CN105788752A - 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法 - Google Patents

电致发光激励临界转变温度提高的MgB2基超导体及其制备方法 Download PDF

Info

Publication number
CN105788752A
CN105788752A CN201610206412.XA CN201610206412A CN105788752A CN 105788752 A CN105788752 A CN 105788752A CN 201610206412 A CN201610206412 A CN 201610206412A CN 105788752 A CN105788752 A CN 105788752A
Authority
CN
China
Prior art keywords
mgb
doping
transition temperature
critical transition
mgb2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610206412.XA
Other languages
English (en)
Other versions
CN105788752B (zh
Inventor
赵晓鹏
陶硕
李勇波
陈国维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201610206412.XA priority Critical patent/CN105788752B/zh
Publication of CN105788752A publication Critical patent/CN105788752A/zh
Application granted granted Critical
Publication of CN105788752B publication Critical patent/CN105788752B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/5805Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides
    • C04B35/58057Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on borides based on magnesium boride, e.g. MgB2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/04Single wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及电致发光激励临界转变温度提高的MgB2基超导体及其制备方法,利用Y2O3:Eu3+发光体异位掺杂改变MgB2超导体临界转变温度。本发明采用水热法制备了两种不同发光强度的掺杂剂Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒,异位掺杂法制备Y2O3:Eu3+发光体掺杂的MgB2基超导体。Y2O3:Eu3+发光体所占质量分数为1%和2%。随着掺杂剂发光强度的增加,MgB2基超导体的Tc值不断增加。在无外界磁场的条件下,当用发光强度高的Y2O3:Eu3+II发光体作为掺杂剂,且掺杂浓度为2%时,MgB2基超导体的Tc=35.9K较纯MgB2的Tc=35.8K高。

Description

电致发光激励临界转变温度提高的MgB2基超导体及其制备方法
技术领域
本发明涉及一种MgB2基超导体及制备该超导体的方法,该超导体具有优异的特性,例如相对较高的临界转变温度,并且容易制备。
背景技术
2001年,日本科学家发现了一种新型二元化合物超导材料MgB2,其Tc较高为39K,是目前低温超导家族中超导转变温度最高的。这也是继铜氧化物高温超导体发现之后的又一重大科研发现。研究表明:MgB2具有相对较高的临界温度,较低的各向异性,大的相干长度、高的临界电流密度和大的上临界磁场、双能隙(能隙较大)、电流不受晶界连通性的限制(不需要高度织构化)、结构简单、成本低、易加工等优点。因此,MgB2超导材料给超导技术的发展和应用带来了新的契机。
Y2O3:Eu3+发光体作为稀土发光材料家族的重要一员,具有发光强度高、单色性好、量子效率高等诸多优点,并且制备工艺较为成熟,形貌相对容易控制,在空气中具有较好的稳定性。MgB2虽具有诸多优点但超导临界转变温度不高限制了其应用,人们通过各种手段希望提高其超导转变温度,其中化学掺杂是采用最多的手段之一。但大量的研究结果表明,许多化学掺杂都使得MgB2超导体的Tc有所降低,因为MgB2材料的晶格掺杂非常不容易实现。另一方面,化学掺杂会影响电子结构、晶格常数等物理性质,可能降低了声子频率导致电-声耦合强度下降,这些都可能降低MgB2的Tc。此外通过外加光场激发超导体,增加其超导临界转变温度也是一种手段,但实验结果大体上都不理想,作用不明显或是作用持续时间非常短。
发明内容
鉴于以上情况,本发明开辟了一种新方法,把化学掺杂和光场激励结合起来,直接把发光相掺杂进超导体基质中,在外加电场情况下,研究发光相对超导性能的影响。制备出了一种Y2O3:Eu3+发光相掺杂MgB2超导体,通过不同比例和不同发光强度的掺杂实验的对比,得出一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体。
本发明采用水热法制备发光体Y2O3:Eu3+纳米棒,异位掺杂烧结法制备MgB2基超导体。如以下所述:
(1)一种具有高临界转变温度的发光体Y2O3:Eu3+掺杂的MgB2基超导体,其中发发光体Y2O3:Eu3+纳米棒多分布在MgB2超导体颗粒周围;
(2)根据上述(1)的高临界转变温度的MgB2基超导体,其特征在于水热法制备Y2O3:Eu3+纳米棒时,Y和Eu的摩尔比为0.95:0.05;由于工艺不同,制备了两种不同发光强度的掺杂剂Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II,加入尿素的发光体Y2O3:Eu3+II电致发光强度能提高1~2倍;Y2O3:Eu3+发光体所占MgB2基超导体质量分数为1%和2%;
(3)根据上述(1)的高临界转变温度的MgB2基超导体,掺杂剂发光体Y2O3:Eu3+的制备方法如下:称取0.153g的Y2O3和0.012g的Eu2O3,Y和Eu的摩尔比为0.95:0.05,60℃下溶解于过量硝酸中,得到Y(NO3)3和Eu(NO3)3的混合溶液,将混合溶液加热到80℃,蒸干,除去过量硝酸,得到白色晶体,加入10mL去离子水搅拌溶解,得到溶液A1,或再加入0.2g尿素搅拌溶解,得到混合溶液A2;另配置两份8ml溶有0.72g氢氧化钠的溶液,将其分别缓慢滴加至A1和A2溶液并不断搅拌,滴加完之后继续搅拌30min,分别转移至25ml反应釜中,放入烘箱中160℃下保温24h,得到白色沉淀B1和B2;将沉淀B1和B2离心,水洗、乙醇洗各3次,然后将沉淀在60℃下干燥12小时,得到白色前驱体;将前驱体转移至坩埚中,在管式炉中以5℃·min-1的速率升温至800℃并保温2小时,然后随炉冷却至室温,得到最终样品Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒;
(4)根据上述(1)的高临界转变温度的MgB2基超导体,MgB2基超导体的制备方法如下:称取相应不同质量分数掺杂剂Y2O3、Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒分别放在酒精中超声,不少于20min,形成溶液,再加入相应量的在手套箱中充分研磨后的实验室自制的MgB2粉料,超声不少于15min,形成悬浮液,将悬浮液放在表面皿中,在真空干燥箱中60℃,1h干燥成黑色粉末,将粉末充分研磨后压片,压力和保压时间为16-20MPa,5-8min,在高纯Ar气氛下,800℃保温1h得到相应的异位掺杂样品。
本发明有益之处在于把化学掺杂和光场激励结合起来,开辟了一种新的提高MgB2超导临界转变温度的方法,在实验上制备出了一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2基超导体,这种化学掺杂和光场激励结合的方法也有望应用于提高其它超导体的临界转变温度。
附图说明
图1.a水热法制备不发光Y2O3纳米棒的流程图
图1.b水热法制备高发光强度Y2O3:Eu3+纳米棒的流程图
图2.aY2O3的SEM图
图2.bY2O3:Eu3+发光体的SEM图
图3Y2O3:Eu3+发光体的电致发光图
图4.a纯MgB2超导体的SEM图
图4.bY2O3:Eu3+发光体掺杂的MgB2基超导体的SEM图
图5.a实施例一Y2O3:Eu3+发光体掺杂的MgB2超导体XRD图
图5.b实施例一Y2O3:Eu3+发光体掺杂的MgB2超导体低温电阻图
图6.a实施例二Y2O3:Eu3+发光体掺杂的MgB2超导体XRD图
图6.b实施例二Y2O3:Eu3+发光体掺杂的MgB2超导体低温电阻图
具体实施方式
本发明采用水热法制备了两种不同发光强度掺杂剂Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒,异位固相掺杂法制备发光体Y2O3:Eu3+掺杂的MgB2基超导体。具体制备过程如下:
(1)称取0.153g的Y2O3和0.012g的Eu2O3,Y和Eu的摩尔比为0.95:0.05,60℃下溶解于过量硝酸中,得到Y(NO3)3和Eu(NO3)3的混合溶液,将混合溶液加热到80℃,蒸干,除去过量硝酸,得到白色晶体,加入10mL去离子水搅拌溶解,得到溶液A1,或再加入0.2g尿素搅拌溶解,得到混合溶液A2;另配置两份8ml溶有0.72g氢氧化钠的溶液,将其分别缓慢滴加至A1和A2溶液并不断搅拌,滴加完之后继续搅拌30min,分别转移至25ml反应釜中,放入烘箱中160℃下保温24h,得到白色沉淀B1和B2;将沉淀B1和B2离心,水洗、乙醇洗各3次,然后将沉淀在60℃下干燥12小时,得到白色前驱体;将前驱体转移至坩埚中,在管式炉中以5℃·min-1的速率升温至800℃并保温2小时,然后随炉冷却至室温,得到最终样品Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒;制备流程图如图1所示。
(2)称取相应不同质量分数掺杂剂Y2O3、Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒分别放在酒精中超声,不少于20min,形成溶液,再加入相应量的在手套箱中充分研磨后的实验室自制的MgB2粉料,超声不少于15min,形成悬浮液,将悬浮液放在表面皿中,在真空干燥箱中60℃,1h干燥成黑色粉末,将粉末充分研磨后压片,压力和保压时间为16-20MPa,5-8min,在高纯Ar气氛下,800℃保温1h得到相应的异位掺杂样品。
(3)利用测量临界转变温度过程中所加电流产生的局域电场激发掺杂剂Y2O3:Eu3+电致发光,采用四探针法测量样品电阻随温度的变化来确定其临界转变温度。
本发明的实现过程和材料性能由实施例和附图说明:
实施例一:
(1)水热法制备Y2O3和Y2O3:Eu3+纳米棒:制备流程图如图1所示。
(2)异位固相掺杂法制备纯MgB2、Y2O3和Y2O3:Eu3+发光体掺杂的MgB2超导体(质量分数为1%)。
(3)采用日本JSM-7000F型扫描电子显微镜对异位掺杂制备的MgB2基超导体进行形貌表征,如图4所示。从图4中可以看出MgB2基质颗粒尺寸约为1-3μm,大小形状不规则,颗粒间有缝隙;图中颜色较浅的部分为棒状的Y2O3:Eu3+发光体,多分布在颗粒间的缝隙处,分布较为均匀。Y2O3:Eu3+纳米棒形貌和掺杂前相比没有较大改变。
(4)采用荷兰帕纳科公司X’PertMPDPRO型X射线衍射仪对样品进行物相分析;利用美国AdvancedResearchSystems公司的液氦低温系统,采用四探针法测量了样品电阻随温度变化的曲线:如图5所示。从图5.a中可以看到,Y2O3和发光体Y2O3:Eu3+掺杂的MgB2超导体样品的主相是MgB2,另外还有掺杂的Y2O3相,杂质相MgO的来源可能是①手套箱研磨过程中的高纯氩中的微量氧气②压片过程或者样品从手套箱到真空管式炉转移中接触到了少量氧气③真空管式炉的真空度不是很高④Ar气中含有微量的氧。从图5.b中可以看到,异位掺杂均导致MgB2样品的Tc降低,但随着掺杂相发光强度的增加,样品的Tc值有所增加。
实施例二:
(1)水热法制备Y2O3和Y2O3:Eu3+纳米棒:制备流程图如图1所示。
(2)异位固相掺杂法制备纯MgB2、Y2O3和Y2O3:Eu3+发光体掺杂的MgB2超导体(质量分数为2%)。
(3)采用荷兰帕纳科公司X’PertMPDPRO型X射线衍射仪对样品进行物相分析;利用美国AdvancedResearchSystems公司的液氦低温系统,采用四探针法测量了样品电阻随温度变化的曲线:如图6所示。从图6.a可以看到,Y2O3和Y2O3:Eu3+发光体掺杂的MgB2超导体样品的主相是MgB2,另外还有一些保留下来的Y2O3相,杂质相MgO的来源如实施例一中所述。从图6.b中可以看到,随着掺杂相发光强度的增加,样品的Tc值不断增加,且高发光强度掺杂剂Y2O3:Eu3+II掺杂的MgB2超导体样品的Tc超过了纯MgB2的Tc,这就制备了一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体。
以上所述仅为本发明的优选实施例而已,当不能以此限定本发明实施的范围,即大凡依本发明权利要求及发明说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利覆盖的范围内。

Claims (4)

1.电致发光激励临界转变温度提高的MgB2基超导体,其主要特征在于水热法制备得到的Y2O3:Eu3+发光体作为掺杂剂,异位掺杂法制备Y2O3:Eu3+发光体掺杂MgB2基超导体。
2.如权利要求1中所述的电致发光激励临界转变温度提高的MgB2基超导体,其特征在于Y2O3:Eu3+纳米棒发光体分布在MgB2超导体颗粒周围。
3.如权利要求1中所述的电致发光激励临界转变温度提高的MgB2基超导体,其特征在于水热法制备Y2O3:Eu3+纳米棒时,Y和Eu的摩尔比为0.95:0.05;由于工艺不同,制备了两种不同发光强度的掺杂剂Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II;Y2O3:Eu3+发光体掺杂MgB2基超导体的质量分数为1%、2%。
4.如权利要求1中所述的电致发光激励临界转变温度提高的MgB2基超导体的制备方法包括以下步骤:
(1)称取0.153g的Y2O3和0.012g的Eu2O3,Y和Eu的摩尔比为0.95:0.05,60℃下溶解于过量硝酸中,得到Y(NO3)3和Eu(NO3)3的混合溶液,将混合溶液加热到80℃,蒸干,除去过量硝酸,得到白色晶体,加入10mL去离子水搅拌溶解,得到溶液A1,或再加入0.2g尿素搅拌溶解,得到混合溶液A2;另配置两份8ml溶有0.72g氢氧化钠的溶液,将其分别缓慢滴加至A1和A2溶液并不断搅拌,滴加完之后继续搅拌30min,分别转移至25ml反应釜中,放入烘箱中160℃下保温24h,得到白色沉淀B1和B2;将沉淀B1和B2离心,水洗、乙醇洗各3次,然后将沉淀在60℃下干燥12小时,得到白色前驱体;将前驱体转移至坩埚中,在管式炉中以5℃·min-1的速率升温至800℃并保温2小时,然后随炉冷却至室温,得到最终样品Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒;
(2)称取相应不同质量分数掺杂剂Y2O3、Y2O3:Eu3+Ⅰ和Y2O3:Eu3+II纳米棒分别放在酒精中超声,不少于20min,形成溶液,再加入相应量的在手套箱中充分研磨后的实验室自制的MgB2粉料,超声不少于15min,形成悬浮液,将悬浮液放在表面皿中,在真空干燥箱中60℃,1h干燥成黑色粉末,将粉末充分研磨后压片,压力和保压时间为16-20MPa,5-8min,在高纯Ar气氛下,800℃保温1h得到相应的异位掺杂样品。
CN201610206412.XA 2016-04-05 2016-04-05 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法 Expired - Fee Related CN105788752B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610206412.XA CN105788752B (zh) 2016-04-05 2016-04-05 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610206412.XA CN105788752B (zh) 2016-04-05 2016-04-05 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法

Publications (2)

Publication Number Publication Date
CN105788752A true CN105788752A (zh) 2016-07-20
CN105788752B CN105788752B (zh) 2018-04-13

Family

ID=56394813

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610206412.XA Expired - Fee Related CN105788752B (zh) 2016-04-05 2016-04-05 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法

Country Status (1)

Country Link
CN (1) CN105788752B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383531A (zh) * 2018-05-15 2018-08-10 西北工业大学 拓扑发光体异质相掺杂的MgB2基超导体及其制备方法
CN109942290A (zh) * 2019-03-12 2019-06-28 西北工业大学 拓扑发光体异质相掺杂的Bi(Pb)-Sr-Ca-Cu-O系超构超导体及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101181750A (zh) * 2007-12-14 2008-05-21 天津大学 原位制备碳包覆镍颗粒掺杂MgB2超导材料的方法
WO2008122802A1 (en) * 2007-04-10 2008-10-16 Cambridge Entreprise Limited Composite electrical conductors and method for their manufacture
CN101298337A (zh) * 2008-07-01 2008-11-05 上海大学 Y2O3∶Eu3+纳米球粉体的制备方法
CN104175643A (zh) * 2014-08-05 2014-12-03 电子科技大学 Dast-石墨烯复合膜及其制备方法
CN104774013A (zh) * 2015-03-13 2015-07-15 西北工业大学 一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体
CN105238391A (zh) * 2015-11-04 2016-01-13 西安建筑科技大学 多光源钒基介孔有机-无机杂化发光材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008122802A1 (en) * 2007-04-10 2008-10-16 Cambridge Entreprise Limited Composite electrical conductors and method for their manufacture
CN101181750A (zh) * 2007-12-14 2008-05-21 天津大学 原位制备碳包覆镍颗粒掺杂MgB2超导材料的方法
CN101298337A (zh) * 2008-07-01 2008-11-05 上海大学 Y2O3∶Eu3+纳米球粉体的制备方法
CN104175643A (zh) * 2014-08-05 2014-12-03 电子科技大学 Dast-石墨烯复合膜及其制备方法
CN104774013A (zh) * 2015-03-13 2015-07-15 西北工业大学 一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体
CN105238391A (zh) * 2015-11-04 2016-01-13 西安建筑科技大学 多光源钒基介孔有机-无机杂化发光材料的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108383531A (zh) * 2018-05-15 2018-08-10 西北工业大学 拓扑发光体异质相掺杂的MgB2基超导体及其制备方法
CN109942290A (zh) * 2019-03-12 2019-06-28 西北工业大学 拓扑发光体异质相掺杂的Bi(Pb)-Sr-Ca-Cu-O系超构超导体及其制备方法

Also Published As

Publication number Publication date
CN105788752B (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
Yamada et al. Doping dependence of the spatially modulated dynamical spin correlations and the superconducting-transition temperature in La 2− x Sr x CuO 4
Lorenz et al. Thermoelectric power and transport properties of Mg 1− x Al x B 2
Ma et al. The synthesis and grain connectivity of lamellar MgB2 grains by Cu-activated sintering at low temperature
Lu et al. Layer number dependent exciton dissociation and carrier recombination in 2D Ruddlesden–Popper halide perovskites
Qasim et al. Zinc nanoparticles at intercrystallite sites of (Cu0. 5Tl0. 5) Ba2Ca3Cu4O12− δ superconductor
Chen et al. Smart metastructure method for increasing TC of Bi (Pb) SrCaCuO high-temperature superconductors
CN105788752A (zh) 电致发光激励临界转变温度提高的MgB2基超导体及其制备方法
Tao et al. Critical temperature of smart meta-superconducting MgB 2
CN102255041B (zh) 一种ybco超导薄膜的制备方法
Gorur et al. Role of Gd content in Cu (1) and Cu (2) sites on electrical, microstructural, physical, mechanical and superconducting properties of YBa 2 Cu 3− x Gd x O 7− δ ceramics
Lu et al. Superconductivity at 41.0 K in the F-doped LaFeAsO1− xFx
Xu et al. Microstructure and superconducting properties of nanocarbon-doped internal Mg diffusion-processed MgB2 wires fabricated using different boron powders
CN108383531B (zh) 拓扑发光体异质相掺杂的MgB2基超导体及其制备方法
Awad Study of the Influence of MgO Nano-Oxide Addition on the Electrical and Mechanical Properties of (Cu 0.25 Tl 0.75)-1234 Superconducting Phase
CN104774013B (zh) 一种具有高临界转变温度的Y2O3:Eu3+发光体掺杂MgB2超导体
Ozyuzer et al. Tunneling spectroscopy of Tl2Ba2CuO6
Zhang et al. Phase diagram as a function of doping level and pressure in the Eu 1− x La x Fe 2 As 2 system
Asghari et al. Comparing the effects of Nb, Pb, Y, and La replacement on the structural, electrical, and magnetic characteristics of Bi-based superconductors
Ma et al. The enhancement of Jc in nano SiC-doped MgB2 superconductors rapidly synthesized by activated sintering at low-temperature
CN105541338B (zh) 通过自反应提高先位二硼化镁块材超导临界电流密度的方法
Hai et al. Green-Light GaN pn Junction Luminescent Particles Enhance the Superconducting Properties of B (P) SCCO Smart Meta-Superconductors (SMSCs)
Mumtaz et al. Study of (DNPs) x/CuTl-1223 Nanoparticle-Superconductor Composites
CN105236952A (zh) 纳米铁酸镍掺杂的钇钡铜氧超导块材的制备方法
Misra et al. An EPR investigation of the high-Tc superconductor YBa1. 9Na0. 1Cu3O7-δ
Qi et al. Green-light pn junction particle inhomogeneous phase enhancement of MgB2 smart meta-superconductors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180413

Termination date: 20190405