foundation of wireless channel model depends on channel detection. At present, the existing method setting up wireless channel propagation model has: statistical model, deterministic models and semidefiniteness model.
But the above-mentioned existing method setting up wireless channel propagation model there are disadvantages that, as these methods are based on electromagnetic wave propagation Theory, analyzes the method for building up drawing wireless channel model under some reduced conditions.And actual mobile circumstances is thousand changes ten thousand Change, limit the range of application of these notional results significantly, can only carry out for certain specific environment, single link, Describe the characteristic of channel under high-speed mobile scene, the directivity characteristic of channel is not comprehensively accurate.On the other hand, existing letter The method for building up of road model needs fully to excavate the cause effect relation of sending and receiving end.It analyzes sending and receiving letter by gathering the signal of sending and receiving end Number set up the cause effect relation of transmitting-receiving two-end.Because of gather Finite Samples, and based on the assumption that condition so as to get result can be impacted. In the small data epoch, computer capacity is not enough, and major part is analyzed and is only limitted to seek simple linear relationship.
In extensive mimo system, make because number of antennas is huge channel battle array H dimension become rapidly big, based on non-code book prelist Code technology is the most applicable, and Linear Precoding based on code book has become focus of attention.The most conventional side producing code book Method has: based on Grassmannian subspace packing, DFT etc..But the former looks for optimum code word at general exhaustive search, Such as random search, alternately prediction, Selwyn Lloyd iterative algorithm, the computation burden of these algorithms will increase urgency along with launch antenna number Increase severely big.And DFT provides high chordal distance by the mode of system between precoding vectors, but average error rate is easily being sent out Penetrate antenna to suffer to receive impact during high spatial dependency.For problem above, a kind of low amount of calculation, anti-spatial coherence are proposed Method for precoding has become urgent needs.
Summary of the invention
In view of this, it is an object of the invention to provide a kind of extensive MIMO (Multiple-Input Multiple-Output, Multiple-input and multiple-output) under based on the degree of depth study codebook selecting method, the method can set up wireless channel propagation model effectively And code book inquiry.
For reaching above-mentioned purpose, the present invention provides following technical scheme:
A kind of codebook selecting method based on degree of depth study under extensive MIMO, the method comprises the following steps:
S1: information gathering step: by the pilot frequency information of user side in information acquisition system collecting test district;
S2: obtain training sample: build pilot training sequence according to pilot frequency information, and then obtain pilot tone training sample;
S3: initialize neutral net: initialize neural network model parameter;
S4: neural network learning: carried out neutral net degree of depth study by pilot tone training sample, obtains final network weight weight values;
S5: construct complete code book: by DFT (Discrete Fourier Transform, the discrete Fourier transform) method improved Structure is suitable for the code book of all channel status;
S6: codeword selection: according to the channel of the neutral net output after study, carry out codeword selection from complete code book;
The foundation of S7: dependency relation: build the dependency relation between the pilot frequency information of described test section and characteristics of radio channels information;
S8: channel matched step: the channel of unknown area is mated with existing wireless channel, and then select the channel pair of unknown area The code word answered.
Further, in step sl, when carrying out information gathering, test section is divided into four classes: suburb macrocell (suburban Macro), urban macro community (urban macro, UM-a), urban microcell (urban micro, UM-i) and High-speed Circumstance (high rise scenario)。
Further, in step s3, described initialization neural network model parameter specifically includes: learning rate η, bias δ, Input layer i-node and the weights coefficient ω of hidden layer j nodeij∈ (0,1), hidden layer j and the weights coefficient of output layer node l ωjl∈ (0,1), wherein i, j, k ∈ N+ and ∑ | ω |=M (M is constant), maximum iteration time lmax, Initial value e=0, god Threshold function table, linear function or Sigmoid function is used through unit's activation primitive f (.).
Further, in step s 4, the study of the described neutral net degree of depth specifically includes:
S41: pilot tone training sample P is as the input of neutral net, H=[H0,H1,...,HN] it is the estimation target of neutral net Value,Estimation output valve for neutral net;
S42: exported by model and error, maximum iteration time and weighted value constraints between desired value carries out the degree of depth instruction of parameter Practice, until being met required precision;
S43: often carry out once, iterations adds 1 i.e. l=l+1;As iterations l≤lmaxOr e (l)≤τmaxTime terminate training, Otherwise return step S42;
S44: obtain the weights coefficient of target update after step S41, S42, S43;After the study stage completes, neutral net profit Estimate by pilot tone P of test sectionAnd willIt is stored in Shark data base based on Spark cluster, Shark data base Provide the user the inquiry service of channel information.
Further, in step s 5, the code book of the applicable all channel status of DFT method structure of described improvement is as follows:
F D F T = 1 / M t 1 1 1 ... 1 1 ω ω 2 ... ω M t - 1 1 ω 2 ω 4 ... ω 2 ( M t - 1 ) ... ... ... ... ... 1 ω M t - 1 ω 2 ( M t - 1 ) ... ω ( M t - 1 ) ( M t - 1 )
F=WFDFT
Wherein, W (∈ Mt×Mt) it is unitary matrice, meet U=W ∑ VH(U∈(Mt×Mt), its element obeys CN (0,1)).
Further, in step s 6, described codeword selection includes: after neural network learning completes, and the output valve of neutral net is i.e. For the channel utilizing pilot tone training sample to estimate;Carry out codeword selection according to code selection criterion, and the optimum code word selected is placed on In Shark data base, provide the user the inquiry service of codeword information.
Further, in the step s 7, by channel information, the phase between the pilot frequency information of test section with characteristics of radio channels information is built Pass relation, specifically includes: according to the pilot correlation feature of test section, the pilot tone in test section be divided into multiple representative Reference pilot pattern;Obtained the channel information of this test section internal reference pilot frequency design by the wireless channel model of test section, obtain The channel characteristics that each reference pattern is corresponding, and channel characteristics corresponding for reference pattern is stored in reference channel information data base.
Further, in step s 8, described the channel of unknown area is mated with existing wireless channel, and then select unknown area The code word that channel is corresponding specifically includes:
S81: carry out characteristic matching with the reference pilot pattern in test section according to the pilot frequency information of described zone of ignorance;
S82: judge that whether the similarity between the pilot frequency information of zone of ignorance and the reference pilot pattern characteristics of test section is less than setting Threshold value, if less than, the match is successful;Otherwise, again choose reference pilot pattern, until meeting less than the threshold value set;
S83: when after the pilot frequency information in unknown area and the success of the pilot frequency design characteristic matching in test section, by reference channel information number It is defined as the channel characteristics of unknown area according to the channel characteristics that this pattern in storehouse is corresponding, carries out channel characteristics comprehensively, obtaining this unknown Wireless channel in district;
S84: according to this wireless channel, in the Shark data base storing optimum codeword information, obtain optimum code word, and by it Feed back to the base station (BS) in this unknown area.
The beneficial effects of the present invention is: the present invention can set up wireless channel model effectively, accurately and rapidly and inquire about with code book, The channel avoiding unknown area is estimated and greatly reduces the complexity of unknown area Channel assignment code book.
Accompanying drawing explanation
In order to make the purpose of the present invention, technical scheme and beneficial effect clearer, the present invention provides drawings described below to illustrate:
Fig. 1 is the schematic flow sheet of the method for the invention;
Fig. 2 is the wireless channel Establishing process figure of test section;
Fig. 3 is the flow chart of steps of neutral net degree of depth study;
Fig. 4 is codebook precoding method flow diagram under extensive MIMO;
Fig. 5 is the Matching Model flow chart between unknown area pilot frequency information and characteristics of radio channels information.
Detailed description of the invention
Below in conjunction with accompanying drawing, the preferred embodiments of the present invention are described in detail.
Fig. 1 is the schematic flow sheet of the method for the invention, as it can be seen, this method specifically includes following steps:
S1: information gathering step: by the pilot frequency information of user side in information acquisition system collecting test district;
S2: obtain training sample: build pilot training sequence according to pilot frequency information, and then obtain pilot tone training sample;
S3: initialize neutral net: initialize neural network model parameter;
S4: neural network learning: carried out neutral net degree of depth study by pilot tone training sample, obtains final network weight weight values;
S5: construct complete code book: by DFT (Discrete Fourier Transform, the discrete Fourier transform) method improved Structure is suitable for the code book of all channel status;
S6: codeword selection: according to the channel of the neutral net output after study, carry out codeword selection from complete code book;
The foundation of S7: dependency relation: build the dependency relation between the pilot frequency information of described test section and characteristics of radio channels information;
S8: channel matched step: the channel of unknown area is mated with existing wireless channel, and then select the channel pair of unknown area The code word answered.
Fig. 2 is the wireless channel Establishing process figure of test section, including:
Test section is divided into four classes: suburb macrocell, urban macro community, urban microcell, High-speed Circumstance, as a example by UM-i Carrying out information gathering, remaining is similar;
Test section is divided into four classes: suburb macrocell (suburban macro), urban macro community (urban macro, UM-a), city Microcell, district (urban micro, UM-i), High-speed Circumstance (high rise scenario), be analyzed here as a example by UM-i, its Remaining is similar;
The pilot frequency information of user side in information acquisition system collecting test district;
Built pilot training sequence by pilot frequency information, and then obtain pilot tone training sample;
Pilot tone training sample, as the input of neutral net, carries out neutral net degree of depth study, and study obtains neutral net after terminating Output valve, is the channel estimated.
Fig. 3 is the flow chart of steps of neutral net degree of depth study, and the study of the described neutral net degree of depth specifically includes:
S41: pilot tone training sample P is as the input of neutral net, H=[H0,H1,...,HN] it is the estimation target of neutral net Value,Estimation output valve for neutral net;
S42: exported by model and error, maximum iteration time and weighted value constraints between desired value carries out the degree of depth instruction of parameter Practice, until being met required precision;
S43: often carry out once, iterations adds 1 i.e. l=l+1;As iterations l≤lmaxOr e (l)≤τmaxTime terminate training, Otherwise return step S42;
S44: obtain the weights coefficient of target update after step S41, S42, S43;After the study stage completes, neutral net profit Estimate by pilot tone P of test sectionAnd willIt is stored in Shark data base based on Spark cluster, Shark data base Provide the user the inquiry service of channel information.
Fig. 4 is codebook precoding method flow diagram under extensive MIMO, by the DFT method structure code book improved, and by code Originally transmitting-receiving two-end it is placed on:
F D F T = 1 / M t 1 1 1 ... 1 1 ω ω 2 ... ω M t - 1 1 ω 2 ω 4 ... ω 2 ( M t - 1 ) ... ... ... ... ... 1 ω M t - 1 ω 2 ( M t - 1 ) ... ω ( M t - 1 ) ( M t - 1 )
F=WFDFT
Wherein, W (∈ Mt×Mt) it is unitary matrice, meet U=W Σ VH(U∈(Mt×Mt), its element obeys CN (0,1)).
The optimum code word that neutral net is exported by user side index in the codebook feeds back to base station end (BS), and by optimum code word Information stores in Shark data base, and this Shark data base provides the user the inquiry service of optimum code word.
Fig. 5 is the Matching Model flow chart between unknown area pilot frequency information and characteristics of radio channels information, in the present embodiment, specifically Flow process is as follows:
Pilot correlation feature according to UM-i test section, is divided into multiple representative reference to lead by the pilot tone in test section Frequently pattern;
Obtained the channel information of this test section internal reference pilot frequency design by the wireless channel of UM-i test section, obtain each with reference to figure The channel characteristics that case is corresponding, and channel characteristics corresponding for reference pattern is stored in reference channel information data base.
Pilot frequency information according to described unknown area carries out characteristic matching with the reference pilot pattern in UM-i test section;
Judge that whether the similarity between the pilot frequency information of zone of ignorance and the reference pilot pattern characteristics of test section is less than the threshold set Value, if less than, the match is successful;Otherwise, again choose reference pilot pattern, until meeting less than the threshold value set;
When after the pilot frequency information in unknown area and the success of the pilot frequency design characteristic matching in test section, by reference channel information data base In channel characteristics corresponding to this pattern be defined as the channel characteristics of unknown area, channel characteristics is carried out comprehensively, obtains in this unknown area Wireless channel;
According to this wireless channel, in the Shark data base storing optimum codeword information, obtain optimum code word, and fed back To the BS in this unknown area.
Finally illustrating, preferred embodiment above is only in order to illustrate technical scheme and unrestricted, although by above-mentioned The present invention is described in detail by preferred embodiment, it is to be understood by those skilled in the art that can in form and In details, it is made various change, without departing from claims of the present invention limited range.

Claims (8)

1. codebook selecting method based on degree of depth study under an extensive MIMO, it is characterised in that: the method includes following Step:
S1: information gathering step: by the pilot frequency information of user side in information acquisition system collecting test district;
S2: obtain training sample: build pilot training sequence according to pilot frequency information, and then obtain pilot tone training sample;
S3: initialize neutral net: initialize neural network model parameter;
S4: neural network learning: carried out neutral net degree of depth study by pilot tone training sample, obtains final network weight weight values;
S5: construct complete code book: by DFT (Discrete FourierTransform, the discrete Fourier transform) method improved Structure is suitable for the code book of all channel status;
S6: codeword selection: according to the channel of the neutral net output after study, carry out codeword selection from complete code book;
The foundation of S7: dependency relation: build the dependency relation between the pilot frequency information of described test section and characteristics of radio channels information;
S8: channel matched step: the channel of unknown area is mated with existing wireless channel, and then select the channel pair of unknown area The code word answered.
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 1 It is: in step sl, when carrying out information gathering, test section is divided into four classes: suburb macrocell (suburbanmacro), city District's macrocell (urbanmacro, UM-a), urban microcell (urbanmicro, UM-i) and High-speed Circumstance (highrise scenario).
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 2 Being: in step s3, described initialization neural network model parameter specifically includes: learning rate η, bias δ, input layer I-node and the weights coefficient ω of hidden layer j nodeij∈ (0,1), hidden layer j and the weights coefficient ω of output layer node kjl∈ (0,1), Wherein i, j, k ∈ N+, N+For positive integer, and Σ | ω |=M (M is constant), maximum iteration time lmax, Initial value e=0, Neuron activation functions f (.) uses threshold function table, linear function or Sigmoid function.
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 3 Being: in step s 4, the study of the described neutral net degree of depth specifically includes:
S41: pilot tone training sample P as the input of neutral net, channel battle array H=[H0,H1,...,HN] it is the estimation of neutral net Desired value,Estimation output valve for neutral net;
S42: exported by model and maximum error τ between desired valuemax, maximum iteration time and weighted value constraints carry out parameter Degree of depth training, until be met required precision;
S43: often carry out once, iterations adds 1 i.e. l=l+1;As iterations l≤lmaxOr e (l)≤τmaxmaxMaximum is by mistake Difference) time terminate training, otherwise return step S42;
S44: obtain the weights coefficient of target update after step S41, S42, S43;After the study stage completes, neutral net profit Estimate by pilot tone P of test sectionAnd willIt is stored in Shark data base based on Spark cluster, Shark data base Provide the user the inquiry service of channel information.
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 4 Being: in step s 5, the code book that the DFT method structure of described improvement is suitable for all channel status is as follows:
F D F T = 1 / M t 1 1 1 ... 1 1 ω ω 2 ... ω M t - 1 1 ω 2 ω 4 ... ω 2 ( M t - 1 ) ... ... ... ... ... 1 ω M t - 1 ω 2 ( M t - 1 ) ... ω ( M t - 1 ) ( M t - 1 )
F=WFDFT
Wherein, FDFTFor Fourier transform code book, F is amended Fourier transform code book, MtFor launching natural law, W(∈Mt×Mt) it is unitary matrice, meet U=W Σ VH(U∈(Mt×Mt) singular value decomposition, its element u can be carried outkObey 0 average, the independent identically distributed multiple Gauss distribution, i.e. u of 1 variancek~CN (0,1)).
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 5 Being: in step s 6, described codeword selection includes: after neural network learning completes, and the output valve of neutral net is utilization The channel that pilot tone training sample estimates;Carry out codeword selection according to code selection criterion, and the optimum code word selected is placed on Shark In data base, provide the user the inquiry service of codeword information.
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 6 It is: in the step s 7, by channel information, builds the dependency relation between the pilot frequency information of test section and characteristics of radio channels information, Specifically include: according to the pilot correlation feature of test section, the pilot tone in test section is divided into multiple representative reference lead Frequently pattern;Obtained the channel information of this test section internal reference pilot frequency design by the wireless channel model of test section, obtain each reference The channel characteristics that pattern is corresponding, and channel characteristics corresponding for reference pattern is stored in reference channel information data base.
Codebook selecting method based on degree of depth study, its feature under a kind of extensive MIMO the most according to claim 7 It is: in step s 8, described the channel of unknown area is mated with existing wireless channel, and then select the channel pair of unknown area The code word answered specifically includes:
S81: carry out characteristic matching with the reference pilot pattern in test section according to the pilot frequency information of described zone of ignorance;
S82: judge that whether the similarity between the pilot frequency information of zone of ignorance and the reference pilot pattern characteristics of test section is less than setting Threshold value, if less than, the match is successful;Otherwise, again choose reference pilot pattern, until meeting less than the threshold value set;
S83: when after the pilot frequency information in unknown area and the success of the pilot frequency design characteristic matching in test section, by reference channel information number It is defined as the channel characteristics of unknown area according to the channel characteristics that this pattern in storehouse is corresponding, carries out channel characteristics comprehensively, obtaining this unknown Wireless channel in district;
S84: according to this wireless channel, in the Shark data base storing optimum codeword information, obtain optimum code word, and by it Feed back to the base station (BS) in this unknown area.
CN201610327115.0A 2016-05-17 2016-05-17 Code book selection method based on deep learning under a kind of extensive MIMO Active CN105790813B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610327115.0A CN105790813B (en) 2016-05-17 2016-05-17 Code book selection method based on deep learning under a kind of extensive MIMO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610327115.0A CN105790813B (en) 2016-05-17 2016-05-17 Code book selection method based on deep learning under a kind of extensive MIMO

Publications (2)

Publication Number Publication Date
CN105790813A true CN105790813A (en) 2016-07-20
CN105790813B CN105790813B (en) 2018-11-06

Family

ID=56379965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610327115.0A Active CN105790813B (en) 2016-05-17 2016-05-17 Code book selection method based on deep learning under a kind of extensive MIMO

Country Status (1)

Country Link
CN (1) CN105790813B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107332598A (en) * 2017-06-26 2017-11-07 浙江理工大学 A kind of precoding of mimo system joint and antenna selecting method based on deep learning
CN108183736A (en) * 2017-12-28 2018-06-19 北京邮电大学 Transmitter code word selection method, device and transmitter based on machine learning
CN108390706A (en) * 2018-01-30 2018-08-10 东南大学 A kind of extensive mimo channel state information feedback method based on deep learning
CN108566257A (en) * 2018-04-27 2018-09-21 电子科技大学 Signal recovery method based on back propagation neural network
CN108923828A (en) * 2018-07-06 2018-11-30 西北工业大学 A kind of emitting antenna selecting method of the MIMO tapping channel based on deeply study
CN109617584A (en) * 2019-01-08 2019-04-12 南京邮电大学 A kind of mimo system beamforming matrix design method based on deep learning
CN110300075A (en) * 2019-04-30 2019-10-01 北京科技大学 A kind of radio channel estimation method
CN110378467A (en) * 2019-06-17 2019-10-25 浙江大学 A kind of quantization method for deep learning network parameter
WO2019237935A1 (en) * 2018-06-15 2019-12-19 维沃移动通信有限公司 Signal detection method and receiving terminal
CN111447620A (en) * 2020-03-19 2020-07-24 重庆邮电大学 Millimeter wave heterogeneous network resource allocation joint optimization method
CN112803976A (en) * 2020-12-24 2021-05-14 浙江香农通信科技有限公司 Large-scale MIMO precoding method and system and electronic equipment
CN113114323A (en) * 2021-04-22 2021-07-13 桂林电子科技大学 Signal receiving method of MIMO system
CN113242069A (en) * 2021-05-10 2021-08-10 东南大学 Codebook design method based on neural network
CN113660015A (en) * 2021-08-11 2021-11-16 东南大学 Online wireless channel acquisition optimization method under assistance of environment knowledge base
CN117273065A (en) * 2016-12-15 2023-12-22 谷歌有限责任公司 Adaptive channel coding using machine learning model

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031501B1 (en) * 2003-09-22 2008-10-23 Kim Hyeung-Yun Sensors and systems for structural health monitoring
CN102739383A (en) * 2012-05-28 2012-10-17 上海交通大学 Method for allocating union resource based on limited feedback OFDM-AF (Orthogonal Frequency Division Multiplexing-Audio Frequency) system
CN104618045A (en) * 2015-01-27 2015-05-13 北京交通大学 Collected data-based wireless channel transmission model establishing method and system
CN104993914A (en) * 2015-05-18 2015-10-21 北京交通大学 Wireless channel estimation method and device based on wireless environment map
US20150326285A1 (en) * 2014-05-12 2015-11-12 Nokia Solutions And Networks Oy Low Effort Massive MIMO Antenna Arrays and Their Use
WO2016041463A1 (en) * 2014-09-18 2016-03-24 Huawei Technologies Co., Ltd. Common broadcast channel low papr signaling in massive mimo systems

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005031501B1 (en) * 2003-09-22 2008-10-23 Kim Hyeung-Yun Sensors and systems for structural health monitoring
CN102739383A (en) * 2012-05-28 2012-10-17 上海交通大学 Method for allocating union resource based on limited feedback OFDM-AF (Orthogonal Frequency Division Multiplexing-Audio Frequency) system
US20150326285A1 (en) * 2014-05-12 2015-11-12 Nokia Solutions And Networks Oy Low Effort Massive MIMO Antenna Arrays and Their Use
WO2016041463A1 (en) * 2014-09-18 2016-03-24 Huawei Technologies Co., Ltd. Common broadcast channel low papr signaling in massive mimo systems
CN104618045A (en) * 2015-01-27 2015-05-13 北京交通大学 Collected data-based wireless channel transmission model establishing method and system
CN104993914A (en) * 2015-05-18 2015-10-21 北京交通大学 Wireless channel estimation method and device based on wireless environment map

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117273065A (en) * 2016-12-15 2023-12-22 谷歌有限责任公司 Adaptive channel coding using machine learning model
CN107332598A (en) * 2017-06-26 2017-11-07 浙江理工大学 A kind of precoding of mimo system joint and antenna selecting method based on deep learning
CN107332598B (en) * 2017-06-26 2020-06-16 浙江理工大学 MIMO system joint precoding and antenna selection method based on deep learning
CN108183736A (en) * 2017-12-28 2018-06-19 北京邮电大学 Transmitter code word selection method, device and transmitter based on machine learning
CN108183736B (en) * 2017-12-28 2021-02-23 北京邮电大学 Transmitter codeword selection method and device based on machine learning and transmitter
CN108390706B (en) * 2018-01-30 2020-10-27 东南大学 Large-scale MIMO channel state information feedback method based on deep learning
CN108390706A (en) * 2018-01-30 2018-08-10 东南大学 A kind of extensive mimo channel state information feedback method based on deep learning
CN108566257A (en) * 2018-04-27 2018-09-21 电子科技大学 Signal recovery method based on back propagation neural network
WO2019237935A1 (en) * 2018-06-15 2019-12-19 维沃移动通信有限公司 Signal detection method and receiving terminal
CN108923828A (en) * 2018-07-06 2018-11-30 西北工业大学 A kind of emitting antenna selecting method of the MIMO tapping channel based on deeply study
CN108923828B (en) * 2018-07-06 2019-06-07 西北工业大学 A kind of emitting antenna selecting method of the MIMO tapping channel based on deeply study
CN109617584A (en) * 2019-01-08 2019-04-12 南京邮电大学 A kind of mimo system beamforming matrix design method based on deep learning
CN109617584B (en) * 2019-01-08 2021-12-21 南京邮电大学 MIMO system beam forming matrix design method based on deep learning
CN110300075A (en) * 2019-04-30 2019-10-01 北京科技大学 A kind of radio channel estimation method
CN110378467A (en) * 2019-06-17 2019-10-25 浙江大学 A kind of quantization method for deep learning network parameter
CN111447620A (en) * 2020-03-19 2020-07-24 重庆邮电大学 Millimeter wave heterogeneous network resource allocation joint optimization method
CN111447620B (en) * 2020-03-19 2022-05-17 重庆邮电大学 Millimeter wave heterogeneous network resource allocation joint optimization method
CN112803976A (en) * 2020-12-24 2021-05-14 浙江香农通信科技有限公司 Large-scale MIMO precoding method and system and electronic equipment
CN112803976B (en) * 2020-12-24 2022-07-08 浙江香农通信科技有限公司 Large-scale MIMO precoding method and system and electronic equipment
CN113114323A (en) * 2021-04-22 2021-07-13 桂林电子科技大学 Signal receiving method of MIMO system
CN113114323B (en) * 2021-04-22 2022-08-12 桂林电子科技大学 Signal receiving method of MIMO system
CN113242069A (en) * 2021-05-10 2021-08-10 东南大学 Codebook design method based on neural network
CN113660015A (en) * 2021-08-11 2021-11-16 东南大学 Online wireless channel acquisition optimization method under assistance of environment knowledge base

Also Published As

Publication number Publication date
CN105790813B (en) 2018-11-06

Similar Documents

Publication Publication Date Title
CN105790813A (en) Method for selecting codebooks based on deep learning under large scale MIMO
Studer et al. Channel charting: Locating users within the radio environment using channel state information
Gante et al. Deep learning architectures for accurate millimeter wave positioning in 5G
Li et al. Deep learning for direct hybrid precoding in millimeter wave massive MIMO systems
WO2020253690A1 (en) Deep learning beam domain channel estimation method based on approximate message passing algorithm
Zhang et al. NAS-AMR: Neural architecture search-based automatic modulation recognition for integrated sensing and communication systems
Zecchin et al. LIDAR and position-aided mmWave beam selection with non-local CNNs and curriculum training
Shrestha et al. Spectrum surveying: Active radio map estimation with autonomous UAVs
Kim et al. Towards deep learning-aided wireless channel estimation and channel state information feedback for 6G
CN114124623B (en) Wireless communication channel estimation method and device
Shao et al. Reconfigurable intelligent surface-aided 6G massive access: Coupled tensor modeling and sparse Bayesian learning
CN115486035A (en) Class of NN parameters for channel estimation
Wang et al. Site-specific online compressive beam codebook learning in mmWave vehicular communication
CN114844545A (en) Communication beam selection method based on sub6GHz channel and partial millimeter wave pilot frequency
Klus et al. Transfer learning for convolutional indoor positioning systems
Wang et al. Jointly learned symbol detection and signal reflection in RIS-aided multi-user MIMO systems
Rinchi et al. Deep-learning-based accurate beamforming prediction using LiDAR-assisted network
Chen et al. Learning to localize with attention: From sparse mmwave channel estimates from a single BS to high accuracy 3D location
CN115361258B (en) Large-scale MIMO sparse channel estimation method and related equipment
CN114764610A (en) Channel estimation method based on neural network and communication device
CN116634358A (en) Terminal positioning method and device and nonvolatile storage medium
Gante et al. Enhancing beamformed fingerprint outdoor positioning with hierarchical convolutional neural networks
Gómez-Vega et al. Efficient Deployment Strategies for Network Localization With Assisting Nodes
Neema et al. Data driven approach for mmWave channel characteristics prediction using deep neural network
Shi et al. Automatic Neural Network Construction-Based Channel Estimation for IRS-Aided Communication Systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant