CN105783312B - 冷暖型空调器及其控制方法 - Google Patents

冷暖型空调器及其控制方法 Download PDF

Info

Publication number
CN105783312B
CN105783312B CN201610286119.9A CN201610286119A CN105783312B CN 105783312 B CN105783312 B CN 105783312B CN 201610286119 A CN201610286119 A CN 201610286119A CN 105783312 B CN105783312 B CN 105783312B
Authority
CN
China
Prior art keywords
cylinder
heating
valve port
interface
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610286119.9A
Other languages
English (en)
Other versions
CN105783312A (zh
Inventor
白军辉
陈明瑜
任超
孙兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Midea Group Co Ltd
GD Midea Air Conditioning Equipment Co Ltd
Original Assignee
Midea Group Co Ltd
Guangdong Midea Refrigeration Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Midea Group Co Ltd, Guangdong Midea Refrigeration Equipment Co Ltd filed Critical Midea Group Co Ltd
Priority to CN201610286119.9A priority Critical patent/CN105783312B/zh
Priority to PCT/CN2016/087933 priority patent/WO2017185514A1/zh
Publication of CN105783312A publication Critical patent/CN105783312A/zh
Application granted granted Critical
Publication of CN105783312B publication Critical patent/CN105783312B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • F25B43/006Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • F25B2700/193Pressures of the compressor
    • F25B2700/1931Discharge pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2106Temperatures of fresh outdoor air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本发明公开了一种冷暖型空调器及其控制方法。冷暖型空调器包括:双缸压缩机、换向组件、室外换热器、室内换热器、气液分离器、冷媒散热器,第一气缸的吸气口与第一储液器连通,第二气缸和第一气缸的排气容积比值的取值范围为1%~10%;换向组件包括第一阀口至第四阀口,第四阀口与第一储液器相连;气液分离器包括气体出口、第一接口和第二接口,气体出口与第二气缸相连,第一接口和室外换热器之间串联有固定开度的第一节流元件,第二接口和室内换热器之间串联有固定开度的第二节流元件。冷媒散热器串联在第一节流元件和第一接口之间;或者冷媒散热器串联在第二节流元件和第二接口之间。本发明的冷暖型空调器,有效提高空调器能效。

Description

冷暖型空调器及其控制方法
技术领域
本发明涉及制冷领域,尤其是涉及一种冷暖型空调器及其控制方法。
背景技术
目前的空调制冷系统没有对节流后并进入蒸发器前的气态制冷剂进行优化循环设计,导致气态制冷剂影响蒸发器换热性能,并且增加压缩机压缩功耗,从而影响到空调器能效水平。喷气增焓和双级压缩技术可以提高空调系统在低温和超低温下的制热能力水平,但对于空调经常使用的制冷工况,能效提升非常有限。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本发明提出一种冷暖型空调器,可以有效提高空调器能效,有效促进节能减排。
本发明还提出一种上述冷暖型空调器的控制方法。
根据本发明实施例的冷暖型空调器,包括:双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~10%;换向组件,所述换向组件包括第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述第一储液器相连;室外换热器和室内换热器,所述室外换热器的第一端与所述第二阀口相连,所述室内换热器的第一端与所述第三阀口相连;气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有固定开度的第一节流元件,所述第二接口和所述室内换热器之间串联有固定开度的第二节流元件;用于对电控元件进行散热的冷媒散热器,所述冷媒散热器串联在所述第一节流元件和所述第一接口之间;或者所述冷媒散热器串联在所述第二节流元件和所述第二接口之间。
根据本发明实施例的冷暖型空调器,通过设置上述双缸压缩机,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又通过设置冷媒散热器,可以对电控元件进行有效降温。
在本发明的一些实施例中,所述气体出口和所述第二气缸的吸气口之间串联有电磁阀。
在本发明的一些实施例中,气液分离器容积的取值范围为100mL-500mL。
在本发明的一些实施例中,冷暖型空调器还包括与所述冷媒散热器并联连接的控制阀,制冷时所述控制阀截止冷媒的流通,制热时冷媒流过所述控制阀。
进一步地,所述控制阀为在从所述第二节流元件到所述第一节流元件的方向上单向导通的单向阀。
在本发明的一些实施例中,所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间。
优选地,所述第一储液器的容积大于第二储液器的容积。
根据本发明实施例的冷暖型空调器的控制方法,冷暖型空调器为根据本发明上述实施例的冷暖型空调器,包括如下步骤:制冷或制热运行时根据检测到的压缩机运行参数和/或室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个。
根据本发明实施例的冷暖型空调器的控制方法,通过在运行过程中根据检测结果调整压缩机的运行频率,从而可以让系统运行在合适的参数范围内,提高空调器运行的可靠性。
在本发明的一些实施例中,预设多个不同的排气温度区间,所述多个排气温度区间对应的运行频率的调节指令不同,检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节所述运行频率。
在本发明的一些实施例中,预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流,首先检测室外环境温度,然后根据检测到的所述室外环境温度所在的室外温度区间得到对应的限频保护电流,调整所述运行频率以使实际检测到的运行电流达到相应的所述限频保护电流,其中当制冷时检测到的所述运行电流大于所述制冷停机保护电流时则直接停机;当制热时检测到的所述运行电流大于所述制热停机保护电流时则直接停机。
在本发明的一些实施例中,预设多个不同的排气压力区间,所述多个排气压力区间对应的运行频率的调节指令不同,检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节所述运行频率。
附图说明
图1为根据本发明第一个实施例的冷暖型空调器的示意图;
图2为根据本发明第二个实施例的冷暖型空调器的示意图;
图3为根据本发明第三个实施例的冷暖型空调器的示意图;
图4为根据本发明第四个实施例的冷暖型空调器的示意图;
图5为根据本发明实施例的设有第二储液器的冷暖型空调器的示意图;
图6为根据本发明实施例的设有电磁阀和第二储液器的冷暖型空调器的示意图;
图7为根据本发明实施例的双缸压缩机的示意图;
图8为根据本发明实施例的冷暖型空调器的控制方法的流程图。
附图标记:
冷暖型空调器100、
双缸压缩机1、壳体10、第一气缸11、第二气缸12、第一储液器13、第二储液器14、排气口15、
换向组件2、第一阀口D、第二阀口C、第三阀口E、第四阀口S、
室外换热器3、室内换热器4、
气液分离器5、气体出口m、第一接口f、第二接口g、
第一节流元件6、第二节流元件7、
控制阀8、冷媒散热器9、
电磁阀20。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接或彼此可通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
下面参考图1-图7详细描述根据本发明实施例的冷暖型空调器100,其中冷暖型空调器100具有制冷模式和制热模式。
如图1-图7所示,根据本发明实施例的冷暖型空调器100,包括:双缸压缩机1、换向组件2、室外换热器3和室内换热器4、气液分离器5、第一节流元件6、第二节流元件7和冷媒散热器9。其中双缸压缩机1包括壳体10、第一气缸11、第二气缸12和第一储液器13,壳体10上设有排气口15,第一气缸11和第二气缸12分别设在壳体10内,第一储液器13设在壳体10外,第一气缸11的吸气口与第一储液器13连通。也就是说,第一气缸11和第二气缸12进行独立压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒分别排入到壳体10内然后从排气口15排出。
第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%。进一步地,第二气缸12和第一气缸11的排气容积比值的取值范围为1%~9%,优选地,第二气缸12和第一气缸11的排气容积比值的取值范围为4%~9%。例如第二气缸12和第一气缸11的排气容积比值可以为4%、5%、8%或8.5%等参数。
换向组件2包括第一阀口D至第四阀口S,第一阀口D与第二阀口C和第三阀口E中的其中一个连通,第四阀口S与第二阀口C和所述第三阀口E中的另一个连通,第一阀口D与排气口15相连,第四阀口S与第一储液器13相连。室外换热器3的第一端与第二阀口C相连,室内换热器4的第一端与第三阀口E相连。具体地,当冷暖型空调器100制冷时,第一阀口D与第二阀口C连通且第三阀口E与第四阀口S连通,当冷暖型空调器100制热时,第一阀口D与第三阀口E连通且第二阀口C与第四阀口S连通。优选地,换向组件2为四通阀。
气液分离器5包括气体出口m、第一接口f和第二接口g,气体出口m与第二气缸12的吸气口相连,第一接口f与室外换热器3的第二端相连,第二接口g与室内换热器4的第二端相连,第一接口f和室外换热器3之间串联有固定开度的第一节流元件6,第二接口g和室内换热器4之间串联有固定开度的第二节流元件7。可选地,第一节流元件6和第二节流元件7均可以是毛细管或者节流阀。
冷媒散热器9用于对电控元件进行散热,冷媒散热器9串联在第一节流元件和第一接口f之间;或者冷媒散热器9串联在第二节流元件7和第二接口g之间。可以理解的是,冷媒散热器9的结构可以为多种多样只要可以流通冷媒即可,例如冷媒散热器9可以包括蜿蜒延伸的金属管。
当冷暖型空调器100制冷时,从双缸压缩机1的排气口15排出的高温高压冷媒通过第一阀口D和第二阀口C排入到室外换热器3中进行冷凝散热,从室外换热器3排出的液态冷媒经过第一节流元件6的一级节流降压后从第一接口f排入到气液分离器5中进行气液分离,分离出来的中间压力气态冷媒从气体出口m排入到第二气缸12内进行压缩。
从气液分离器5的第二接口g排出的中间压力液态冷媒经过第二节流元件7的二级节流降压后排入到室内换热器4内进行换热以降低室内环境温度,从室内换热器4排出的冷媒通过第三阀口E和第四阀口S排入到第一储液器13中,从第一储液器13排出的冷媒排入到第一气缸11内进行压缩。
制冷时,当冷媒散热器9串联在第一节流元件6和第一接口f之间时,从第一节流元件6排出的经过一次节流降压后的冷媒流入到冷媒散热器9内以与电控元件进行散热,从冷媒散热器9流出的冷媒排入到气液分离器5内,从而可以降低电控元件的温度。当冷媒散热器9串联在第二节流元件7和第二接口g之间时,从气液分离器5排出的经过一次节流降压并经过气液分离的液态冷媒进入到冷媒散热器9内以与电控元件进行散热,从而可以降低电控元件的温度。
当冷暖型空调器100制热时,从双缸压缩机1的排气口15排出的高温高压冷媒通过第一阀口D和第三阀口E排入到室内换热器4中进行冷凝散热以升高室内环境温度,从室内换热器4排出的高压液态冷媒经过第二节流元件7的一级节流降压后从第二接口g排入到气液分离器5中进行气液分离,分离出来的中间压力气态冷媒从气体出口m排入到第二气缸12内进行压缩。
从气液分离器5的第一接口f排出的中间压力液态冷媒经过第一节流元件6的二级节流降压后排入到室外换热器3内进行换热,从室外换热器3排出的冷媒通过第二阀口C和第四阀口S排入到第一储液器13中,从第一储液器13排出的冷媒排入到第一气缸11内进行压缩。
制热时,当冷媒散热器9串联在第一节流元件6和第一接口f之间时,从气液分离器5排出的经过一次节流降压并经过气液分离的液态冷媒进入到冷媒散热器9内以与电控元件进行散热,从而可以降低电控元件的温度。当冷媒散热器9串联在第二节流元件7和第二接口g之间时,从第二节流元件7排出的经过一次节流降压后的冷媒流入到冷媒散热器9内以与电控元件进行散热,从冷媒散热器9流出的冷媒排入到气液分离器5内,从而可以降低电控元件的温度。
由此分析可知,在冷暖型空调器100运行时,不同压力状态的冷媒分别进入到第一气缸11和第二气缸12内,第一气缸11和第二气缸12独立完成压缩过程,从第一气缸11排出的压缩后的冷媒和从第二气缸12排出的压缩后的冷媒排到壳体10内混合后从排气口15排出,同时由于第二气缸12和第一气缸11的排气容积比值的取值范围为1%~10%,流量较少且压力状态较高的冷媒排入到排气容积较小的第二气缸12内进行压缩,从而可以提高能效,节能减排。
同时通过在室外换热器3和室内换热器4之间设有气液分离器5,从而气液分离器5将一部分气态冷媒分离出来后排回到第二气缸12内进行压缩,由此降低了制冷时流入到室内换热器4的冷媒中的气体含量且降低了制热时流入到室外换热器3的冷媒中的气体含量,减少了气态冷媒对作为蒸发器的室内换热器4或者室外换热器3的换热性能的影响,从而可以提高换热效率,降低压缩机压缩功耗。
根据本发明实施例的冷暖型空调器100,通过设置上述双缸压缩机1,可以有效提高空调器能效,有效促进节能减排,同时通过设置气液分离器5,可以提高换热效率,降低压缩机压缩功耗,进一步提高空调器能力及能效,又由于设置冷媒散热器9,可以对电控元件进行有效降温。
如图6所示,在本发明的一些实施例中,气体出口m和第二气缸12的吸气口之间串联有电磁阀20,由此当气液分离器5中的液体冷媒超出安全液位时,通过关闭电磁阀20可以避免液态冷媒进入到第二气缸12中,从而可以避免双缸压缩机1发生液击,延长双缸压缩机1的使用寿命。进一步地,可以在在气液分离器5上设置液位传感器,通过液位传感器的检测结果控制电磁阀20的开闭状态。
在本发明的一些实施例中,气液分离器5的容积的取值范围为100mL-500mL。
在本发明的一些实施例中,如图5和图6所示,双缸压缩机1还包括设在壳体10外的第二储液器14,第二储液器14串联在气体出口m和第二气缸12的吸气口之间。从而通过设置有第二储液器14,可以对从气液分离器5的气体出口m排出的冷媒进行进一步气液分离,可以进一步避免液体冷媒回到第二气缸12内,从而避免双缸压缩机1发生液击现象,提高双缸压缩机1的使用寿命。
在本发明的进一步实施例中,第一储液器13的容积大于第二储液器14的容积。从而在保证第二气缸12的压缩量的前提下,通过使得第二储液器14的容积较小,可以降低成本。优选地,第二储液器14的容积不大于第一储液器13容积的二分之一。
在制热时,由于室外换热器3蒸发吸热,因此电控元件所在的室外机内的环境温度较低,因此如图3和图4所示,在本发明的一些实施例中,冷暖型空调器100还包括控制阀8,控制阀8与冷媒散热器9并联连接,制冷时控制阀8截止冷媒的流通,制热时冷媒流过控制阀8。可选地,控制阀8为在从第二节流元件7到第一节流元件6的方向上单向导通的单向阀。当然可以理解的是,控制阀8还可以电磁阀。
也就是说,在冷暖型空调器100制冷时,由于控制阀8截止冷媒的流通,因此从第一节流元件6或者气液分离器5排出的冷媒流入到冷媒散热器9中与电控元件进行换热,从而实现降低电控元件的温度的目的。在冷暖型空调器100制热时,由于控制阀8导通,因此从第二节流元件7或者气液分离器5排出的大部分冷媒经过控制阀8,只有一小部分或者没有冷媒流经冷媒散热器9,从而在制热时,大部分甚至全部冷媒流向室外换热器3,可以提高冷暖型空调器100的制热效果。
发明人将根据本发明上述实施例的冷暖型空调器(设定额定制冷量为3.5kw,将第二气缸和第一气缸的排气容积比值设定为7.6%)在不同工况下的能效与现有的冷暖型空调器在相同的工况下的能效进行比较,得到如下数据:
由此可知,根据本发明实施例的冷暖型空调器相对于现有的冷暖型压缩机,各工况能效及全年能效APF均有明显的提升。
同时发明人将不同额定制冷量和不同排气容积比的本发明实施例的冷暖型空调器与现有的相同工况下的冷暖型空调器进行比较,发现能效均有提升,例如发明人经过试验发现本发明实施例的冷暖型空调器(设定额定制冷量为2.6kw,将第二气缸和第一气缸的排气容积比值设定为9.2%)与现有的相同工况下的冷暖型空调器相比,能效提升了7.3%。
下面参考图1-图8详细描述根据本发明实施例的冷暖型空调器的控制方法,其中冷暖型空调器为根据本发明上述实施例的冷暖型空调器。
根据本发明实施例的冷暖型空调器的控制方法,包括如下步骤:制冷或制热运行时根据检测到的压缩机运行参数和/或室外环境温度调整双缸压缩机的运行频率至满足条件,其中压缩机运行参数包括运行电流、排气压力、排气温度中的至少一个。换言之,制冷或制热运行时根据对检测对象的检测结果调整双缸压缩机的运行频率,其中检测对象包括室外环境温度、排气口的排气温度、排气口的排气压力、双缸压缩机的运行电流中的至少一个。
当双缸压缩机的运行频率调整至满足条件后,可以在运行n秒后重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率,如此重复。当然重复条件不限于此,例如可以在接收到用户的操作指令后,重新检测压缩机运行参数和/或室外环境温度,然后根据重新检测到的检测结果调整压缩机的运行频率。换言之,在制冷或制热时,在压缩机的运行频率满足条件后,可以在运行n秒或者在接收到用户的操作信号后,重新检测压缩机运行参数和/或室外环境温度,然后根据检测结果调整运行频率,如此重复。
在本发明的具体示例中,在冷暖型空调器运行的过程中,如果检测到用户关机指令或者室内环境温度达到设定温度,压缩机停止运行。
根据本发明实施例的冷暖型空调器的控制方法,通过在运行过程中根据检测结果调整压缩机的运行频率,从而可以让系统运行在合适的参数范围内,提高空调器运行的可靠性。
在本发明的一些实施例中,首先预设多个不同的排气温度区间,多个排气温度区间对应的运行频率的调节指令不同,然后检测排气温度并根据检测到的排气温度所在的排气温度区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气温度调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。需要进行说明的是,解除频率限制指的是压缩机的运行频率不受限制,无需调整压缩机的运行频率。
例如冷暖型空调器开机制冷运行,运行过程中检测排气温度TP,设定以下几个调节指令:115℃≤TP,停机;110℃≤TP<115℃,降频至TP<110℃;105℃≤TP<110℃,频率保持;TP<105℃,解除频率限制。然后根据实际检测到的排气温度TP执行相应的调节指令,在调节完成后再次检测TP,如果满足调节就结束判定,运行n秒后,对排气温度TP再次检测,重复判断。运行n秒的同时,如果检测到用户关机命令或者设定温度达到,结束运行。
在本发明的一些实施例中,预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流。首先检测室外环境温度,然后根据检测到的室外环境温度所在的室外温度区间得到对应的限频保护电流,调整运行频率以使实际检测到的运行电流达到相应的限频保护电流,其中当制冷时检测到的运行电流大于制冷停机保护电流时则直接停机;当制热时检测到的运行电流大于制热停机保护电流时则直接停机。
具体地,制冷时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>50.5℃时,限频保护电流为CL5;当49.5℃≥T4>45.5℃时,限频保护电流为CL4;当44.5℃≥T4>41℃时,限频保护电流为CL3;当40℃≥T4>33℃,限频保护电流为CL2;当32≥T4℃,限频保护电流为CL1。其中CL5、CL4、CL3、CL2、CL1和制冷停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制冷运行时检测到的室外环境温度T4位于室外温度区间40℃≥T4>33℃内时,则表示运行电流不允许超过限频保护电流CL2,如果超过,将降频至运行电流低于限频保护电流CL2。
制热时多个室外温度区间与相应的限频保护电流的对应关系可以如下所示:当T4>15℃时,限频保护电流为HL5;当14℃>T4≥10℃时,限频保护电流为HL4;当9℃>T4≥6℃时,限频保护电流为HL3;当5℃>T4≥-19℃,限频保护电流为HL2;当-20℃>T4,限频保护电流为HL1。其中HL5、HL4、HL3、HL2、HL1和制热停机保护电流的具体数值可以根据实际情况具体限定,在此不做限定。
例如当制热运行时检测到的室外环境温度T4位于室外温度区间9℃>T4≥6℃时,则表示运行电流不允许超过限频保护电流HL3,如果超过,将降频至运行电流低于限频保护电流HL3。
在本发明的一些实施例中,可以预设多个室外温度区间,多个室外温度区间对应不同的设定运行频率,根据实际检测到的室外环境温度所在的室外温度区间对应的设定运行频率调整压缩机的运行频率。
在本发明的一些实施例中,首先预设多个不同的排气压力区间,多个排气压力区间对应的运行频率的调节指令不同,然后检测排气压力并根据检测到的排气压力所在的排气压力区间对应的调节指令调节运行频率。其中调节指令可以包括降频、升频、保持频率、关机、解除频率限制等指令。从而通过检测排气压力调整压缩机的运行频率,可以直接的反应系统的运行状态,保证系统运行在合适的参数范围内,进一步提高空调器运行的可靠性。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (3)

1.一种冷暖型空调器,其特征在于,包括:
双缸压缩机,所述双缸压缩机包括壳体、第一气缸、第二气缸和第一储液器,所述壳体上设有排气口,所述第一气缸和所述第二气缸分别设在所述壳体内,所述第一储液器设在所述壳体外,所述第一气缸的吸气口与所述第一储液器连通,所述第二气缸和所述第一气缸的排气容积比值的取值范围为1%~9%;
换向组件,所述换向组件包括第一阀口至第四阀口,所述第一阀口与第二阀口和第三阀口中的其中一个连通,所述第四阀口与所述第二阀口和所述第三阀口中的另一个连通,所述第一阀口与所述排气口相连,所述第四阀口与所述第一储液器相连;
室外换热器和室内换热器,所述室外换热器的第一端与所述第二阀口相连,所述室内换热器的第一端与所述第三阀口相连;
气液分离器,所述气液分离器包括气体出口、第一接口和第二接口,所述气体出口与所述第二气缸的吸气口相连,所述第一接口与所述室外换热器的第二端相连,所述第二接口与所述室内换热器的第二端相连,所述第一接口和所述室外换热器之间串联有固定开度的第一节流元件,所述第二接口和所述室内换热器之间串联有固定开度的第二节流元件;所述双缸压缩机还包括设在所述壳体外的第二储液器,所述第二储液器串联在所述气体出口和所述第二气缸的吸气口之间;所述第一储液器的容积大于所述第二储液器的容积;
用于对电控元件进行散热的冷媒散热器,所述冷媒散热器串联在所述第一节流元件和所述第一接口之间;或者所述冷媒散热器串联在所述第二节流元件和所述第二接口之间;
所述气体出口和所述第二气缸的吸气口之间串联有电磁阀;
所述气液分离器的容积的取值范围为100mL-500mL;
还包括与所述冷媒散热器并联连接的控制阀,制冷时所述控制阀截止冷媒的流通,制热时冷媒流过所述控制阀。
2.根据权利要求1所述的冷暖型空调器,其特征在于,所述控制阀为在从所述第二节流元件到所述第一节流元件的方向上单向导通的单向阀。
3.一种根据权利要求1-2中任一项的冷暖型空调器的控制方法,其特征在于,包括如下步骤:制冷或制热运行时根据检测到的压缩机运行参数和室外环境温度调整所述双缸压缩机的运行频率至满足条件,其中所述压缩机运行参数仅包括运行电流;
预设多个室外温度区间、制热停机保护电流和制冷停机保护电流,多个室外温度区间对应不同的限频保护电流,首先检测室外环境温度,然后根据检测到的所述室外环境温度所在的室外温度区间得到对应的限频保护电流,调整所述运行频率以使实际检测到的运行电流达到相应的所述限频保护电流,其中当制冷时检测到的所述运行电流大于所述制冷停机保护电流时则直接停机;当制热时检测到的所述运行电流大于所述制热停机保护电流时则直接停机。
CN201610286119.9A 2016-04-29 2016-04-29 冷暖型空调器及其控制方法 Active CN105783312B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610286119.9A CN105783312B (zh) 2016-04-29 2016-04-29 冷暖型空调器及其控制方法
PCT/CN2016/087933 WO2017185514A1 (zh) 2016-04-29 2016-06-30 冷暖型空调器、单冷型空调器及空调器的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610286119.9A CN105783312B (zh) 2016-04-29 2016-04-29 冷暖型空调器及其控制方法

Publications (2)

Publication Number Publication Date
CN105783312A CN105783312A (zh) 2016-07-20
CN105783312B true CN105783312B (zh) 2019-03-12

Family

ID=56400507

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610286119.9A Active CN105783312B (zh) 2016-04-29 2016-04-29 冷暖型空调器及其控制方法

Country Status (1)

Country Link
CN (1) CN105783312B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114001484A (zh) * 2020-07-13 2022-02-01 安徽美芝精密制造有限公司 冷媒系统和制冷设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679482A (zh) * 2012-05-25 2012-09-19 宁波奥克斯空调有限公司 基于变频空调的热回收多联系统及其控制方法
CN103216910A (zh) * 2013-04-02 2013-07-24 广东美的制冷设备有限公司 变频空调器的节能控制方法及装置
CN103557624A (zh) * 2013-10-11 2014-02-05 广东美芝制冷设备有限公司 冷冻循环装置
CN203605364U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 冷暖型空调器
CN204963286U (zh) * 2015-08-31 2016-01-13 广东美的制冷设备有限公司 冷暖型空调系统和单冷型空调系统
CN205641647U (zh) * 2016-04-29 2016-10-12 广东美的制冷设备有限公司 冷暖型空调器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3167372B2 (ja) * 1991-10-11 2001-05-21 東芝キヤリア株式会社 空気調和機
JPH06101895A (ja) * 1992-09-18 1994-04-12 Fujitsu General Ltd 空気調和機のインバータ制御装置
CN105202796B (zh) * 2015-10-10 2016-08-17 广东美芝制冷设备有限公司 空调系统及具有其的空调器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679482A (zh) * 2012-05-25 2012-09-19 宁波奥克斯空调有限公司 基于变频空调的热回收多联系统及其控制方法
CN103216910A (zh) * 2013-04-02 2013-07-24 广东美的制冷设备有限公司 变频空调器的节能控制方法及装置
CN103557624A (zh) * 2013-10-11 2014-02-05 广东美芝制冷设备有限公司 冷冻循环装置
CN203605364U (zh) * 2013-11-14 2014-05-21 广东美的制冷设备有限公司 冷暖型空调器
CN204963286U (zh) * 2015-08-31 2016-01-13 广东美的制冷设备有限公司 冷暖型空调系统和单冷型空调系统
CN205641647U (zh) * 2016-04-29 2016-10-12 广东美的制冷设备有限公司 冷暖型空调器

Also Published As

Publication number Publication date
CN105783312A (zh) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105737423B (zh) 冷暖型空调器及其控制方法
CN104110907B (zh) 单冷型空调器和冷暖型空调器
CN105737424A (zh) 冷暖型空调器及其控制方法
CN105042924B (zh) 空调器及其控制方法
CN105674434B (zh) 冷暖型空调器和单冷型空调器
CN106500390A (zh) 冷暖型空调器及其控制方法
CN104896581B (zh) 空调器及空调器的控制方法
CN105928147B (zh) 冷暖型空调器及其控制方法
CN104976813A (zh) 空调器
CN105758036A (zh) 单冷型空调器及其控制方法
CN105783313B (zh) 单冷型空调器及其控制方法
CN105783310B (zh) 冷暖型空调器及其控制方法
CN105783324B (zh) 冷暖型空调器及其控制方法
CN105783312B (zh) 冷暖型空调器及其控制方法
CN205980069U (zh) 冷暖型空调器
CN105783307A (zh) 冷暖型空调器及其控制方法
CN105783137B (zh) 冷暖型空调器的控制方法
CN205860538U (zh) 单冷型空调器
CN105783311B (zh) 单冷型空调器及其控制方法
CN105758039B (zh) 单冷型空调器及其控制方法
CN105928233B (zh) 单冷型空调器及其控制方法
CN105737425B (zh) 单冷型空调器的控制方法
CN105783315B (zh) 单冷型空调器及其控制方法
CN105783323B (zh) 冷暖型空调器及其控制方法
CN105783306A (zh) 冷暖型空调器的控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant