CN105778945A - 热解生物质的系统和方法 - Google Patents

热解生物质的系统和方法 Download PDF

Info

Publication number
CN105778945A
CN105778945A CN201610137878.9A CN201610137878A CN105778945A CN 105778945 A CN105778945 A CN 105778945A CN 201610137878 A CN201610137878 A CN 201610137878A CN 105778945 A CN105778945 A CN 105778945A
Authority
CN
China
Prior art keywords
gas
pyrolysis
oil gas
reactor
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610137878.9A
Other languages
English (en)
Other versions
CN105778945B (zh
Inventor
梅磊
陈水渺
肖磊
薛逊
吴道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenwu Technology Group Corp Co Ltd
Original Assignee
Beijing Shenwu Environmental and Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Shenwu Environmental and Energy Technology Co Ltd filed Critical Beijing Shenwu Environmental and Energy Technology Co Ltd
Priority to CN201610137878.9A priority Critical patent/CN105778945B/zh
Publication of CN105778945A publication Critical patent/CN105778945A/zh
Application granted granted Critical
Publication of CN105778945B publication Critical patent/CN105778945B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/02Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form of cellulose-containing material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B47/00Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion
    • C10B47/18Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge
    • C10B47/20Destructive distillation of solid carbonaceous materials with indirect heating, e.g. by external combustion with moving charge according to the moving bed type
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Industrial Gases (AREA)

Abstract

本发明公开了热解生物质的系统和方法,该系统包括:移动床热解反应器和喷淋塔,反应器包括:生物质入口和半焦出口;蓄热式辐射管,其在反应器的内部沿着反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的蓄热式辐射管;油气导出管道,其管壁上设置有通孔;搅拌装置,其包括搅拌轴和连接在所述搅拌轴上的多个搅拌杆;集气管,其包括集气总管以及集气支管,集气总管与喷淋塔相连。该系统可以将热解产生的油气资源可迅速导出,二次反应少,焦油品质高,焦油中轻质组分含量高,另外热解反应器采用蓄热式辐射管,且内部设置转动内构件,增加了颗粒间和颗粒辐射管间传热,传热效率高。

Description

热解生物质的系统和方法
技术领域
本发明属于化工领域,具体而言,本发明涉及一种热解生物质的系统和方法。
背景技术
生物质是地球上最为丰富的可再生资源,据不完全统计,地球上植物每年通过光合作用固定的碳达2*1011t,含能量高达3*1018kJ,其中可开发利用的能源相当于全世界每年消耗能量的10倍,而作为能源的利用量还不到总量的1%,开发潜力巨大。我国的生物质能源也相当丰富,理论上生物质能资源约有5*109t标准生物质,是我国目前总能耗的4倍。随着世界各国工业化进程的加快,化石燃料(生物质、石油和天然气等)日益面临枯竭。据美国能源部和世界能源理事会预测,全球燃料生物质、石油和天然气的可开采年限分别为211年、39年和60年。并且大量化石燃料的使用,导致了全球性变暖,以及粉尘、SOx和NOx排放量增加,严重污染了大气环境。在各种可再生资源中,生物质不仅能贮存太阳能,还是一种可再生的碳源,而受到世界各国的重视。目前,生物质能的主要利用方式包括热化学转化和生物转化,将生物质转化为气、液和固态多种能源产物和化学品。其中,热化学方法包括:直接燃烧、气化、液化和热解等。通过热解实现生物质高效转化是一种前景广阔的工艺技术,生物质热解技术能把低密度生物质能转化为高能密度产物--生物半焦,以及高附加值化学品。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种热解生物质的系统和方法,该系统可以将热解产生的油气资源迅速导出,二次反应少,焦油品质高,焦油中轻质组分含量高,另外热解反应器采用蓄热式辐射管,且内部设置转动内构件,增加了颗粒间和颗粒辐射管间传热,传热效率高。
在本发明的一个方面,本发明提出了一种热解生物质的系统。根据本发明的实施例,该系统包括:
包括:移动床热解反应器和喷淋塔,
其中,所述移动床热解反应器包括:
生物质入口和半焦出口;
所述生物质入口位于所述反应器的顶部;
所述半焦出口位于所述反应器的底部;
蓄热式辐射管,所述蓄热式辐射管在所述移动床热解反应器的内部沿着所述反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的蓄热式辐射管;
油气导出管道,所述油气导出管道的管壁上设置有通孔;
搅拌装置,所述搅拌装置包括搅拌轴和连接在所述搅拌轴上的多个搅拌杆,所述搅拌轴由所述半焦出口伸入到所述反应器的内部并被设置成可在所述反应器内旋转;
集气管,所述集气管包括集气总管以及与所述集气总管相连通的集气支管,
其中,所述集气总管竖直地设置在所述反应器外部,并且所述集气总管与所述喷淋塔相连,
所述集气支管延伸穿过所述反应器的侧壁伸入到所述反应器内且与所述油气导出管道相连通。
由此,根据本发明实施例的热解生物质的系统可以将热解产生的油气资源迅速导出,二次反应少,焦油品质高,焦油中轻质组分含量高,另外热解反应器采用蓄热式辐射管,且内部设置转动内构件,增加了颗粒间和颗粒辐射管间传热,传热效率高。
另外,根据本发明上述实施例的热解生物质的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,所述集气支管为多个,并且沿所述集气总管的长度方向彼此平行布置。由此,可以显著提高反应器中的油气导出效率。
在本发明的一些实施例中,所述集气支管垂直于所述集气主管。
在本发明的一些实施例中,所述油气导出管道沿所述反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的油气导出管道。由此,可以进一步提高反应器中的油气导出效率。
在本发明的一些实施例中,所述油气导出管道与所述蓄热式辐射管平行布置,且所述蓄热式辐射管各自的左右两侧对称设置有两根油气导出管道。由此,可以进一步提高反应器中的油气导出效率。
在本发明的一些实施例中,所述油气导出管道与邻近的所述蓄热式辐射管的管壁之间距离为所述油气导出管道管径d的1/2-3倍。
在本发明的一些实施例中,所述油气导出管道的管壁上设置有多个通孔。由此,可以进一步提高反应器中的油气导出效率。
在本发明的一些实施例中,所述通孔在所述油气导出管道的长度方向上均匀分布。
在本发明的一些实施例中,同一层所述油气导出管道连通至同一根所述集气支管。
在本发明的一些实施例中,每层辐射管的上方均有一根或多根搅拌杆,且搅拌杆与辐射管的垂直距离为20~300mm。由此,能够强化传热效果。例如,搅拌杆可以介于辐射管层与油气导出管道层之间。
在本发明的一些实施例中,所述搅拌杆垂直于所述搅拌轴,并且沿所述搅拌轴的长度方向间隔分布。由此,可以进一步提高热解焦油的收率。
在本发明的一些实施例中,所述搅拌杆在所述搅拌轴的同一横截面上的相邻投影呈一定角度。由此,可以进一步提高热解焦油的收率。
在本发明的一些实施例中,所述角度为0~90度,不含端值,优选的,所述角度为30~90度,不含90度。由此,可以进一步提高热解焦油的收率。
在本发明的一些实施例中,所述热解生物质的系统进一步包括:破碎机,所述破碎机具有生物质原料入口和生物质颗粒出口;第一进料装置,所述第一进料装置具有第一进料口和第一出料口,所述第一进料口与所述生物质颗粒出口相连;干燥提升管,所述干燥提升管具有烟气入口、生物质颗粒入和混合物料出口,所述烟气入口与所述蓄热式辐射管上的烟气出口相连,所述生物质颗粒入口与所述第一出料口相连;干燥旋风分离器,所述干燥旋风分离器具有混合物料入口、尾气出口和干燥生物质出口,所述混合物料入口与所述混合物料出口相连;脱硫脱硝装置,所述脱硫脱硝装置具有尾气入口和净化尾气出口,所述尾气入口与所述尾气出口相连;烟囱,所述烟囱具有净化尾气入口,所述净化尾气入口与所述净化尾气出口相连;第二进料装置,所述第二进料装置具有第二进料口和第二出料口,所述第二进料口与所述干燥生物质出口相连,所述第二出料口与所述生物质入口相连;出料螺旋,所述出料螺旋设置在所述移动床热解反应器的下方且与所述半焦出口相连。由此,使得生物质入炉时水分小,耗热少,从而可以进一步提高生物质的热解效率。
在本发明的一些实施例中,所述热解生物质的系统进一步包括:热解旋风分离器,所述热解旋风分离器具有油气进口、固体颗粒出口和净化油气出口,所述油气进口与所述集气总管相连;除尘装置,所述除尘装置具有除尘油气入口和除尘后油气出口,所述除尘油气入口与所述净化油气出口相连;以及换热器,所述换热器具有换热前油气入口和换热后油气出口,所述换热前油气入口与所述除尘后油气出口相连,所述换热后油气出口与所述喷淋塔相连。由此,可以显著提高焦油和燃气品质。
在本发明的一些实施例中,所述热解生物质的系统进一步包括:焦油槽,所述焦油槽具有焦油入口、轻油出口、重油出口和焦油渣出口,所述焦油入口与所述喷淋塔相连;风机,所述风机具有燃气入口和燃气出口,所述燃气入口与所述喷淋塔相连;以及储气罐,所述储气罐与所述燃气出口相连。
在本发明的另一个方面,本发明提出了一种热解生物质的方法。根据本发明的实施例,该热解生物质的方法是采用所述热解生物质的系统进行的。根据本发明的具体实施例,该方法包括:
将生物质输送至所述移动床热解反应器中进行热解处理,以便得到半焦和热解油气;
将所述热解油气输送至所述喷淋塔中进行喷淋处理,以便得到焦油和燃气。
由此,根据本发明实施例的热解生物质的方法可以将热解产生的油气资源迅速导出,二次反应少,焦油品质高,焦油中轻质组分含量高,另外热解反应器采用蓄热式辐射管,且内部设置转动内构件,增加了颗粒间和颗粒辐射管间传热,传热效率高。
在本发明的一个实施例中,所述热解生物质的方法进一步包括:在将所述热解油气供给至所述喷淋塔中进行喷淋处理之前,预先将所述热解油气供给至所述热解旋风分离器、所述除尘装置和所述换热器中依次进行旋风分离、除尘处理和换热处理。由此,可以显著提高焦油和燃气的品质。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的热解生物质的系统结构示意图;
图2是根据本发明一个实施例的热解生物质的系统中的搅拌装置的俯视图;
图3是根据本发明再一个实施例的热解生物质的系统结构示意图;
图4是根据本发明又一个实施例的热解生物质的系统结构示意图;
图5是根据本发明又一个实施例的热解生物质的系统结构示意图;
图6是根据本发明一个实施例的热解生物质的方法流程示意图;
图7是根据本发明再一个实施例的热解生物质的方法流程示意图;
图8是根据本发明又一个实施例的热解生物质的方法流程示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本发明的一个方面,本发明提出了一种热解生物质的系统。下面参考图1-5对本发明实施例的热解生物质的系统进行详细描述。根据本发明的实施例,该系统包括:移动床热解反应器100和喷淋塔200。
根据本发明的实施例,移动床热解反应器100包括:生物质入口101、蓄热式辐射管11、油气导出管道12、半焦出口102、搅拌装置13和集气管14。
根据本发明的实施例,生物质入口101位于反应器的顶部,且适于将生物质供给至反应器内。
根据本发明的实施例,半焦出口102可以设置在反应器的底部,且适于将热解生成的半焦排出反应器。
根据本发明的实施例,蓄热式辐射管11在移动床热解反应器的内部沿着反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的蓄热式辐射管,根据本发明的具体实施例,在水平方向上彼此平行的蓄热式辐射管均匀分布,优选地,沿反应器的高度方向布置的蓄热式辐射管彼此平行并且错开布置。根据本发明的具体示例,蓄热式辐射管的管径可以为100~300mm。根据本发明的实施例,相邻蓄热式辐射管外壁间的水平距离为200~500mm,相邻蓄热式辐射管外壁间的竖直距离为200~700mm。需要解释的是,相邻蓄热式辐射管外壁间的水平距离可以理解为在同层上蓄热式辐射管外壁间的距离,而相邻蓄热式辐射管外壁间的竖直距离可以理解为相邻上下两层间的相邻蓄热式辐射管外壁间的距离。
根据本发明的实施例,多层蓄热式辐射管的层数可以为10-25层。发明人发现,该种结构布置可以使得反应器内温度场分布均匀,从而可以显著提高生物质的热解效率。
根据本发明的实施例,蓄热式辐射管可以为单向蓄热式燃气蓄热式辐射管,即通过蓄热式辐射管管体将燃烧燃气产生的热量以辐射的方式进行供热。根据本发明的具体实施例,蓄热式辐射管上可以设置有燃气调节阀(未示出)。由此,可以通过调整燃气调节阀调节通入蓄热式辐射管的燃气的流量来等实现对热解过程的精确控温,从而可以显著提高生物质的热解效率,进而提高热解焦油的收率。
具体的,蓄热式辐射管沿水平方向从反应器侧壁的一侧伸入到反应器中且贯穿反应器,即蓄热式辐射管沿水平方向从反应器侧壁的一侧伸入反应器中且穿出反应器的另一侧壁,并且蓄热式辐射管的两端均伸出反应器侧壁,其中,蓄热式辐射管上的燃料入口位于蓄热式辐射管上伸出反应器的一端,蓄热式辐射管上的烟气出口位于蓄热式辐射管上伸出反应器的另一端,或者蓄热式辐射管上的燃料入口和烟气出口位于蓄热式辐射管上的同一端。通过调整通入蓄热式辐射管的燃气的流量等实现对热解过程的精确控温,并且蓄热式辐射管采用定期换向的燃烧方式,使得单个蓄热式辐射管的温度场相差不大于30℃,从而保证反应器内温度场的均匀性,例如通过调整通入蓄热式辐射管的燃气的流量使得反应器内上段区域的蓄热式辐射管的调节温度范围为500~800℃,保证生物质的充分热解,通过调整通入蓄热式辐射管的燃气的流量使得反应器内下段区域的蓄热式辐射管的调节温度范围为450~650℃,从而进一步加热一部分没有完全热解的生物质。
根据本发明的实施例,油气导出管道12的管壁上设置有通孔,根据本发明的具体实施例,油气导出管道12沿反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的油气导出管道。
根据本发明的具体实施例,油气导出管道12与蓄热式辐射管11平行布置,且蓄热式辐射管11的左右两侧对称设置有两根油气导出管道12。发明人发现,通过在每根蓄热式辐射管两侧安装油气导出管道,热解产生的油气通过油气导出管道被迅速导出,从而有效地抑制了油气的二次裂解,进而提高热解焦油的收率,经济效益好。根据本发明的具体示例,油气导出管道的管径可以为30~80mm。
根据本发明的具体实施例,油气导出管道与邻近的蓄热式辐射管的管壁之间距离为油气导出管道管径d的1/2-3倍。由此可以立刻导出产生的热解焦油,避免热解焦油裂解,提高热解焦油产率。
根据本发明的具体实施例,油气导出管道12的管壁上设置有多个通孔,优选地,多个通孔在油气导出管道12的长度方向上均匀分布。由此可以便于热解焦油快速导出。
根据本发明的实施例,搅拌装置13包括搅拌轴15和连接在搅拌轴15上的多个搅拌杆16,从而搅拌轴15在驱动电机的驱动下带动搅拌杆16旋转,根据本发明的具体实施例,搅拌轴15可旋转地从半焦出口102伸入到反应器内部。发明发现,通过在反应器内设置搅拌装置,搅拌杆在来回转动的过程中,可以有效避免辐射管表面的结焦,进而避免因辐射管结焦而降低传热效率,从而能够增强传热效果。
根据本发明的具体实施例,每层辐射管的上方均有一根或多根搅拌杆,且搅拌杆与辐射管的垂直距离为20~300mm。由此可以避免辐射管的上结焦,保证设备正常运行。例如,搅拌杆可以介于辐射管层与油气导出管道层之间。
根据本发明的具体实施例,搅拌杆16垂直于搅拌轴15,并且沿搅拌轴15的长度方向间隔分布。
根据本发明的具体实施例,搅拌杆16在搅拌轴15的同一横截面上的相邻投影呈一定角度。例如,如图2所示,所述角度θ可以为0~90度(不含端值),优选30~90度(不含90度)。由此,可以使得搅拌杆有效地松动反应器内部生物质,从而能够快速导出油气热解焦油。具体的,中心搅拌轴的长度可为1-18m,可拆卸搅拌杆垂直间距可以为0.4-1m,层数可以为11-26层。
根据本发明的实施例,集气管14包括集气总管17和与集气总管17连通的集气支管18,根据本发明的具体实施例,集气总管17竖直地设置在反应器外部,集气支管18延伸穿过反应器的侧壁伸入到反应器内且与油气导出管道12相连通。由此,进入油气导出管道热解焦油气经集气支管汇集至集气总管。
根据本发明的具体实施例,集气支管18为多个,并且多个集气支管18可以沿集气总管17的长度方向彼此平行布置,根据本发明的具体示例,集气支管18垂直于集气主管17。由此,多个集气支管可以保证油气导出管道中热解焦油气的快速导出,从而显著提高热解焦油的收率。
根据本发明的具体示例,如图1所示,同一层油气导出管道12连通至同一根集气支管18。
根据本发明的实施例,反应器顶部可以呈球面型或锥形。
根据本发明的实施例,反应器的底部可以呈倒锥形。由此,可以使得热解生成的半焦顺利排出反应器。
根据本发明的实施例,喷淋塔200具有热解油气入口201、喷淋液入口202、焦油出口203和燃料气出口204,热解油气入口201与集气总管17相连,且适于采用喷淋液对热解油气进行喷淋处理,从而可以分离得到焦油和燃气。需要说明的是,本领域技术人员可以根据实际需要对喷淋液的具体类型进行选择,例如可以为氨水、水、洗油或热解焦油中的一种或多种形式的组合。具体的,热解油气由顶部或底部进入喷淋塔内,和喷淋液顺流或逆流接触传质换热。
根据本发明实施例的热解生物质的系统通过使用多组蓄热式辐射管为热解过程提供热源,可以通过调整通入蓄热式辐射管的燃气的流量来实现对热解过程的精确控温,并且蓄热式辐射管通过蓄热式燃烧,保证了温度场的均匀性,从而可以显著提高生物质的热解效率,进而提高热解焦油的收率,同时较传统的使用气体热载体或固体热载体作为热解热源的热解反应装置相比,本发明的移动床热解反应器不需要设置预热单元和载体分离单元,从而可以极大简化热解反应工艺流程,进而显著降低装置的故障率且所得热解焦油中含尘率较低,并且排烟温度低,其次本发明通过在蓄热式辐射管的底部布置油气导出管道,可以将热解产生的油气迅速导出,从而有效地抑制了油气的二次裂解,进而提高热解焦油的收率,并且热解气未被气体热载体稀释,热解气热值高,经济效益好,其次通过在反应器内设置搅拌装置配合蓄热式辐射管,搅拌杆在来回转动的过程中,使得堆积生物质得以松动,增大了堆积生物质间的空隙率,降低了热解焦油气透过生物质层的压降,使得产生的热解焦油气能快速穿过生物质层到达油气导出管,产生的热解焦油气能及时通过油气导出管导出,并且能够避免辐射管上端结焦,从而避免影响传热效率,另外通过采用喷淋塔对热解油气进行喷淋处理,可以分离得到焦油和可燃气,提高经济效益。
参考图3,根据本发明的实施例的热解生物质的方法进一步包括:破碎机300、第一进料装置400、干燥提升管500、干燥旋风分离器600、脱硫脱硝装置700、烟囱800、第二进料装置900和出料螺旋1000。
根据本发明的实施例,破碎机300具有生物质原料入口301和生物质颗粒出口302,且适于对生物质原料进行破碎处理,从而可以得到生物质颗粒。根据本发明的具体实施例,生物质颗粒的粒径可以为3mm以下。
根据本发明的实施例,第一进料装置400具有第一进料口401和第一出料口402,第一进料口401与生物质颗粒出口302相连,且适于运输破碎所得到的生物质颗粒。具体的,第一进料装置可以为螺旋进料器。
根据本发明的实施例,干燥提升管500具有烟气入口501、生物质颗粒入口502和混合物料出口503,烟气入口501与蓄热式辐射管上的烟气出口(未示出)相连,生物质颗粒入口502与第一出料口402相连,且适于采用蓄热式辐射管产生的热烟气对生物质颗粒进行提升和干燥处理,以便得到含有干燥生物质和烟气的混合物料。由此,不仅可以实现余热的高效利用,而且使得生物质入炉时水分小,耗热少,从而可以进一步提高生物质的热解效率。具体的,蓄热式辐射管中产生的热烟气温度为200℃左右,其与生物质颗粒接触实现脱水干燥,换热后的热烟气温度约100℃左右,经热烟气干燥后的生物质含水量控制在10wt%以下。
根据本发明的实施例,干燥旋风分离器600具有混合物料入口601、尾气出口602和干燥生物质出口603,混合物料入口601与混合物料出口503相连,且适于将干燥提升管中得到的含有干燥生物质和烟气的混合物料进行旋风分离处理,从而分别得到尾气以及干燥生物质。需要说明的是,本领域技术人员可以根据实际分离需要采用二级旋风分离器。
根据本发明的实施例,脱硫脱硝装置700具有尾气入口701和净化尾气出口702,尾气入口701与尾气出口602相连,且适于对干燥旋风分离器中分离得到的尾气进行脱硫脱硝处理,从而可以去除净化尾气的中含硫和含氮化合物,进而可以有效降低对环境的污染。需要说明的是,本领域技术人员可以根据实际需要对脱硫脱硝装置的具体类型进行选择。
根据本发明的实施例,烟囱800具有净化尾气入口801,净化尾气入口801与净化尾气出口702相连,从而可以将经脱硫脱硝装置得到的净化尾气通过烟囱排出。
根据本发明的实施例,第二进料装置900具有第二进料口901和第二出料口902,第二进料口901与干燥生物质出口603相连,第二出料口902与生物质入口101相连,且适于将分离得到的干燥生物质供给至反应器内进行热解处理。具体的,第二进料装置可以为螺旋进料器。
根据本发明的实施例,出料螺旋1000设在移动床热解反应器100的下方且与半焦出口102相连。
参考图4,根据本发明的实施例的热解生物质的方法进一步包括:热解旋风分离器1100、除尘装置1200和换热器1300。
根据本发明的实施例,热解旋风分离器1100具有油气进口1101、固体颗粒出口1102和净化油气出口1103,油气进口1101与集气总管17相连,且适于在将集气总管中收集的热解油气供给至喷淋塔中进行喷淋处理之前,预先将热解油气供给至热解旋风分离器进行旋风分离处理,从而可以分离得到净化油气和含有半焦的固体颗粒。由此,可以显著提高所得焦油和燃气的品质。
根据本发明的实施例,除尘装置1200具有除尘油气入口1201和除尘后油气出口1202,除尘油气入口1201与净化油气出口1103相连,且适于在将热解旋风分离器中得到的净化油气进行除尘处理。由此,可以进一步提高所得焦油和燃气的品质。需要说明的是,本领域技术人员可以根据实际需要对除尘器的具体类型进行选择,例如除尘装置可以是床除尘器、静电除尘器、金属过滤器等中的一种或多种形式组合。
根据本发明的实施例,换热器1300具有换热前油气入口1301和换热后油气出口1302,换热前油气入口1301与除尘后油气出口1202相连,换热后油气出口1302与热解油气入口201相连,且适于在将经除尘器得到的除尘后油气供给至换热器中进行换热处理后再供给至喷淋塔中进行喷淋处理。由此,可以显著提高喷淋塔中的油气分离效率。需要说明的是,本领域技术人员可以根据实际需要对换换热器的具体条件和类型进行选择。
参考图5,根据本发明的实施例的热解生物质的系统进一步包括:焦油槽1400、风机1500和储气罐1600。
根据本发明的实施例,焦油槽1400具有焦油入口1401、轻油出口1402、重油出口1403和焦油渣出口1404,焦油入口1401与焦油出口203相连,且适于将喷淋塔中分离得到的焦油进行自然沉降,从而可以分别得到轻油、重油和焦油渣。由此,可以显著提高经济效益。
根据本发明的实施例,风机1500具有燃气入口1501和燃气出口1502,燃气入口1501与燃料气出口204相连,且适于将燃气供给至后续的储气罐中。
根据本发明的实施例,储气罐1600与燃气出口1502相连,且适于存储喷淋塔中得到且经风机输送的燃气。
如上所述,根据本发明实施例的热解生物质的系统可以具有选自下列的优点至少之一:
根据本发明实施例的热解生物质的系统所得热解气未被稀释,热值高,品质好;
根据本发明实施例的热解生物质的系统热解产生的热解油气二次反应少,经快速热解、快速冷凝后焦油产率高,焦油中轻质组分多,焦油品质好;
根据本发明实施例的热解生物质的系统可有效地解决固体热载体中,热解半焦和热载体均匀混合、快速分离和机械磨损等问题。
在本发明的第二个方面,本发明提出了一种热解生物质的方法。根据本发明的实施例,该方法是采用上述描述的热解生物质的系统进行的。下面参考图6-8对本发明实施例的热解生物质的方法进行详细描述。根据本发明的实施例,该方法包括:
S100:将生物质输送至移动床热解反应器中进行热解处理
根据本发明的实施例,将生物质从生物质入口供给至移动床热解反应器中,将燃料和空气分别供给至蓄热式辐射管中,使得燃料在蓄热式辐射管中燃烧产生热量对生物质进行热解处理,从而可以得到热解油气和半焦。
根据本发明的一个实施例,生物质的粒度并不受特别限制,本领域技术人员可以根据实际需要进行选择,根据本发明的具体实施例,生物质的粒度可以为不高于3mm。
具体的,通过调整通入蓄热式辐射管的燃气的流量等实现对热解过程的精确控温,并且蓄热式辐射管采用定期换向的燃烧方式,使得单个蓄热式辐射管的温度场相差不大于30℃,从而保证反应器内温度场的均匀性,例如通过调整通入蓄热式辐射管的燃气的流量使得反应器内上段区域的蓄热式辐射管的调节温度范围为500~800℃,保证生物质的充分热解,通过调整通入蓄热式辐射管的燃气的流量使得反应器内下段区域的蓄热式辐射管的调节温度范围为450~650℃,从而进一步加热一部分没有完全热解的生物质。
S200:将热解油气输送至喷淋塔中进行喷淋处理
根据本发明的实施例,将移动床热解反应器中得到的热解油气输送至喷淋塔中,采用喷淋液对热解油气进行喷淋处理,从而可以分离得到焦油和燃气。需要说明的是,本领域技术人员可以根据实际需要对喷淋液的具体类型进行选择,例如可以为氨水、水、洗油或热解焦油中的一种或多种形式的组合。具体的,热解油气由顶部或底部进入喷淋塔内,和喷淋液顺流或逆流接触传质换热。
根据本发明实施例的热解生物质的方法通过使用多组蓄热式辐射管为热解过程提供热源,可以通过调整通入蓄热式辐射管的燃气的流量来实现对热解过程的精确控温,并且蓄热式辐射管通过蓄热式燃烧,保证了温度场的均匀性,从而可以显著提高生物质的热解效率,进而提高热解焦油的收率,同时较传统的使用气体热载体或固体热载体作为热解热源的热解反应装置相比,本发明的移动床热解反应器不需要设置预热单元和载体分离单元,从而可以极大简化热解反应工艺流程,进而显著降低装置的故障率且所得热解焦油中含尘率较低,并且排烟温度低,其次本发明通过在蓄热式辐射管的底部布置油气导出管道,可以将热解产生的油气迅速导出,从而有效地抑制了油气的二次裂解,进而提高热解焦油的收率,并且热解气未被气体热载体稀释,热解气热值高,经济效益好,其次通过在反应器内设置搅拌装置配合蓄热式辐射管,搅拌杆在来回转动的过程中,使得堆积生物质得以松动,增大了堆积生物质间的空隙率,降低了热解焦油气透过生物质层的压降,使得产生的热解焦油气能快速穿过生物质层到达油气导出管,产生的热解焦油气能及时通过油气导出管导出,并且能够避免辐射管上端结焦,从而避免影响传热效率,另外通过采用喷淋塔对热解油气进行喷淋处理,可以分离得到焦油和可燃气,提高经济效益。
参考图7,根据本发明实施例的热解生物质的方法进一步包括:
S300:将生物质原料供给至破碎机中进行破碎处理
根据本发明的实施例,将生物质原料供给至破碎装置中进行破碎处理,从而可以得到生物质颗粒。根据本发明的具体实施例,生物质颗粒的粒径可以为3mm以下。
S400:将生物质颗粒经第一进料装置供给干燥提升管中,并且采用蓄热式辐射管产生的热烟气对生物质颗粒进行干燥和提升处理
根据本发明的实施例,将破碎机中得到的生物质颗粒经第二输送螺旋干燥提升管中,采用蓄热式辐射管产生的热烟气对生物质颗粒进行干燥和提升处理,从而可以得到含有干燥生物质和烟气的混合物料。由此,不仅可以实现余热的高效利用,而且使得生物质入炉时水分小,耗热少,从而可以进一步提高生物质的热解效率。具体的,蓄热式辐射管中产生的热烟气温度为200℃左右,其与生物质颗粒接触实现脱水干燥,换热后的热烟气温度约100℃左右,经热烟气干燥后的生物质含水量控制在10wt%以下。
S500:将含有干燥生物质和烟气的混合物料供给至干燥旋风分离器中进行旋风分离处理,并将分离得到的干燥生物质经第二进料装置供给至热解反应器中
根据本发明的实施例,将干燥提升管中得到的含有干燥生物质和烟气的混合物料供给至干燥旋风分离器中进行旋风分离处理,从而分别得到尾气以及干燥生物质,并将分离得到的干燥生物质经第二进料装置供给至热解反应器中。需要说明的是,本领域技术人员可以根据实际分离需要采用二级旋风分离器。
S600:将尾气供给至脱硫脱硝装置中进行脱硫脱硝处理
根据本发明的实施例,将干燥旋风分离器中分离得到的尾气供给至脱硫脱硝装置中进行脱硫脱硝处理,从而可以去除净化尾气的中含硫和含氮化合物,并将脱硫脱硝后的净化尾气经烟囱排出,进而可以有效降低对环境的污染。
参考图8,根据本发明实施例的热解生物质的方法进一步包括:
S700:在将热解油气输送至喷淋塔中进行喷淋处理之前,预先对热解油气分别供给至热解旋风分离器、除尘装置中和换热装置中依次进行旋风分离、除尘处理和换热处理
根据本发明的实施例,在将集气总管中收集的热解油气供给至喷淋塔中进行喷淋处理之前,预先将热解油气分别供给至热解旋风分离器、除尘装置和换热器中依次进行旋风分离、除尘处理和换热处理,从而可以分离得到净化油气和含有半焦的固体颗粒,并且可以提高喷淋过程中油气分离分离效率。由此,可以显著提高所得焦油和燃气的品质。需要说明的是,本领域技术人员可以根据实际需要对除尘装置的具体类型进行选择,例如除尘装置可以是可以为床除尘器、静电除尘器、金属过滤器等中的一种或多种形式组合。
S800:将焦油输送至焦油槽中进行沉降
根据本发明的实施例,将喷淋塔中分离得到的焦油进行自然沉降,从而可以分别得到轻油、重油和焦油渣。由此,可以显著提高经济效益。
S900:将燃气经风机供给至储气罐
根据本发明的实施例,将喷淋塔中分离得到的燃气经风机供给至储气罐中进行储存。
需要说明的是,上述针对热解生物质的系统所描述的特征和优点同样适于该热解生物质的方法,此处不再赘述。
下面参考具体实施例,对本发明进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本发明。
实施例1
采用图1-5的热解生物质的系统对松木屑进行热解处理,其理化性质、工艺参数和物料平衡如表1-3所示:
表1松木屑的理化性质参数
表2操作工艺参数
序号 参数名称 参数值 序号 参数名称 参数值
1 干燥气入口温度 210℃ 6 反应器内压力 3.1Kpa
2 干燥气出口温度 103℃ 7 集气管温度 543℃
3 反应器上部温度 547℃ 8 二级旋风出口T 531℃
4 反应器中部温度 552℃ 9 喷淋塔温度 64℃
5 反应器下部温度 561℃ 10 喷淋塔压力 -0.2Kpa
表3物料平衡表
实施例2
采用图1-5的热解生物质的系统对稻壳进行热解处理,其理化性质、工艺参数和物料平衡如表4-6所示:
表1稻壳的理化性质参数
表2操作工艺参数
序号 参数名称 参数值 序号 参数名称 参数值
1 干燥气入口温度 205℃ 6 反应器内压力 2.8Kpa
2 干燥气出口温度 101℃ 7 集气管温度 493℃
3 反应器上部温度 502℃ 8 二级旋风出口T 479℃
4 反应器中部温度 511℃ 9 喷淋塔温度 43℃
5 反应器下部温度 518℃ 10 喷淋塔压力 -0.2Kpa
表3物料平衡表
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种热解生物质的系统,其特征在于,包括:移动床热解反应器和喷淋塔,
其中,所述移动床热解反应器包括:
生物质入口和半焦出口;
所述生物质入口位于所述反应器的顶部;
所述半焦出口位于所述反应器的底部;
蓄热式辐射管,所述蓄热式辐射管在所述移动床热解反应器的内部沿着所述反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的蓄热式辐射管;
油气导出管道,所述油气导出管道的管壁上设置有通孔;
搅拌装置,所述搅拌装置包括搅拌轴和连接在所述搅拌轴上的多个搅拌杆,所述搅拌轴由所述半焦出口伸入到所述反应器的内部并被设置成可在所述反应器内旋转;
集气管,所述集气管包括集气总管以及与所述集气总管相连通的集气支管,
其中,所述集气总管竖直地设置在所述反应器外部,并且所述集气总管与所述喷淋塔相连,
所述集气支管延伸穿过所述反应器的侧壁伸入到所述反应器内且与所述油气导出管道相连通。
2.根据权利要求1所述的系统,其特征在于,所述集气支管为多个,并且沿所述集气总管的长度方向彼此平行布置,
任选的,所述集气支管垂直于所述集气主管。
3.根据权利要求1或2所述的系统,其特征在于,所述油气导出管道沿所述反应器的高度方向多层布置,每层具有多根在水平方向上彼此平行的油气导出管道,
任选的,所述油气导出管道与所述蓄热式辐射管平行布置,且所述蓄热式辐射管各自的左右两侧对称设置有两根油气导出管道。
4.根据权利要求1-3中任一项所述的系统,其特征在于,所述油气导出管道与邻近的所述蓄热式辐射管的管壁之间距离为所述油气导出管道管径d的1/2-3倍,
任选的,所述油气导出管道的管壁上设置有多个通孔,优选地,所述通孔在所述油气导出管道的长度方向上均匀分布,
任选的,同一层所述油气导出管道连通至同一根所述集气支管。
5.根据权利要求1-4中任一项所述的系统,其特征在于,所述搅拌杆介于所述蓄热式辐射管层与所述油气导出管道层之间,
任选的,所述搅拌杆垂直于所述搅拌轴,并且沿所述搅拌轴的长度方向间隔分布,
任选的,所述搅拌杆在所述搅拌轴的同一横截面上的相邻投影呈一定角度,
任选的,所述角度为0~90度,不含端值,
优选的,所述角度为30~90度,不含90度。
6.根据权利要求1-5中任一项所述的系统,其特征在于,进一步包括:
破碎机,所述破碎机具有生物质原料入口和生物质颗粒出口;
第一进料装置,所述第一进料装置具有第一进料口和第一出料口,所述第一进料口与所述生物质颗粒出口相连;
干燥提升管,所述干燥提升管具有烟气入口、生物质颗粒入口和混合物料出口,所述烟气入口与所述蓄热式辐射管上的烟气出口相连,所述生物质颗粒入口与所述第一出料口相连;
干燥旋风分离器,所述干燥旋风分离器具有混合物料入口、尾气出口和干燥生物质出口,所述混合物料入口与所述混合物料出口相连;
脱硫脱硝装置,所述脱硫脱硝装置具有尾气入口和净化尾气出口,所述尾气入口与所述尾气出口相连;
烟囱,所述烟囱具有净化尾气入口,所述净化尾气入口与所述净化尾气出口相连;
第二进料装置,所述第二进料装置具有第二进料口和第二出料口,所述第二进料口与所述干燥生物质出口相连,所述第二出料口与所述生物质入口相连;
出料螺旋,所述出料螺旋设置在所述移动床热解反应器的下方且与所述半焦出口相连。
7.根据权利要求1-6中任一项所述的系统,其特征在于,进一步包括:
热解旋风分离器,所述热解旋风分离器具有油气进口、固体颗粒出口和净化油气出口,所述油气进口与所述集气总管相连;
除尘装置,所述除尘装置具有除尘油气入口和除尘后油气出口,所述除尘油气入口与所述净化油气出口相连;以及
换热器,所述换热器具有换热前油气入口和换热后油气出口,所述换热前油气入口与所述除尘后油气出口相连,所述换热后油气出口与所述喷淋塔相连。
8.根据权利要求1-7中任一项所述的系统,其特征在于,进一步包括:
焦油槽,所述焦油槽具有焦油入口、轻油出口、重油出口和焦油渣出口,所述焦油入口与所述喷淋塔相连;
风机,所述风机具有燃气入口和燃气出口,所述燃气入口与所述喷淋塔相连;以及
储气罐,所述储气罐与所述燃气出口相连。
9.一种利用权利要求1-8任一项所述的热解生物质的系统热解生物质的方法,其特征在于,包括:
将生物质输送至所述移动床热解反应器中进行热解处理,以便得到半焦和热解油气;
将所述热解油气输送至所述喷淋塔中进行喷淋处理,以便得到焦油和燃气。
10.根据权利要求8或9所述的方法,其特征在于,进一步包括:
在将所述热解油气供给至所述喷淋塔中进行喷淋处理之前,预先将所述热解油气供给至所述热解旋风分离器、所述除尘装置和所述换热器中依次进行旋风分离、除尘处理和换热处理。
CN201610137878.9A 2016-03-10 2016-03-10 热解生物质的系统和方法 Active CN105778945B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610137878.9A CN105778945B (zh) 2016-03-10 2016-03-10 热解生物质的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610137878.9A CN105778945B (zh) 2016-03-10 2016-03-10 热解生物质的系统和方法

Publications (2)

Publication Number Publication Date
CN105778945A true CN105778945A (zh) 2016-07-20
CN105778945B CN105778945B (zh) 2018-02-27

Family

ID=56392493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610137878.9A Active CN105778945B (zh) 2016-03-10 2016-03-10 热解生物质的系统和方法

Country Status (1)

Country Link
CN (1) CN105778945B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190201A (zh) * 2016-08-29 2016-12-07 北京神雾环境能源科技集团股份有限公司 一种具有内置除尘装置的生物质热解系统和方法
CN106190334A (zh) * 2016-08-29 2016-12-07 北京神雾环境能源科技集团股份有限公司 具有内置除尘装置的有机垃圾催化热解气化的系统和方法
CN106256878A (zh) * 2016-08-29 2016-12-28 北京神雾环境能源科技集团股份有限公司 一种具有内置除尘装置的粉煤热解系统和方法
CN107586552A (zh) * 2017-04-19 2018-01-16 北京三聚绿能科技有限公司 一种制备炭基肥用高品质生物质炭并联产生物质气的工艺
CN109628115A (zh) * 2018-12-21 2019-04-16 北京林业大学 一种多层盘式生物质热解反应器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709223A (zh) * 2009-11-26 2010-05-19 中节环(北京)能源技术有限公司 用于生物质中温快速热解的热解炉装置
JP2012136672A (ja) * 2010-12-28 2012-07-19 Kassui Plant Kk 減圧熱分解処理装置及び連続油化炭化設備
CN105176563A (zh) * 2015-09-25 2015-12-23 北京神雾环境能源科技集团股份有限公司 生物质快速热解的系统和方法
CN105567267A (zh) * 2016-02-23 2016-05-11 北京神雾环境能源科技集团股份有限公司 热解煤的系统和方法
CN205710584U (zh) * 2016-03-10 2016-11-23 北京神雾环境能源科技集团股份有限公司 热解生物质的系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101709223A (zh) * 2009-11-26 2010-05-19 中节环(北京)能源技术有限公司 用于生物质中温快速热解的热解炉装置
JP2012136672A (ja) * 2010-12-28 2012-07-19 Kassui Plant Kk 減圧熱分解処理装置及び連続油化炭化設備
CN105176563A (zh) * 2015-09-25 2015-12-23 北京神雾环境能源科技集团股份有限公司 生物质快速热解的系统和方法
CN105567267A (zh) * 2016-02-23 2016-05-11 北京神雾环境能源科技集团股份有限公司 热解煤的系统和方法
CN205710584U (zh) * 2016-03-10 2016-11-23 北京神雾环境能源科技集团股份有限公司 热解生物质的系统

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106190201A (zh) * 2016-08-29 2016-12-07 北京神雾环境能源科技集团股份有限公司 一种具有内置除尘装置的生物质热解系统和方法
CN106190334A (zh) * 2016-08-29 2016-12-07 北京神雾环境能源科技集团股份有限公司 具有内置除尘装置的有机垃圾催化热解气化的系统和方法
CN106256878A (zh) * 2016-08-29 2016-12-28 北京神雾环境能源科技集团股份有限公司 一种具有内置除尘装置的粉煤热解系统和方法
CN107586552A (zh) * 2017-04-19 2018-01-16 北京三聚绿能科技有限公司 一种制备炭基肥用高品质生物质炭并联产生物质气的工艺
CN107674692A (zh) * 2017-04-19 2018-02-09 北京三聚绿能科技有限公司 一种制备炭基肥用高品质生物质炭的工艺
CN107686735A (zh) * 2017-04-19 2018-02-13 北京三聚绿能科技有限公司 一种制备炭基肥用高品质生物质炭并副产沉渣的工艺
CN107699261A (zh) * 2017-04-19 2018-02-16 北京三聚绿能科技有限公司 一种制备炭基肥用高品质生物质炭并副产木焦油的工艺
CN109628115A (zh) * 2018-12-21 2019-04-16 北京林业大学 一种多层盘式生物质热解反应器

Also Published As

Publication number Publication date
CN105778945B (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
CN105567267B (zh) 热解煤的系统和方法
CN103013544B (zh) 一种煤、油页岩的隧道管薄层干馏装置及工艺方法
CN102517054B (zh) 一种农林生物质连续热解及产物分段收集净化装置与方法
CN105778945A (zh) 热解生物质的系统和方法
CN105176563A (zh) 生物质快速热解的系统和方法
CN105316014A (zh) 热解生物质的方法和系统
CN102816611A (zh) 一种煤热解气体的综合循环利用方法
CN105861080A (zh) 生物质下行床快速催化热解系统和热解生物质的方法
CN106433717A (zh) 一种蓄热式生物质热解炭化反应系统及方法
CN105925292A (zh) 轮胎快速热解系统及方法
CN104877695A (zh) 一种煤热解提质一体化成套系统
CN110079350B (zh) 一种以多仓室流化床反应器为核心的生物质热裂解生产工艺
CN205710584U (zh) 热解生物质的系统
CN109368641B (zh) 一种活性炭制备可燃气体循环利用装置
CN105754624A (zh) 低阶粉煤热解系统及低阶粉煤热解方法
CN205635481U (zh) 低阶粉煤热解系统
CN205501193U (zh) 热解煤的系统
CN105505412A (zh) 移动床热解反应器
CN205838923U (zh) 轮胎快速热解系统
CN205628880U (zh) 处理有机垃圾的系统
CN205328935U (zh) 热解生物质的系统
CN205501185U (zh) 移动床热解反应器
CN205473581U (zh) 快速热解反应器
CN107245345B (zh) 热解反应系统及热解反应方法
CN105907407A (zh) 热解生物质的系统和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160816

Address after: 102200 Beijing City, Changping District science and Technology Park Fukang Road No. 18

Applicant after: BEIJING HUAFU ENGINEERING Co.,Ltd.

Address before: 102200 Beijing city Changping District Machi Town cow Road No. 18

Applicant before: BEIJING SHENWU ENVIRONMENT AND ENERGY TECHNOLOGY Co.,Ltd.

TA01 Transfer of patent application right

Effective date of registration: 20170504

Address after: 102200 Beijing city Changping District Machi Town cow Road No. 18

Applicant after: Shenwu Technology Group Co.,Ltd.

Address before: 102200 Beijing City, Changping District science and Technology Park Fukang Road No. 18

Applicant before: BEIJING HUAFU ENGINEERING Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
PP01 Preservation of patent right

Effective date of registration: 20190102

Granted publication date: 20180227

PP01 Preservation of patent right
PD01 Discharge of preservation of patent

Date of cancellation: 20220102

Granted publication date: 20180227

PD01 Discharge of preservation of patent
PP01 Preservation of patent right

Effective date of registration: 20220102

Granted publication date: 20180227

PP01 Preservation of patent right
DD01 Delivery of document by public notice

Addressee: Wang Laixi Zhou Jun

Document name: Notice of Termination of Suspension Procedure

DD01 Delivery of document by public notice