CN105787927B - 一种眼底彩色照相图像中渗出自动化识别方法 - Google Patents

一种眼底彩色照相图像中渗出自动化识别方法 Download PDF

Info

Publication number
CN105787927B
CN105787927B CN201610084266.8A CN201610084266A CN105787927B CN 105787927 B CN105787927 B CN 105787927B CN 201610084266 A CN201610084266 A CN 201610084266A CN 105787927 B CN105787927 B CN 105787927B
Authority
CN
China
Prior art keywords
image
mrow
diffusate
region
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610084266.8A
Other languages
English (en)
Other versions
CN105787927A (zh
Inventor
余奇
杨杰
许迅
周磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHANGHAI DATU MEDICAL TECHNOLOGY Co Ltd
Shanghai First Peoples Hospital
Original Assignee
SHANGHAI DATU MEDICAL TECHNOLOGY Co Ltd
Shanghai First Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHANGHAI DATU MEDICAL TECHNOLOGY Co Ltd, Shanghai First Peoples Hospital filed Critical SHANGHAI DATU MEDICAL TECHNOLOGY Co Ltd
Priority to CN201610084266.8A priority Critical patent/CN105787927B/zh
Publication of CN105787927A publication Critical patent/CN105787927A/zh
Application granted granted Critical
Publication of CN105787927B publication Critical patent/CN105787927B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30041Eye; Retina; Ophthalmic

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Processing (AREA)

Abstract

本发明公开一种视网膜眼底图像的渗出液检测方法,包括利用彩色数码免散瞳眼底照相机拍摄的眼底图像,上述方法包括以下步骤:(1)对原始图像的大小进行调整;(2)对调整后图像的RGB通道进行选择;(3)对调整后图像的视盘进行定位;(4)对调整后图像的视场进行定位;(5)对渗出液可疑区域进行双尺度定位;(6)对渗出液可疑区域进行特征提取;(7)对渗出液可疑区域进行分类检测,并生成标记渗出液的眼底图像。本方法能处理不同采集情况下获取的眼底图像,对于渗出液的检测鲁棒、有效,处理后的眼底图像渗出液位置直观、明显,方便眼科医生的进一步诊断。

Description

一种眼底彩色照相图像中渗出自动化识别方法
技术领域
本发明属于图像处理领域,具体涉及的是一种视网膜眼底图像的渗出液检测 方法。
背景技术
糖尿病视网膜病变(Diabetic Retinopathy)是一种严重的广泛流行的眼科疾病,它是成年人最主要的致盲原因。尽早地发现、治疗视网膜病变就能尽可能 减少视力的损失。视网膜内渗出液是糖尿病视网膜病变早期可见的标志之一, 也是病变分期和诊断的重要依据。渗出液可以分为硬性渗出液(hard exudates) 和软性渗出液(soft exudates)。由于血管的通透性增加,导致类脂质从血清中 渗出,堆积形成大小不等、边缘较为清楚的斑点状损伤称为硬性渗出液;而亮 白色、棉絮状斑点损伤则成为软性渗出液。
目前视网膜内渗出液的检测主要可以分成三类:1)基于聚类的方法,2) 基于形态学操作和区域生长的方法,3)基于像素点分类的方法。基于聚类的方 法中具有代表性的是A.Osareh等人在2003年提出了基于模糊C均值聚类 (FCM)的方法,通过人工设定模糊聚类数对眼底图像进行聚类,再将聚类的 结果用神经网络分类成渗出液区域和非渗出液区域。但是由于大规模筛查中眼 底图像成像质量的不确定性,往往需要依据成像质量调整聚类数,作者在文中 也没有提及可以参考的聚类数目。这阻碍了此类方法应用于自动的大规模眼底 病症筛查系统中。基于形态学操作和区域生长的方法中具有代表性的是A. Sopharak等人在2008年提出的基于一系列形态学操作检测渗出液的方法和C. Sinthanayothin等人在2002年提出的递归区域增长方法检测渗出液。这两种方 法都专注于处理存在视网膜内渗出液病症的眼底图像的渗出液检测,在自动眼 底病症筛查中,无法区分出没有渗出液病症的眼底图像。基于像素点分类的方 法有代表性的是G.G.Gardner等人在1996年提出的基于人工神经网络的方法, 此方法将眼底图像分割成20×20大小的图像块,通过输入训练好的神经网络将 图像块分类成背景、血管、渗出和出血四类。由于神经网络的输入是图像块,对于大小形状都不确定的渗出液无法准确的检测出渗出液的边界。
发明内容
本发明针对大规模眼底图像筛查情景的任务需求,为了有效应对眼底图像 光照不均匀、对比度变化范围大等成像质量问题,提出一种视网膜眼底图像的 渗出液检测方法,使眼底图像的渗出液区域更加明显,方便医生更加准确地诊 断眼底病变并进一步区分病变的严重程度。
本发明提供一种视网膜眼底图像的渗出液检测方法,利用彩色数码免散瞳 眼底照相机拍摄的眼底图像,上述方法包括以下步骤:
(1)对原始图像的大小进行调整;
(2)对调整后图像的RGB通道进行选择;
(3)对调整后图像的视盘进行定位;
(4)对调整后图像的视场进行定位;
(5)对渗出液可疑区域进行双尺度定位;
(6)对渗出液可疑区域进行特征提取;
(7)对渗出液可疑区域进行分类检测,并生成标记渗出液的眼底图像
本发明的一些实施方式中,所述步骤(1)中包括以下步骤:
将拍摄的原始眼底图像进行缩放,同时保持原始图像的高度和宽度比例不 变,缩放的比例计算如下式:
其中,ratio表示缩放的比例,H为原始图像的高度,W为原始图像的宽度, Hlimit=1152为设定的图像高度,Wlimit=1500为设定的图像宽度,函数min() 为取两者的较小值。
本发明的一些实施方式中,所述步骤(2)中包括以下步骤:
视盘的定位选用R、G两通道,视场的定位选用RGB三通道,渗出液可疑 区域双尺度定位选用G通道,渗出液可疑区域的特征提取选用RGB三通道。
本发明的一些实施方式中,所述步骤(3)中包括以下步骤:
选取R、G双通道进行加权求和,获得新的图像Iw,其计算公式为:
Iw=w·Ir+(1-w)·Ig
其中,Ir、Ig分别为调整后图像的R、G通道分量,w=0.75为R通道分量的 权重;
对图像Iw进行中值滤波,得到滤波后的图像Imed
对滤波后的图像Imed进行限制对比度自适应直方图均衡化,得到对比度增 强后的图像Ienhanced
取得图像Ienhanced的最大值,以及最大值所处的行位置和列位置,由于最大 值可能有多个值存在,因此行位置和列位置分别用向量Posrow、Poscol表示; 然后分别选择行位置和列位置的中值作为视盘的中心点位置;最后以视盘中心 点为圆心,r=135为半径作一个圆形掩模MaskOD作为视盘的位置。
本发明的一些实施方式中,所述步骤(4)中包括以下步骤:
将图像从RGB空间变换到Lab空间,并选取L通道图像IL进行二值化处 理:
BFOV=IL>ThreshFOV
其中,ThreshFOV=3为视场定位的阈值,BFOV为视场的候选区域;
对二值图像BFOV进行形态学腐蚀运算:
其中,morpherode表示形态学腐蚀运算,sFOV表示半径为15的圆盘形态结构元 素;
对Berode进行形态学空洞填补运算:
Bcompact=morphfill(Berode)
其中,morphfill表示形态学空洞填补运算,Bcompact表示最终获取的视场区域。
本发明的一些实施方式中,所述步骤(5)中包括以下步骤:
a选取调整后图像的G通道分量Ig,并记录其图像高度和宽度;
b将Ig进行模板大小为3×3的中值滤波;之后将滤波后的图像进行限制对 比度自适应直方图均衡化,得到待处理的图像
c对图像分别进行形态学黑帽(Black hat)变换和顶帽(Top hat) 变换,黑帽变换为:
其中,morphblackhat表示形态学黑帽变换,sBH表示半径为30的圆盘形态结构元 素,Ibh表示通过黑帽变换得到的图像,
顶帽变换为:
其中,morphtophat表示形态学顶帽变换,sTH表示半径为11的圆盘形态结构元 素,Ith表示通过顶帽变换得到的图像;
d将Ith与Ibh相减,得到增强渗出液的图像Iexudate
Iexudate=Ith-Ibh
之后对Iexudate进行阈值化分割,得到渗出液可疑区域的二值化图像Bexudate
Bexudate=Iexudate>Threshexudate
其中,Threshexudate=35;
e对图像Ig保持高宽比例不变,缩小一半,再重复步骤b-d得到尺度下的 渗出液可疑区域,后按最近邻插值方法还原到和Ig相同大小的二值化图像;然 后将两个尺度下得到的渗出液可疑区域的二值化图像进行“或”运算,得到双 尺度的渗出液可疑区域Bdual
f将双尺度渗出液可疑区域Bdual与视场区域Bcompact进行“与”运算,得到视场 内的渗出液可疑区域,之后按4邻域连通遍历每个视场内的渗出液可疑区域, 如果该连通区域与视盘的区域MaskOD有重叠,则去除该连通区域,否则保留该 区域;最后得到最终的渗出液可疑区域Canexudate
本发明的一些实施方式中,所述步骤(6)包括提取28个特征的以下步骤:
利用图像Ig进行模板大小为120×120的中值滤波,得到滤波后的图像 Iback,之后对于每个渗出液可疑连通区域R,计算得到4个特征:
Ig中区域R灰度值均值,
Ig中区域R灰度值方差,
Ig中区域R灰度值均值与Iback中区域R灰度值均值的比值,
Ig中区域R灰度值均值与Iback中区域R灰度值均值的差值;
利用Kirsch算子对Ig进行边界增强,得到边界增强后的图像之后 计算得到1个特征:中区域R的灰度值均值;
利用图像Ig进行限制对比度自适应直方图均衡化,得到增强后的图像 之后对进行模板大小为120×120的中值滤波,得到滤波后的图 像之后计算得到4个特征:
中区域R灰度值均值,
中区域R灰度值方差,
中区域R灰度值均值与中区域R灰度值均值的比值,
中区域R灰度值均值与中区域R灰度值均值的差值;
利用Kirsch算子对进行边界增强,得到边界增强后的图像 之后得到1个特征:中区域R的灰度值均值;
利用6个不同尺度((0.5,1)、(1,2)、(2,4)、(4,8)、(8,16)、(16,32)这6个尺度 对)的DoG算子对Ig进行处理,将处理后的图像中区域R的灰度值均值组成6 个特征;
利用6个不同尺度((0.5,1)、(1,2)、(2,4)、(4,8)、(8,16)、(16,32)这6个尺度 对)的DoG算子对进行处理,将处理后的图像中区域R的灰度值均值组 成6个特征;
利用图像Ir与图像Ig的比值图像Irg:
计算得到2个特征:
Irg中区域R灰度值的中值,
Irg中区域R灰度值的方差;
将图像从RGB空间变换到Lab空间,并选取a通道图像Ia,计算得到1个 特征:Ia中区域R灰度值的均值;
将图像从RGB空间变换到HSV空间,并选取H通道图像IH,计算得到1个 特征:IH中区域R灰度值的均值;
利用图像Ig对每个区域R的灰度值建立归一化的256阶直方图分布:
其中,i=0,…,255表示灰度级,|R|表示区域R的像素点个数,|Ig(R)==i|表 示图像Ig区域R中灰度值与i相等的像素点个数,Pi表示灰度值第i级的概率; 之后得到区域R中灰度值的最大值maxV和最小值minV,计算得到2个特征:
区域R中最大值maxV和最小值minV的差值,
对于每个区域R数列{Pj|j=minV,…,maxV}的方差。
本发明的一些实施方式中,所述步骤(7)中包括以下步骤:
利用步骤(6)得到的28维特征训练支持向量机(SVM),之后利用训练 得到的SVM分类器,对步骤(5)中得到的渗出液可疑区域进行渗出液和非渗 出液分类,保留标记为渗出液的区域,最后生成标记了渗出液边界的RGB图 像。
本发明通过结合双尺度形态学操作的渗出液非监督式检测和构造区分渗出 液与非渗出液的28维特征的SVM分类器的监督式检测,可以有效地检测出渗 出液区域。在DIARETDB1数据集上的测试渗出液的检测效果(按病灶点像素 评价)是敏感度(Sensitivity)为98.48%,特异性(Specificity)为99.98%。
本发明的有益效果是,通过非侵入式的彩色数码免散瞳眼底照相机拍摄的 眼底图像,就可以对眼底图像的渗出液进行检测,并且对不同条件下获取的眼 底图像具有鲁棒性和准确性,经处理后的渗出液位置清楚、明显,适用于大规 模眼底图像筛查,方便医生对眼底病症的诊断。
附图说明
图1为本发明视网膜眼底图像的渗出液检测流程图。
图2a为本发明实施例中的眼底图像G通道。
图2b为实施例中定位视盘的加权图像。
图2c为实施例中视盘的定位结果。
图2d为实施例中视场的定位结果。
图2e为实施例中渗出液可疑区域的定位结果。
图2f为实施例中渗出液的检测结果。
图3为DIARETDB1数据集上测试的观测者操作特性曲线(Receiver OperatingCharacteristic(ROC)Curve)
具体实施方式
下面对本发明的实施例作具体说明,本实施例以本发明技术方案为前提进 行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限 于下述的实施例。
图1示出了本发明视网膜眼底图像的渗出液检测流程图。本实施例所使用 的眼底图像是通过彩色数码免散瞳眼底照相机拍摄的图像,如图2a所示为图像 的G通道分量。
(1)对原始图像的大小进行调整
在大规模眼底图像筛查情况下,不同眼底照相机拍摄的图片大小可能不一 样,因此需要在处理图像前调整原始图像的大小,本发明中将原始图像统一调 整到一个相似的大小图像进行操作,从而克服了原始图像大小不一的情况。具 体的操作方式是将拍摄的原始眼底图像进行缩放,同时保持原始图像的高度和 宽度比例不变,缩放的比例计算如下:
其中,ratio表示缩放的比例,H为原始图像的高度,W为原始图像的宽度, Hlimit=1152为设定的图像高度,Wlimit=1500为设定的图像宽度,函数min()为 取两者的较小值。
(2)对调整后图像的RGB通道进行选择
由于眼底图像的B通道几乎不含视盘的结构信息,而在R通道下视盘的边 界比较明显,同时G通道下视网膜各结构的对比度最强,因此本发明在视盘的 定位中选择R通道和G通道加权图像,在渗出液可疑区域的定位中则采用G通 道。对于眼底图像,由于照相机光圈的原因,拍摄出来的眼底图像周围总会存 在一部分暗色的背景区域,在形态学操作时可能会产生信息干扰,因此需要定 位出视场区域。通过从RGB空间转换到Lab空间后,明度L通道可以用于定位 视场。而在渗出液特征描述上需要充分利用颜色空间的信息,因此采用了RGB 空间、Lab空间和HSV空间的信息。
(3)对调整后图像的视盘进行定位
1)选取R、G双通道进行加权求和,获得新的图像Iw,如图2b所示,其 计算公式为:
Iw=w·Ir+(1-w)·Ig
其中Ir、Ig分别为调整后图像的R、G通道分量,w=0.75为R通道分量的权 重;
2)对图像Iw进行中值滤波,得到滤波后的图像Imed
3)对滤波后的图像Imed进行限制对比度自适应直方图均衡化,得到对比度 增强后的图像Ienhanced
4)先取得图像Ienhanced的灰度最大值,以及最大值所处的行位置和列位置, 由于最大值可能有多个值存在,因此行位置和列位置分别用向量Posrow、Poscol表示;然后分别选择行位置和列位置的中值作为视盘的中心点位置;最后以视 盘中心点为圆心,r=135为半径作一个圆形掩模MaskOD作为视盘的位置,如图 2c所示。
(4)对调整后图像的视场进行定位
1)将图像从RGB空间变换到Lab空间,并选取L通道图像IL进行二值化 处理:
BFOV=IL>ThreshFOV
其中ThreshFOV=3为视场定位的阈值,BFOV为视场的候选区域;
2)对二值图像BFOV进行形态学腐蚀运算:
其中morpherode表示形态学腐蚀运算,sFOV表示半径为15的圆盘形态结构元 素;
3)对Berode进行形态学空洞填补运算:
Bcompact=morphfill(Berode)
其中morphfill表示形态学空洞填补运算,Bcompact表示最终获取的视场区域,如图2d所示。
(5)对渗出液可疑区域进行双尺度定位
1)选取调整后图像的G通道分量Ig,并记录其图像高度和宽度;
2)将Ig进行模板大小为3×3的中值滤波;之后将滤波后的图像进行限制 对比度自适应直方图均衡化,得到待处理的图像
3)对图像分别进行形态学黑帽(Black hat)变换和顶帽(Top hat) 变换,黑帽变换为:
其中morphblackhat表示形态学黑帽变换,sBH表示半径为30的圆盘形态结构元 素,Ibh表示通过黑帽变换得到的图像;
顶帽变换为:
其中morphtophat表示形态学顶帽变换,sTH表示半径为11的圆盘形态结构元 素,Ith表示通过顶帽变换得到的图像;
4)将Ith与Ibh相减,得到增强渗出液的图像Iexudate
Iexudate=Ith-Ibh
之后对Iexudate进行阈值化分割,得到渗出液可疑区域的二值化图像Bexudate
Bexudate=Iexudate>Threshexudate
其中Threshexudate=35;
5)对图像Ig保持高宽比例不变,缩小一半,再重复步骤2-4得到尺度下 的渗出液可疑区域,后按最近邻插值方法还原到和Ig一样大小的二值化图像; 然后将两个尺度下得到的渗出液可疑区域的二值化图像进行“或”运算,得到 双尺度的渗出液可疑区域Bdual
6)将双尺度渗出液可疑区域Bdual与视场区域Bcompact进行“与”运算,得到视 场内的渗出液可疑区域,之后按4邻域连通遍历每个视场内的渗出液可疑区域, 如果该连通区域与视盘的区域MaskOD有重叠,则去除该连通区域,否则保留该 区域;最后得到最终的渗出液可疑区域Canexudate,如图2e所示。
(6)对渗出液可疑区域进行特征提取,此步骤需要利用图像RGB空间、Lab 空间和HSV空间的信息提取28维特征:
1)利用图像Ig进行模板大小为120×120的中值滤波,得到滤波后的图像 Iback,之后对于每个渗出液可疑连通区域R,计算得到4个特征:
(a)Ig中区域R灰度值均值;
(b)Ig中区域R灰度值方差;
(c)Ig中区域R灰度值均值与Iback中区域R灰度值均值的比值;
(d)Ig中区域R灰度值均值与Iback中区域R灰度值均值的差值;
2)利用Kirsch算子对Ig进行边界增强,得到边界增强后的图像之 后计算得到1个特征:中区域R的灰度值均值;
3)利用图像Ig进行限制对比度自适应直方图均衡化,得到增强后的图像 之后对进行模板大小为120×120的中值滤波,得到滤波后的图 像之后计算得到4个特征:
(a)中区域R灰度值均值;
(b)中区域R灰度值方差;
(c)中区域R灰度值均值与中区域R灰度值均值的比值;
(d)中区域R灰度值均值与中区域R灰度值均值的差值;
4)利用Kirsch算子对进行边界增强,得到边界增强后的图像 之后得到1个特征:中区域R的灰度值均值;
5)利用6个不同尺度((0.5,1)、(1,2)、(2,4)、(4,8)、(8,16)、(16,32)这6个 尺度对)的DoG算子对Ig进行处理,将处理后的图像中区域R的灰度值均值组 成6个特征;
6)利用6个不同尺度((0.5,1)、(1,2)、(2,4)、(4,8)、(8,16)、(16,32)这6个 尺度对)的DoG算子对进行处理,将处理后的图像中区域R的灰度值均 值组成6个特征;
7)利用图像Ir与图像Ig的比值图像Irg:
计算得到2个特征:
(a)Irg中区域R灰度值的中值;
(b)Irg中区域R灰度值的方差;
8)将图像从RGB空间变换到Lab空间,并选取a通道图像Ia,计算得到1 个特征:Ia中区域R灰度值的均值;
9)将图像从RGB空间变换到HSV空间,并选取H通道图像IH,计算得到 1个特征:IH中区域R灰度值的均值;
10)利用图像Ig对每个区域R的灰度值建立归一化的256阶直方图分布:
其中i=0,…,255表示灰度级,|R|表示区域R的像素点个数,|Ig(R)==i|表示图像Ig区域R中灰度值与i相等的像素点个数,Pi表示灰度值第i级的概率; 之后得到区域R中灰度值的最大值maxV和最小值minV,计算得到2个特征:
(a)区域R中最大值maxV和最小值minV的差值;
(b)对于每个区域R数列{Pj|j=minV,…,maxV}的方差。
(7)对渗出液可疑区域进行分类检测
利用步骤(6)得到的28维特征训练支持向量机(SVM),之后利用训练得 到的SVM分类器,对步骤(5)中得到的渗出液可疑区域进行渗出液和非渗出液 分类,保留标记为渗出液的区域,最后生成标记了渗出液边界的RGB图像,如 图2f所示为G通道下高亮渗出液边界的图像。经过本发明提取后的图像,渗出 液位置明显,方便医生的观测。图3为本发明在DIARETDB1数据集上的测试结 果(按渗出液病例评价)。

Claims (8)

1.一种视网膜眼底图像的渗出液检测方法,利用彩色数码免散瞳眼底照相机拍摄的眼底图像,其特征在于,所述方法包括以下步骤:
(1)对原始图像的大小进行调整;
(2)对调整后图像的RGB通道进行选择;
(3)对调整后图像的视盘进行定位;
(4)对调整后图像的视场进行定位;
(5)对渗出液可疑区域进行双尺度定位;
(6)对渗出液可疑区域进行特征提取;
(7)对渗出液可疑区域进行分类检测,并生成标记渗出液的眼底图像;
在所述步骤(3)中包括以下步骤:
选取R、G双通道进行加权求和,获得新的图像Iw,其计算公式为:
Iw=w·Ir+(1-w)·Ig
其中,Ir、Ig分别为调整后图像的R、G通道分量,w=0.75为R通道分量的权重;
对图像Iw进行中值滤波,得到滤波后的图像Imed
对滤波后的图像Imed进行限制对比度自适应直方图均衡化,得到对比度增强后的图像Ienhanced
取得图像Ienhanced的灰度最大值,以及所述最大值所处的行位置和列位置,所述行位置和所述列位置分别用向量Posrow、Poscol表示;分别选择所述行位置和所述列位置的中值作为视盘的中心点位置;以视盘中心点为圆心,r=135为半径作一个圆形掩模MaskOD作为视盘的位置。
2.根据权利要求1所述的视网膜眼底图像的渗出液检测方法,其特征在于,在所述步骤(1)中包括以下步骤:
将拍摄的原始眼底图像进行缩放,同时保持原始图像的高度和宽度比例不变,缩放的比例计算如下式:
<mrow> <mi>r</mi> <mi>a</mi> <mi>t</mi> <mi>i</mi> <mi>o</mi> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>H</mi> <mrow> <mi>lim</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mi>H</mi> </mfrac> <mo>,</mo> <mfrac> <msub> <mi>W</mi> <mrow> <mi>lim</mi> <mi>i</mi> <mi>t</mi> </mrow> </msub> <mi>W</mi> </mfrac> <mo>)</mo> </mrow> </mrow>
其中,ratio表示缩放的比例,H为原始图像的高度,W为原始图像的宽度,Hlimit=1152为设定的图像高度,Wlimit=1500为设定的图像宽度,函数min()为取两者的较小值。
3.根据权利要求1所述的视网膜眼底图像的渗出液检测方法,其特征在于,在所述步骤(2)中包括以下步骤:
视盘的定位选用R、G两通道,视场的定位选用RGB三通道,渗出液可疑区域双尺度定位选用G通道,渗出液可疑区域的特征提取选用RGB三通道。
4.根据权利要求1所述的视网膜眼底图像的渗出液检测方法,其特征在于,在所述步骤(4)中包括以下步骤:
将调整后图像从RGB空间变换到Lab空间,并选取L通道图像IL进行二值化处理:
BFOV=IL>ThreshFOV
其中,ThreshFOV=3为视场定位的阈值,BFOV为视场的候选区域;
对二值图像BFOV进行形态学腐蚀运算:
<mrow> <msub> <mi>B</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>o</mi> <mi>d</mi> <mi>e</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>morph</mi> <mrow> <mi>e</mi> <mi>r</mi> <mi>o</mi> <mi>d</mi> <mi>e</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mi>F</mi> <mi>O</mi> <mi>V</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mrow> <mi>F</mi> <mi>O</mi> <mi>V</mi> </mrow> </msub> <mo>)</mo> </mrow> </mrow>
其中,morpherode表示形态学腐蚀运算,sFOV表示半径为15的圆盘形态结构元素;
对Berode进行形态学空洞填补运算:
Bcompact=morphfill(Berode)
其中,morphfill表示形态学空洞填补运算,Bcompact表示最终获取的视场区域。
5.根据权利要求4所述的视网膜眼底图像的渗出液检测方法,其特征在于,在所述步骤(5)中包括以下步骤:
a选取调整后图像的G通道分量Ig,并记录其图像高度和宽度;
b将Ig进行模板大小为3×3的中值滤波;将滤波后的图像进行限制对比度自适应直方图均衡化,得到待处理的图像
c对图像分别进行形态学黑帽变换和顶帽变换,黑帽变换为:
<mrow> <msub> <mi>I</mi> <mrow> <mi>b</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>morph</mi> <mrow> <mi>b</mi> <mi>l</mi> <mi>a</mi> <mi>c</mi> <mi>k</mi> <mi>h</mi> <mi>a</mi> <mi>t</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mi>B</mi> <mi>H</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>n</mi> <mi>h</mi> <mi>a</mi> <mi>n</mi> <mi>c</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </msub> <mo>)</mo> </mrow> </mrow>
其中,morphblackhat表示形态学黑帽变换,sBH表示半径为30的圆盘形态结构元素,Ibh表示通过黑帽变换得到的图像,
顶帽变换为:
<mrow> <msub> <mi>I</mi> <mrow> <mi>t</mi> <mi>h</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>morph</mi> <mrow> <mi>t</mi> <mi>o</mi> <mi>p</mi> <mi>h</mi> <mi>a</mi> <mi>t</mi> </mrow> <mrow> <mo>(</mo> <mi>s</mi> <mi>T</mi> <mi>H</mi> <mo>)</mo> </mrow> </msubsup> <mrow> <mo>(</mo> <msub> <mi>I</mi> <msub> <mi>G</mi> <mrow> <mi>e</mi> <mi>n</mi> <mi>h</mi> <mi>a</mi> <mi>n</mi> <mi>c</mi> <mi>e</mi> <mi>d</mi> </mrow> </msub> </msub> <mo>)</mo> </mrow> </mrow>
其中,morphtophat表示形态学顶帽变换,sTH表示半径为11的圆盘形态结构元素,Ith表示通过顶帽变换得到的图像;
d将Ith与Ibh相减,得到增强渗出液的图像Iexudate
Iexudate=Ith-Ibh
对Iexudate进行阈值化分割,得到渗出液可疑区域的二值化图像Bexudate
Bexudate=Iexudate>Threshexudate
其中,Threshexudate=35;
e对图像Ig保持高宽比例不变,缩小一半,再重复步骤b-d得到尺度下的渗出液可疑区域,按最近邻插值方法还原到和Ig相同大小的二值化图像;将两个尺度下得到的渗出液可疑区域的二值化图像进行“或”运算,得到双尺度的渗出液可疑区域Bdual
f将双尺度渗出液可疑区域Bdual与视场区域Bcompact进行“与”运算,得到视场内的渗出液可疑区域,按4邻域连通遍历每个视场内的渗出液可疑区域,如果连通区域与视盘的区域MaskOD有重叠,则去除该连通区域,否则保留该连通区域;得到最终的渗出液可疑区域Canexudate
6.根据权利要求1所述的视网膜眼底图像的渗出液检测方法,其特征在于,所述步骤(6)中包括提取28个特征的以下步骤:
利用调整后图像的G通道分量Ig进行模板大小为120×120的中值滤波,得到滤波后的图像Iback,对于每个渗出液可疑连通区域R,计算得到4个特征:
Ig中区域R灰度值均值,
Ig中区域R灰度值方差,
Ig中区域R灰度值均值与Iback中区域R灰度值均值的比值,
Ig中区域R灰度值均值与Iback中区域R灰度值均值的差值;
利用Kirsch算子对Ig进行边界增强,得到边界增强后的图像计算得到1个特征:中区域R的灰度值均值;
利用图像Ig进行限制对比度自适应直方图均衡化,得到增强后的图像进行模板大小为120×120的中值滤波,得到滤波后的图像计算得到4个特征:
中区域R灰度值均值,
中区域R灰度值方差,
中区域R灰度值均值与中区域R灰度值均值的比值,
中区域R灰度值均值与中区域R灰度值均值的差值;
利用Kirsch算子对进行边界增强,得到边界增强后的图像得到1个特征:中区域R的灰度值均值;
利用6个不同尺度的DoG算子对Ig进行处理,将处理后的图像中区域R的灰度值均值组成6个特征;
利用6个不同尺度的DoG算子对进行处理,将处理后的图像中区域R的灰度值均值组成6个特征;
利用图像Ir与图像Ig的比值图像Irg:
<mrow> <msub> <mi>I</mi> <mrow> <mi>r</mi> <mi>g</mi> </mrow> </msub> <mo>=</mo> <mfrac> <msub> <mi>I</mi> <mi>r</mi> </msub> <msub> <mi>I</mi> <mi>g</mi> </msub> </mfrac> <mo>,</mo> </mrow>
计算得到2个特征:
Irg中区域R灰度值的中值,
Irg中区域R灰度值的方差;
将调整后图像从RGB空间变换到Lab空间,并选取a通道图像Ia,计算得到1个特征:Ia中区域R灰度值的均值;
将调整后图像从RGB空间变换到HSV空间,并选取H通道图像IH,计算得到1个特征:IH中区域R灰度值的均值;
利用图像Ig对每个区域R的灰度值建立归一化的256阶直方图分布:
<mrow> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msub> <mi>I</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>R</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>=</mo> <mi>i</mi> <mo>|</mo> </mrow> <mrow> <mo>|</mo> <mi>R</mi> <mo>|</mo> </mrow> </mfrac> </mrow>
其中,i=0,…,255表示灰度级,|R|表示区域R的像素点个数,|Ig(R)==i|表示图像Ig区域R中灰度值与i相等的像素点个数,Pi表示灰度值第i级的概率;得到区域R中灰度值的最大值maxV和最小值minV,计算得到2个特征:
区域R中最大值maxV和最小值minV的差值,
对于每个区域R数列{Pj|j=minV,…,maxV}的方差。
7.根据权利要求6所述的视网膜眼底图像的渗出液检测方法,其特征在于,所述“利用6个不同尺度的DoG算子对进行处理”的步骤中6个不同尺度DoG算子是指采用了(0.5,1)、(1,2)、(2,4)、(4,8)、(8,16)、(16,32)这6个尺度对的DoG算子。
8.根据权利要求1所述的视网膜眼底图像的渗出液检测方法,其特征在于,在所述步骤(7)中包括以下步骤:
利用步骤(6)得到的28维特征训练支持向量机(SVM),利用训练得到的SVM分类器,对步骤(5)中得到的渗出液可疑区域进行渗出液和非渗出液分类,保留标记为渗出液的区域,生成标记了渗出液边界的RGB图像。
CN201610084266.8A 2016-02-06 2016-02-06 一种眼底彩色照相图像中渗出自动化识别方法 Active CN105787927B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610084266.8A CN105787927B (zh) 2016-02-06 2016-02-06 一种眼底彩色照相图像中渗出自动化识别方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610084266.8A CN105787927B (zh) 2016-02-06 2016-02-06 一种眼底彩色照相图像中渗出自动化识别方法

Publications (2)

Publication Number Publication Date
CN105787927A CN105787927A (zh) 2016-07-20
CN105787927B true CN105787927B (zh) 2018-06-01

Family

ID=56402750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610084266.8A Active CN105787927B (zh) 2016-02-06 2016-02-06 一种眼底彩色照相图像中渗出自动化识别方法

Country Status (1)

Country Link
CN (1) CN105787927B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107038704B (zh) * 2017-05-04 2020-11-06 季鑫 视网膜图像渗出区域分割方法、装置和计算设备
CN107038705B (zh) * 2017-05-04 2020-02-14 季鑫 视网膜图像出血区域分割方法、装置和计算设备
CN110914835B (zh) * 2017-07-28 2024-04-19 新加坡国立大学 修改用于深度学习模型的视网膜眼底图像的方法
CN107909567B (zh) * 2017-10-31 2022-02-15 华南理工大学 数字图像的细长型连通区域提取方法
CN108682015B (zh) * 2018-05-28 2021-10-19 安徽科大讯飞医疗信息技术有限公司 一种生物图像中的病灶分割方法、装置、设备及存储介质
CN109472781B (zh) * 2018-10-29 2022-02-11 电子科技大学 一种基于串行结构分割的糖尿病视网膜病变检测系统
CN109523524B (zh) * 2018-11-07 2020-07-03 电子科技大学 一种基于集成学习的眼底图像硬性渗出检测方法
CN109816637B (zh) * 2019-01-02 2023-03-07 电子科技大学 一种眼底图像中硬性渗出区域的检测方法
CN109919915B (zh) * 2019-02-18 2021-03-23 广州视源电子科技股份有限公司 基于深度学习的视网膜眼底图像异常区域检测方法及设备
CN110009626A (zh) * 2019-04-11 2019-07-12 北京百度网讯科技有限公司 用于生成图像的方法和装置
CN111784629B (zh) * 2020-05-15 2024-03-19 华能国际电力股份有限公司海门电厂 一种漏油检测方法和系统
CN112435251A (zh) * 2020-12-04 2021-03-02 黄珍珍 一种视网膜眼底图像的渗出液检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889086A (zh) * 2006-07-20 2007-01-03 上海交通大学 交叉反应抗原计算机辅助筛选的方法
CN102843957A (zh) * 2009-08-24 2012-12-26 新加坡保健服务集团有限公司 一种用于检测视盘出血的方法及系统
CN103870838A (zh) * 2014-03-05 2014-06-18 南京航空航天大学 糖尿病视网膜病变的眼底图像特征提取方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1889086A (zh) * 2006-07-20 2007-01-03 上海交通大学 交叉反应抗原计算机辅助筛选的方法
CN102843957A (zh) * 2009-08-24 2012-12-26 新加坡保健服务集团有限公司 一种用于检测视盘出血的方法及系统
CN103870838A (zh) * 2014-03-05 2014-06-18 南京航空航天大学 糖尿病视网膜病变的眼底图像特征提取方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Novel Approach for Retinal Lesion Detection In Diabetic Retinopathy Images;M. Sridevi Maheswari et al;《International Journal of Innovative Research in Science, Engineering and Technology》;20140331;第3卷;全文 *
Detection of Hard Exudates in Colour Fundus Images Using Fuzzy Support Vector Machine-Based Expert System;T. Jaya et al;《Journal of Digit Imaging》;20151231;全文 *

Also Published As

Publication number Publication date
CN105787927A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105787927B (zh) 一种眼底彩色照相图像中渗出自动化识别方法
CN105761258B (zh) 一种眼底彩色照相图像出血自动化识别方法
Rahim et al. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing
Bharkad Automatic segmentation of optic disk in retinal images
Sinthanayothin Image analysis for automatic diagnosis of diabetic retinopathy
CN110276356A (zh) 基于r-cnn的眼底图像微动脉瘤识别方法
Qureshi et al. Detection of glaucoma based on cup-to-disc ratio using fundus images
WO2014031086A1 (en) Methods and systems for automatic location of optic structures in an image of an eye, and for automatic retina cup-to-disc ratio computation
CN109961848B (zh) 黄斑图像分类方法和设备
CN107330876A (zh) 一种基于卷积神经网络的图像自动诊断方法
Punnolil A novel approach for diagnosis and severity grading of diabetic maculopathy
CN104794721A (zh) 一种基于多尺度斑点检测的快速视盘定位方法
Septiarini et al. Automatic detection of peripapillary atrophy in retinal fundus images using statistical features
Argade et al. Automatic detection of diabetic retinopathy using image processing and data mining techniques
Dash et al. Detection of retinal blood vessels from ophthalmoscope images using morphological approach
Diaz et al. Glaucoma diagnosis by means of optic cup feature analysis in color fundus images
CN109325923A (zh) 一种基于数字图像算法处理的糖尿病视网膜图像增强方法
Xiong et al. Automatic cataract classification based on multi-feature fusion and SVM
Ghassabi et al. A unified optic nerve head and optic cup segmentation using unsupervised neural networks for glaucoma screening
CN111340773A (zh) 一种视网膜图像血管分割方法
Zhou et al. A novel approach for red lesions detection using superpixel multi-feature classification in color fundus images
Yamuna et al. Detection of abnormalities in retinal images
Shyam et al. Blood vessel segmentation in fundus images and detection of glaucoma
Shaikha et al. Optic Disc Detection and Segmentation in Retinal Fundus Image
Zhang et al. Optic disc and fovea detection via multi-scale matched filters and a vessels' directional matched filter

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant