CN105783757A - 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法 - Google Patents

基于光纤光栅的新型齿根弯曲应力在线监测装置及方法 Download PDF

Info

Publication number
CN105783757A
CN105783757A CN201610182658.8A CN201610182658A CN105783757A CN 105783757 A CN105783757 A CN 105783757A CN 201610182658 A CN201610182658 A CN 201610182658A CN 105783757 A CN105783757 A CN 105783757A
Authority
CN
China
Prior art keywords
gear
grating
fiber
bending stress
dedenda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610182658.8A
Other languages
English (en)
Inventor
李政颖
王洪海
李洋洋
徐刚
汪金铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201610182658.8A priority Critical patent/CN105783757A/zh
Publication of CN105783757A publication Critical patent/CN105783757A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/165Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge by means of a grating deformed by the object

Abstract

本发明公开了一种基于光纤光栅的新型齿根弯曲应力在线监测装置及方法,该装置包括信号探测单元和信号处理单元;信号探测单元包括设置在齿轮侧面的测量光栅和传输光纤,传输光纤紧密粘贴在齿轮的侧面靠近齿顶的位置,测量光栅设置在两个相邻的轮齿间的传输光纤上;信号处理单元包括光纤滑环、光纤光栅解调仪和计算机,传输光纤通过光纤滑环后与光纤光栅解调仪相连,光纤光栅解调仪通过传输网线与计算机相连。测量光栅实时采集齿轮的信号,通过光纤光栅解调仪处理之后转换为齿根弯曲应力,并将处理结果传输到计算机进行实时显示。本发明能够实现各种工况下的齿轮传动弯曲应力监测,具有结构简单,操作方便,测量准确,易于实现的优点。

Description

基于光纤光栅的新型齿根弯曲应力在线监测装置及方法
技术领域
本发明涉及光纤光栅传感和机械工况监测交叉领域,尤其涉及一种基于光纤光栅的新型齿根弯曲应力在线监测装置及方法。
背景技术
齿轮的设计一般都是按照预先给定的额定载荷来进行,但是由于在加工中产生的加工误差和使用过程中产生的安装误差等,会导致齿轮在实际传动过程中发生震动和变形,这不仅会带来噪音和震动,还会降低齿轮传动的准确性和工作效率。同时还让轮齿承受一定的额外动应力,导致齿根弯曲应力增大,如果齿根处的弯曲应力超过了其疲劳极限,就容易发生断齿,断齿是齿轮传动中常见的失效形式之一,可能导致的后果是损坏机械设备甚至会威胁到人身安全。
近些年来,为了对齿轮的强度进行分析,国内外许多学者提出了多种方法,归纳起来主要有:理论推导型,三维仿真型,应变片测量型三种方法。理论推导和三维仿真主要是建立在一些假设和简化的基础上,不能把实际工况代入计算中去,尽管能够起到指导实践的作用,但是也必定带来很大的误差;应变片测量的方法虽然能够代入工况进行实际测量,但是由于应变片的组桥方式较为复杂,且齿根处的粘贴空间较为狭小,长时间的运载还会导致应变片的破损甚至脱落,故应变片测量一般只用来进行其他方法的校核,且仅为静态校核,在高速连续的工况下不能使用应变片进行测量。那么如何能够在齿轮传动过程中对其进行实时的动态监测,而又不影响齿轮的正常工况,就成为摆在众多学者面前的一道难题。
发明内容
本发明要解决的技术问题在于针对现有技术中测量齿轮应变力度的方法误差大,且容易影响齿轮工作的缺陷,提供一种结构简单、易于实现的基于光纤光栅的新型齿根弯曲应力在线监测装置及方法。
本发明解决其技术问题所采用的技术方案是:
本发明提供一种基于光纤光栅的新型齿根弯曲应力在线监测装置,包括信号探测单元和信号处理单元;
所述信号探测单元包括设置在齿轮侧面的测量光栅和传输光纤,传输光纤紧密粘贴在齿轮的侧面靠近齿顶的位置,测量光栅设置在两个相邻的轮齿间的传输光纤上;
所述信号处理单元包括光纤滑环、光纤光栅解调仪和计算机,传输光纤通过光纤滑环后与光纤光栅解调仪相连,光纤光栅解调仪通过传输网线与计算机相连;
测量光栅实时采集齿轮的信号,通过光纤光栅解调仪处理之后转换为齿根弯曲应力,并将处理结果传输到计算机进行实时显示。
进一步地,本发明的所述齿轮还包括设置有光纤槽的输出轴,传输光纤通过光纤槽输出到轴端。
进一步地,本发明的所述光纤光栅解调仪为高速光纤光栅解调仪。
进一步地,本发明的所述测量光栅的长度小于齿间距,水平设置在两个相邻轮齿的中间位置。
进一步地,本发明的所述传输光纤通过胶水粘贴在齿轮上,且粘贴位置处的传输光纤的涂覆层被剥除掉。
本发明提供一种基于光纤光栅的新型齿根弯曲应力在线监测方法,包括以下步骤:
S1、在齿轮侧面的齿顶处粘贴传输光纤,在两个相邻轮齿的中间位置设置测量光栅,传输光纤通过光纤滑环后与光纤光栅解调仪连接;
S2、获取传输光纤传输来的齿轮数据,并对其进行解调和处理,得到齿根弯曲应力;
进一步地,本发明的步骤S2中进行数据处理的方法具体为:
通过解调得到光栅发射波长发生的漂移与光栅受到拉伸和压缩的周期性关系,处理得到检测齿轮的挠度,将轮齿视为悬臂梁,根据轮齿上确定位置的挠度与轮齿所受切向力呈现的线性关系,得到挠度与齿根弯曲应力的线性关系。
进一步地,本发明的步骤S2中齿根弯曲应力计算公式为:
σ F = KF t Y F a Y S a b m
其中,K为计算载荷系数,YSa为应力校正系数,YFa齿形系数,Ft为圆周力,b为齿宽,m为齿轮模数。
本发明产生的有益效果是:本发明的基于光纤光栅的新型齿根弯曲应力在线监测装置,通过将齿根弯曲应力的测量转化为轮齿挠度的测量,不仅使得测量更加方便,同时采用光纤光栅进行测量还克服了应变片不能测量挠度的技术难题;光纤光栅均位于轮齿侧面,不影响齿轮的正常传动,能够有效地将实际工况代入测量中,保证结果的准确性和可靠性,由于信号的输出采用了光纤滑环和高速光纤光栅解调仪,所以该发明适用于高速工况下的齿轮传动;该方法去除温度因素带来的干扰,因而无需进行温度补偿装置,大大简化了信号探测部分的结构;通过调节光栅粘贴位置距离齿根的高度,可以得到不同灵敏度的监测,通过串联多个光栅可以实现对齿轮周上每个齿的测量。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1是本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测装置的结构示意图;
图2是本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测装置的测量光栅探测部分的局部放大图;
图3是本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测方法的流程图;
图4是本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测方法的悬臂梁受力分析图;
图5是本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测方法的轮齿变形示意图;
图中,1-齿轮,2-测量光栅,3-传输光纤,4-光纤槽,5-输出轴,6-光纤滑环,7-高速光纤光栅解调仪,8-传输网线,9-计算机,10-粘贴胶水,11-第一轮齿,12-第二轮齿。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测装置,包括信号探测单元和信号处理单元;
信号探测单元包括设置在齿轮1侧面的测量光栅2和传输光纤3,传输光纤3紧密粘贴在齿轮1的侧面靠近齿顶的位置,测量光栅2设置在两个相邻的轮齿间的传输光纤3上;
信号处理单元包括光纤滑环6、光纤光栅解调仪7和计算机9,传输光纤3通过光纤滑环6后与光纤光栅解调仪7相连,光纤光栅解调仪7通过传输网线8与计算机9相连;
测量光栅2实时采集齿轮1的信号,通过光纤光栅解调仪7处理之后转换为齿根弯曲应力,并将处理结果传输到计算机9进行实时显示。
齿轮1还包括设置有光纤槽4的输出轴5,传输光纤3通过光纤槽4输出到轴端。光纤光栅解调仪7为高速光纤光栅解调仪。测量光栅2的长度小于齿间距,水平设置在两个相邻轮齿的中间位置。传输光纤3通过胶水粘贴在齿轮1上,且粘贴位置处的传输光纤3的涂覆层被剥除掉。传输光纤3通过传输轴上的光纤槽输出至轴端,在轴端通过光纤滑环6实现由动态旋转至静态传输的转变。胶水为353ND胶水,涂胶均匀且粘贴位置处的光纤剥掉涂覆层,防止光纤因受力产生位移。
在齿轮的侧面粘贴光栅,不会对齿轮造成任何损坏,对齿轮的传动没有产生影响,保证结论的准确性。根据机械设计、机械理论和材料力学相关知识,轮齿在受力过程中可看作是一悬臂梁,当光栅位置固定后轮齿的挠度只跟轮齿所受切向力有关,且是线性关系,故挠度能够反应轮齿的受力情况。
本发明中的信号传输和采集处理过程如下:粘贴在轮齿1侧壁上的传输光纤通过齿轮1至输出轴,在输出轴上与光纤滑环6的输入端焊接在一起,并通过输出轴上开的光纤槽4将传输光纤3引至轴端,轴端中心与光纤滑环6中心保持在同一高度,同时二者之间通过软皮管相连,以保证光纤滑环6在高速转动时能够不受外力,从而对光纤滑环6起到保护作用,这样,通过光纤滑环6后,信号就可以传输至解调仪7进行后续解调和处理。
齿轮在传递扭矩的过程中轮齿不可避免的会受到切向力,轮齿的弯曲应力和挠度产生的最主要来源就是该切向力,在轮齿挠度的作用下,粘贴在轮齿之间的光栅则会受到周期性的拉伸和压缩,进而导致光栅发射光的波长发生相对应的漂移。在计算齿轮的弯曲强度时,不论是采用ISO标准还是AGMA标准,均是将单个轮齿视为悬臂梁进行求解。
如图4所示,为一长度为l的悬臂梁在自由端部受单个载荷F作用下的变形简图,以沿梁的长度方向为坐标轴,则根据材料力学相关知识,其挠曲线方程为:
ω = - Fx 2 6 E I ( 3 a - x ) ( 0 ≤ x ≤ a ) ω = - Fx 2 6 E I ( 3 x - a ) ( a ≤ x ≤ l ) - - - ( 1 )
式中E为对应材料的弹性模量,I为对中性轴的惯性矩,EI合称为梁的抗弯刚度,a为作用点距离固定端的位置,x为任意位置距离固定端的位置。
由式(1)中能够看出,当施加的单个载荷F作用的位置固定后,则在某一固定位置由该载荷作用所产生的挠度ω只跟载荷F的大小有关系,且二者成线性关系。由此考虑,在弹性范围内,若将齿轮轮齿视作悬臂梁,当齿轮受到载荷的作用时,将会沿圆周方向产生很小的挠度,如图5所示。
根据解析法计算得到的齿根弯曲应力计算公式为:
σ F = KF t Y F a Y S a b m - - - ( 2 )
式中:K为计算载荷系数,YSa为应力校正系数,YFa齿形系数,Ft为圆周力,b为齿宽,m为齿轮模数。
式中除了周向力Ft随着传动的扭矩发生变化之外,其余都可通过齿轮参数进行计算或者查阅相关手册得到,并且当齿轮型号选定且不改变相互配合的情况下,则齿根的弯曲应力随着Ft单调变化且呈线性关系,进而跟齿轮所产生的挠度即光栅的反射中心波长的偏移量同样呈线性关系,这就从理论上保证了光纤光栅用来测齿根弯曲应力会有很好的线性输出。综上所述,齿根弯曲应力与光栅的反射波长漂移同样呈线性关系,通过应变片实验进行标定即可获得波长漂移与齿根弯曲应力的线性公式,达到监测齿根弯曲应力的目的。
在本发明的另一个实施例中,通过变频器控制变频电机施加转矩和转速,通过张力控制器施加不同负载,目的是产生不同工况下齿轮传动的信号,该信号在粘贴光纤的轮齿进行啮合时反映为光栅的拉伸或者压缩。
信号的探测部分如图2所示,包括测量光栅2、传输光纤3、粘贴胶水10、第一轮齿11和第二轮齿12。固定光栅的方法是,通过将光栅2两侧的传输光纤3分别用353ND胶水粘贴至第一轮齿11和第二轮齿12上,注意光纤粘贴处剥掉其涂敷层,避免受力时发生相对滑动,而且保证光栅处于水平位置。当第一轮齿11或者第二轮齿12在进行啮合时,所受的弯曲应力就会反应在轮齿的挠度上,当轮齿产生挠度时就会拉伸或者压缩光栅,产生波长的漂移信号。
信号采集和处理部分包括光纤滑环6、高速光纤光栅解调仪7、传输网线8和计算机9,采集和处理部分可远离监测现场,做到现场无源。其中光栅2探测的信号通过传输光纤3传递至光纤滑环6,实现由动到静的转变,光纤滑环将信号送至解调仪7进行解调处理,处理之后的信号通过网线8送至计算机9进行显示和保存。其中,传输光纤3通过输出轴5上预先开好的光纤槽4输出至光纤滑环。
本发明实现了对齿根弯曲应力的监测,能够实现各种工况下的齿轮传动弯曲应力监测,具有结构简单,操作方便,测量准确,易于实现的优点。
如图3所示,本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测方法,用于实现本发明实施例的基于光纤光栅的新型齿根弯曲应力在线监测装置,包括以下步骤:
S1、在齿轮侧面的齿顶处粘贴传输光纤,在两个相邻轮齿的中间位置设置测量光栅,传输光纤通过光纤滑环后与光纤光栅解调仪连接;
S2、获取传输光纤传输来的齿轮数据,并对其进行解调和处理,得到齿根弯曲应力;
步骤S2中进行数据处理的方法具体为:
通过解调得到光栅发射波长发生的漂移与光栅受到拉伸和压缩的周期性关系,处理得到检测齿轮的挠度,将轮齿视为悬臂梁,根据轮齿上确定位置的挠度与轮齿所受切向力呈现的线性关系,得到挠度与齿根弯曲应力的线性关系。
应当理解的是,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (8)

1.一种基于光纤光栅的新型齿根弯曲应力在线监测装置,其特征在于,包括信号探测单元和信号处理单元;
所述信号探测单元包括设置在齿轮(1)侧面的测量光栅(2)和传输光纤(3),传输光纤(3)紧密粘贴在齿轮(1)的侧面靠近齿顶的位置,测量光栅(2)设置在两个相邻的轮齿间的传输光纤(3)上;
所述信号处理单元包括光纤滑环(6)、光纤光栅解调仪(7)和计算机(9),传输光纤(3)通过光纤滑环(6)后与光纤光栅解调仪(7)相连,光纤光栅解调仪(7)通过传输网线(8)与计算机(9)相连;
测量光栅(2)实时采集齿轮(1)的信号,通过光纤光栅解调仪(7)处理之后转换为齿根弯曲应力,并将处理结果传输到计算机(9)进行实时显示。
2.根据权利要求1所述的基于光纤光栅的新型齿根弯曲应力在线监测装置,其特征在于,所述齿轮(1)还包括设置有光纤槽(4)的输出轴(5),传输光纤(3)通过光纤槽(4)输出到轴端。
3.根据权利要求1所述的基于光纤光栅的新型齿根弯曲应力在线监测装置,其特征在于,所述光纤光栅解调仪(7)为高速光纤光栅解调仪。
4.根据权利要求1所述的基于光纤光栅的新型齿根弯曲应力在线监测装置,其特征在于,所述测量光栅(2)的长度小于齿间距,水平设置在两个相邻轮齿的中间位置。
5.根据权利要求1所述的基于光纤光栅的新型齿根弯曲应力在线监测装置,其特征在于,所述传输光纤(3)通过胶水粘贴在齿轮(1)上,且粘贴位置处的传输光纤(3)的涂覆层被剥除掉。
6.一种基于光纤光栅的新型齿根弯曲应力在线监测方法,其特征在于,包括以下步骤:
S1、在齿轮侧面的齿顶处粘贴传输光纤,在两个相邻轮齿的中间位置设置测量光栅,传输光纤通过光纤滑环后与光纤光栅解调仪连接;
S2、获取传输光纤传输来的齿轮数据,并对其进行解调和处理,得到齿根弯曲应力。
7.根据权利要求6所述的基于光纤光栅的新型齿根弯曲应力在线监测方法,其特征在于,步骤S2中进行数据处理的方法具体为:
通过解调得到光栅发射波长发生的漂移与光栅受到拉伸和压缩的周期性关系,处理得到检测齿轮的挠度,将轮齿视为悬臂梁,根据轮齿上确定位置的挠度与轮齿所受切向力呈现的线性关系,得到挠度与齿根弯曲应力的线性关系。
8.根据权利要求7所述的基于光纤光栅的新型齿根弯曲应力在线监测方法,其特征在于,步骤S2中齿根弯曲应力计算公式为:
其中,K为计算载荷系数,YSa为应力校正系数,YFa齿形系数,Ft为圆周力,b为齿宽,m为齿轮模数。
CN201610182658.8A 2016-03-28 2016-03-28 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法 Pending CN105783757A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610182658.8A CN105783757A (zh) 2016-03-28 2016-03-28 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610182658.8A CN105783757A (zh) 2016-03-28 2016-03-28 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法

Publications (1)

Publication Number Publication Date
CN105783757A true CN105783757A (zh) 2016-07-20

Family

ID=56390966

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610182658.8A Pending CN105783757A (zh) 2016-03-28 2016-03-28 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法

Country Status (1)

Country Link
CN (1) CN105783757A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768528A (zh) * 2017-01-09 2017-05-31 武汉理工大学 螺旋伞齿齿根弯曲应力分布式在线监测装置及方法
CN110383000A (zh) * 2017-03-02 2019-10-25 乌本产权有限公司 发电机、测量装置、测量装置的应用、用于运行发电机的方法、风能设备以及用于运行风能设备的方法
CN111307057A (zh) * 2020-03-13 2020-06-19 西安工程大学 一种利用光纤光栅检测轴系齿轮齿根应变的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139262A1 (en) * 2006-05-26 2007-12-06 Korea Institute Of Science And Technology Monitoring device for rotating body
KR20100119421A (ko) * 2009-04-30 2010-11-09 서울메트로 레일 누적 통과 톤수 실측 장치
CN104101380A (zh) * 2014-07-02 2014-10-15 西安交通大学 行星轮系固定中心齿轮齿根应力应变的测量方法
CN104457856A (zh) * 2014-12-24 2015-03-25 重庆大学 基于复合信息传感器齿轮箱的位置序列采样装置和方法
CN204461362U (zh) * 2015-01-19 2015-07-08 中国计量学院 一种高温压力管道外壁应变导杆光纤光栅传感器件
CN105698695A (zh) * 2016-03-25 2016-06-22 武汉理工大学 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007139262A1 (en) * 2006-05-26 2007-12-06 Korea Institute Of Science And Technology Monitoring device for rotating body
KR20100119421A (ko) * 2009-04-30 2010-11-09 서울메트로 레일 누적 통과 톤수 실측 장치
CN104101380A (zh) * 2014-07-02 2014-10-15 西安交通大学 行星轮系固定中心齿轮齿根应力应变的测量方法
CN104457856A (zh) * 2014-12-24 2015-03-25 重庆大学 基于复合信息传感器齿轮箱的位置序列采样装置和方法
CN204461362U (zh) * 2015-01-19 2015-07-08 中国计量学院 一种高温压力管道外壁应变导杆光纤光栅传感器件
CN105698695A (zh) * 2016-03-25 2016-06-22 武汉理工大学 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
林绍邦: "齿轮的齿根弯曲应力", 《广东机械学院学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768528A (zh) * 2017-01-09 2017-05-31 武汉理工大学 螺旋伞齿齿根弯曲应力分布式在线监测装置及方法
CN106768528B (zh) * 2017-01-09 2019-04-02 武汉理工大学 螺旋伞齿齿根弯曲应力分布式在线监测装置及方法
CN110383000A (zh) * 2017-03-02 2019-10-25 乌本产权有限公司 发电机、测量装置、测量装置的应用、用于运行发电机的方法、风能设备以及用于运行风能设备的方法
US11236732B2 (en) 2017-03-02 2022-02-01 Wobben Properties Gmbh Generator, measuring device, use of a measuring device, method for operating a generator, wind energy installation and method for operating a wind energy installation
CN111307057A (zh) * 2020-03-13 2020-06-19 西安工程大学 一种利用光纤光栅检测轴系齿轮齿根应变的方法
CN111307057B (zh) * 2020-03-13 2022-04-12 西安工程大学 一种利用光纤光栅检测轴系齿轮齿根应变的方法

Similar Documents

Publication Publication Date Title
CN105698695A (zh) 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法
US10145360B2 (en) Method for monitoring the operation of a wind energy plant and wind energy plant
CN103411550B (zh) 基于光纤光栅的内燃机主轴承内表面应力和温度监测方法
Todd et al. Bragg grating-based fibre optic sensors in structural health monitoring
EP1826545B1 (en) Damage detection system using optical fibre sensors
CN105783757A (zh) 基于光纤光栅的新型齿根弯曲应力在线监测装置及方法
CN104101380A (zh) 行星轮系固定中心齿轮齿根应力应变的测量方法
CN102507205B (zh) 一种检测航空发动机风扇叶片颤振故障的方法
US8234083B2 (en) Wind turbine rotor blade comprising an edge-wise bending insensitive strain sensor system
CN105092397A (zh) 机械结构疲劳损伤在线监测试验装置
CN112796957B (zh) 一种风机叶片的检测方法和装置以及设备
CN109297662A (zh) 一种架空电缆振动试验装置及试验方法
CN102419252A (zh) 光纤在线式高速列车齿轮箱检测装置
CN110108340A (zh) 一种汽车动态称重装置
CN103454447B (zh) 基于频率调制的迈克尔逊光纤加速度计及其调制方法
CN111307057A (zh) 一种利用光纤光栅检测轴系齿轮齿根应变的方法
Zhong et al. Contactless torque sensors based on optical methods: A review
CN106840486B (zh) 全分布式齿根弯曲应力动态检测装置和方法
CN103528733B (zh) 实时监测柔性绳索载荷和温度的梭形传感器
CN106289090A (zh) 一种牙科树脂内应变场的测量装置
CN105784219A (zh) 一种扭矩传感器及其测试系统
CN106323501A (zh) 基于光纤光栅的旋转机械的温度测量方法及装置
KR100874428B1 (ko) 하이브리드 간섭계를 이용한 광섬유 센서 시스템
CN206683687U (zh) 光纤法珀腔与光栅复用传感器的齿轮齿根状态监测系统
CN203465292U (zh) 基于频率调制的迈克尔逊光纤加速度计

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20160720