CN105773620B - The trajectory planning control method of industrial robot free curve based on Double quaternions - Google Patents

The trajectory planning control method of industrial robot free curve based on Double quaternions Download PDF

Info

Publication number
CN105773620B
CN105773620B CN201610266117.3A CN201610266117A CN105773620B CN 105773620 B CN105773620 B CN 105773620B CN 201610266117 A CN201610266117 A CN 201610266117A CN 105773620 B CN105773620 B CN 105773620B
Authority
CN
China
Prior art keywords
mrow
msub
mover
mfrac
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610266117.3A
Other languages
Chinese (zh)
Other versions
CN105773620A (en
Inventor
李宏胜
汪允鹤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201610266117.3A priority Critical patent/CN105773620B/en
Publication of CN105773620A publication Critical patent/CN105773620A/en
Application granted granted Critical
Publication of CN105773620B publication Critical patent/CN105773620B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of trajectory planning control method of the industrial robot free curve based on Double quaternions, space free curve profile is described using the control point data of cartesian space, NURBS interpolations densification is carried out using the A Dangmusi differential equations simultaneously to calculate, and with largest contours error, peak acceleration is that constraints adaptively adjusts interpolation rate, then short straight line section obtained by interpolation is changed the robot location in cartesian space and posture to space-time using Double quaternions, rotated with hypersphere and spherical linear interpolation is carried out to the movement locus of robot, finally realize industrial robot NURBS free curve trajectory plannings.

Description

The trajectory planning control method of industrial robot free curve based on Double quaternions
Technical field
The present invention relates to a kind of trajectory planning control method of the industrial robot free curve based on Double quaternions, belong to Robot trajectory planning's technical field.
Background technology
Requirement of the modern manufacturing industry to robot performance also more and more higher, and robot is calculated in the trajectory planning of task space Method occupies critical role in robot control system, directly affects robot end's exercise performance and efficiency.And robot In motion control, basic straight line, arc track curve can not meet the application demand of industrial processes, and conventional B-spline Curve, Bézier curve, Clothoid curves, can not with a kind of accurate unified method for expressing description standard analytic curve and Free curve.
Under normal circumstances, the desired trajectory of robot is the point of a series of Descartes given in advance or joint space, and Given speed or the time of point-to-point transmission by the point, can also limit the maximal rate of robot motion's permission, then divide in addition The position trajectory planning and posture trajectory planning of end effector of robot are not realized, and industrial robot posture trajectory planning is logical Interpolation is carried out to posture frequently with Euler's horn cupping, equivalent method of principal axes, but there is the defect of universal deadlock in Eulerian angles, and equivalent method of principal axes is in rotation Turn the problem of presence can not determine rotary shaft when amount is 0.Although robot pose locus interpolation can be solved using Quaternion Method Above mentioned problem, but the position interpolation of track then needed using other interpolation algorithms, and operand is big, and influence control system is advised to track The requirement of real-time drawn.
The content of the invention
The technical problems to be solved by the invention are to overcome the defect of prior art there is provided a kind of work based on Double quaternions Industry robot nurbs curve trajectory planning control method, can realize that free curve trajectory planning provides one for industrial robot Plant efficient, high-precision control method.
In order to solve the above technical problems, the technical solution adopted by the present invention is as follows:
The trajectory planning control method of industrial robot free curve based on Double quaternions, comprises the following steps:
1) mathematical modeling for setting up the end effector of robot spatial pose based on Double quaternions is held with robot end The free curve mathematical modeling that row device is described in task space NURBS;
2) control point sequence D of the end effector of robot in the task space NURBS free curves described is given, and Dominating pair of vertices answers posture R;
The control point sequence D is expressed as:D={ d0, d1..., dn, n is control point number;
The dominating pair of vertices answers posture to use posture spin matrix R3×3Represent;
3) solve the step 2 according to hartley-Judd's method) control point sequence in the corresponding knot vector U in control point, Detailed process is as follows:
For given control point di, i=0,1 ..., n predefine a k non-homogeneous B spline curve, while really Its fixed knot vector U=[u0,u1,…,un+k+1] in specific nodal value, the solution of nodal value is as follows:
The multiplicity of two end nodes is taken as k+1, the domain of definition of curve specification parameter field is taken into, i.e.,
u∈[uk,un+1]=[0,1], then u0=u1=...=uk=0, un+1=un+2=...=un+k+1=1, remaining section Point value need to calculate solution, as follows:
Calculation formula is as follows:
In formula, ljFor each length of side of controlling polygon, lj=| dj-dj-1|,
It can be obtained by formula (4):
Then can must be all nodal value;
Wherein, u is the densification nodal value between the two neighboring nodes of knot vector U, ui, i=0,1 ... ..., n+k+1 are represented Some specific nodal value in knot vector U;
4) densification process is carried out to knot vector U according to Adams differential equations theoretical algorithm, detailed process is as follows:
It is expressed as using the implicit schemes of the three step quadravalence Adams differential equations:
Wherein, T is interpolation cycle,Respectively ui-2、ui-1、ui、ui+1First derivative;
WillAbove formula is substituted into, can be obtained:
ΔLiRepresent control point diFeeding step-length;
Being combined using forward and backward difference replaces the method for differential to be simplified:
Backward difference,Forward difference,
Forward difference,Forward difference
Above formula is substituted into formula (7), obtained:
And then the Adams differential equation interpolation algorithm iterative formulas after being simplified:
Then densification deutomerite point vector can be obtained, wherein,Represent ui+1Discreet value;
5) according to step 1) in end effector of robot spatial pose mathematical modeling, and use adaptive speed control Algorithm processed is modified processing to the knot vector after densification, finally obtains optimal densification knot vector, correcting process process It is as follows:
By parameterNURBS equations are substituted into as the discreet value of parameter interpolation, obtain corresponding estimating interpolated point:
Represent discreet valueEstimate interpolated point,
It is so as to obtain corresponding feeding step-length of estimating:
Estimate feeding step-lengthWith feeding step delta LiBetween the deviation that exists, use relative error δiTo represent:
As relative error δiWhen in allowed band, thenFor required p (ui+1), otherwise it is modified as the following formula, directly To reaching δiIn allowed band:
Finally obtain optimal densification knot vector;
6) utilize step 5) optimal densification knot vector, and according to step 1) in end effector of robot in task The free curve mathematical modeling of space NURBS descriptions, the final interpolated point position obtained on curve;
7) according to the interpolated point position of adjacent space curve and attitude data, Double quaternions conversion is carried out, specific steps are such as Under:
7-1) for each robot end's pose homogeneous transform matrixBTE, it is as follows:
First by posture spin matrix R3×3, the transformational relation of rotated matrix and quaternary number obtains posture spin matrix pair The rotation quaternary number Q answered, while obtaining translation vector P=[px(u),py(u),pz(u)]T
The translation vector P of three dimensions 7-2) is converted into the quaternary number of space-time, conversion formula is as follows:
Dp=cos (ψ/2)+sin (ψ/2) v (16)
In formula, RlFor the big radius of a ball of space-time, ψ=| P |/Rl, v is the unit vector on translation vector, v=P/ | P |;When | P | when=0, v is zero vector;
7-3) by below equation, calculating obtains robot end's pose and changed to the Double quaternions space bit of space-time AppearanceG portions and H portions;
In formula,For quaternary number DpConjugation;
7-4) the dual rotary track of Double quaternions carries out discretization and obtains a series of interpolation Double quaternions points, it is necessary to by its turn Change rotation quaternary number and translation vector into, transfer algorithm is as follows:
Q=(G+H)/(2cos ψ) (17)
In formula,
8) inverse kinematics processing is carried out to end effector of robot pose obtained by interpolation, obtains joint angles, and drive Joint motions.
Foregoing step 1) in,
The mathematical modeling of end effector of robot spatial pose based on Double quaternions is:
Wherein,End effector of robot Double quaternions spatial pose is represented, ξ and η meet ξ2=ξ, η2=η, ξ+η= 1, ξ η=0, G and H are unit quaternion;
End effector of robot is in the task space NURBS free curve mathematical modelings described:Any one k times Nurbs curve is represented as a Piecewise Rational multinomial vector function:
Wherein, p (u) represents position vector of the end effector of robot in the task space NURBS free curves described, ωiReferred to as weight factor;diFor free curve control point;N is control point number;Ni,k(u) it is by knot vector U=[u0,u1,…, un+k+1] determine B-spline basic function, represented by De Buer-Cox recursive definition formula:
In formula, regulationU is the densification nodal value between the two neighboring nodes of knot vector U, ui, i=0,1 ... ..., n + k+1, represents some specific nodal value in knot vector U.
The beneficial effect that the present invention is reached:
The present invention can be the trajectory planning of realizing industrial robot in the NURBS free curves of cartesian space there is provided It is a kind of to effectively improve industrial machine task efficiency and work quality, velocity perturbation be reduced, improve the work of robot The control method of environment.
Brief description of the drawings
Fig. 1 is the trajectory planning control method flow signal of the industrial robot free curve of the invention based on Double quaternions Figure;
Fig. 2 is times quaternary of the trajectory planning control method of the industrial robot free curve of the invention based on Double quaternions The schematic diagram of number statement space line fragment position;
Fig. 3 is times quaternary of the trajectory planning control method of the industrial robot free curve of the invention based on Double quaternions The direction of arrow is the rotating vector axle that posture is represented with quaternary number in the schematic diagram of number statement space line section posture, figure.
Embodiment
The invention will be further described below in conjunction with the accompanying drawings.Following examples are only used for clearly illustrating the present invention Technical scheme, and can not be limited the scope of the invention with this.
The proposition of free curve concept is exactly in order to describe more complicated geometry, to improve adding for industrial robot Work efficiency rate and precision.And non-uniform rational B-spline (NURBS, Non-Uniform Rational B-Spline) curve, can be with Accurately perceive the control point distribution characteristics of curve modeling, it is possible to which the effective data point that solves equally distributed can not lack Point.
Double quaternions are a kind of new mathematical modeling instruments based on Clifford algebraically, are sent out on the basis of quaternary number Exhibition.The position in cartesian space and posture can be changed into space-time, can either distinguished using Double quaternions The position in representation space and posture are obtained, the position in space and posture can be also indicated with a kind of unified mode, from And the pose of terminal in space-time is rotated with hypersphere spherical linear interpolation is carried out to the movement locus of robot.
As shown in figure 1, the trajectory planning control method of the industrial robot free curve based on Double quaternions of the present invention Comprise the following steps:
Step 1: setting up mathematical modeling and the robot end of the end effector of robot spatial pose based on Double quaternions The free curve mathematical modeling that end actuator is described in task space NURBS;
The mathematical modeling of end effector of robot spatial pose based on Double quaternions is:
In formula,End effector of robot Double quaternions spatial pose is represented, ξ and η meet ξ2=ξ, η2=η, ξ+η= 1, ξ η=0, G and H are unit quaternion.
End effector of robot is in the task space NURBS free curve mathematical modelings described:Any one k times Nurbs curve is represented by a Piecewise Rational multinomial vector function:
In formula, p (u) represents position vector of the end effector of robot in the task space NURBS free curves described, That is p (u)=[px(u),py(u),pz(u)]T;diFor free curve control point, i.e. di=[xi,yi,zi], then control point sequence D= {d0, d1..., dn(i=0,1 ..., n), n is control point number;ωiReferred to as weight factor, ωiRespectively with control point di(i=0, 1 ..., n) it is associated, works as ωi=1 (i=0,1 ..., when n), a k nurbs curve deteriorates to a k B-spline curves;
Ni,k(u) it is by knot vector U=[u0,u1,…,un+k+1] determine B-spline basic function, by widely used moral Boolean-Cox (De Boor-Cox) recursive definition formula is represented:
In formula, regulationU is the densification nodal value between the two neighboring nodes of knot vector U, ui, i=0,1 ... ..., n + k+1, represents some specific nodal value in knot vector U.
Then the three-dimensional coordinate form of NURBS free curves is:
Step 2: control point sequence of the given end effector of robot in the task space NURBS free curves described D, and free curve space dominating pair of vertices answer posture R;
The control point sequence D of given robot task space free curve is:D={ d0, d1..., dn(i=0,1 ..., N), n is control point number;
Correspondence posture uses posture spin matrix R3×3Representation;
Step 3: solving the corresponding section in free curve control point of task space NURBS descriptions according to hartley-Judd's method Point vector U;
It is the control point d of the free curve of given NURBS descriptions in this stepi, i=0,1 ..., n, predefine one k times Non-uniform rational B-spline (NURBS) curve, while must determine its knot vector U=[u0,u1,…,un+k+1] in it is specific Nodal value.
For ease of having preferable control in the behavior of endpoint curve to curve, the present invention is taken as in the multiplicity of two end nodes K+1, generally takes into specification parameter field, i.e. u ∈ [u by the domain of definition of curvek,un+1]=[0,1], then u0=u1=...=uk= 0, un+1=un+2=...=un+k+1=1, remaining interior nodes need to calculate solution, and method is as follows:
The hartley that this step is used-Judd's method is unrelated with the parity of degree of curve, public using unified calculating Formula, computational methods have more reasonability, and its calculation formula is as follows:
In formula, ljFor each length of side of controlling polygon, i.e. lj=| dj-dj-1|.It can be obtained by formula (4):
Then all nodal values in the corresponding knot vector in control point can be obtained.
Step 4: carrying out densification process to knot vector U according to Adams differential equations theoretical algorithm;
Parameter densification refers to by the mapping in three-dimensional track space to one-dimensional parameter space, under parametrization interpolation mode, The densification of data is the densification for showing as parameter, i.e., by the feeding step delta L of trajectory range be mapped to parameter space with Ask for parameter increment Delta u and next parameter coordinate:ui+1=ui+Δui
This step uses get A Dangmusi (Adams) differential equations to carry out densification to cross variable, and calculation formula is as follows:
It is expressed as using the implicit schemes of the three step quadravalence A Dangmusi differential equations:
In formula, T is interpolation cycle,Respectively ui-2、ui-1、ui、ui+1First derivative;
WillAbove formula is substituted into, can be obtained:
ΔLiRepresent control point diFeeding step-length.
To ensure the requirement of high speed nurbs curve direct interpolation, it is ensured that the calculating speed of real-time interpolation, using forward and backward Difference (being shown below), which is combined, replaces the method for differential to simplify the algorithm:
(backward difference),(forward difference),
(forward difference),(forward difference)
Above formula is substituted into formula (7), obtained:
And then the A Dangmusi differential equation interpolation algorithm iterative formulas after being simplified:
Then densification deutomerite point vector can be obtained, wherein,Represent ui+1Discreet value.
Step 5: the free curve mathematics described according to end effector of robot in step one in task space NURBS Model, is modified processing to the knot vector after densification using adaptive-feedrate adjustment algorithm, finally obtains optimal densification Knot vector;
By parameterNURBS equations are substituted into as the discreet value of parameter interpolation, obtain corresponding estimating interpolated point:
It is to estimate interpolated point,
So as to obtain corresponding estimating feeding step-lengthFor:
Feeding step-length is estimated using what preestimating method was obtainedThe deviation existed between feeding step delta L, can use relative miss Difference is evaluated:
δiRepresent control point diThe relative error at place.
As relative error δiWhen in allowed band, then it is believed thatFor required p (ui+1), otherwise repaiied as the following formula Just, until reaching δiIn allowed band:
Densification knot vector after finally being optimized.
Step 6: using the densification knot vector of optimization, and it is empty in task according to end effector of robot in step one Between the free curve mathematical modelings that describe of NURBS, the final interpolated point position obtained on curve.
Step 7: according to the interpolated point position of adjacent space curve and attitude data, carrying out Double quaternions conversion;
Pose homogeneous transform matrix is converted into Double quaternions, the computational accuracy δ of position auto―control in given three dimensionsm During with the maximum boundary L of robot working space, formula can be passed through:
Obtain the big ball i.e. radius R of super large ball of space-timel
Pose homogeneous transform matrix is converted into Double quaternions, its transfer algorithm is as follows:
7-1) for each robot end's pose homogeneous transform matrixBTE, i.e. robot end's ring flange center coordinate It is homogeneous transform matrix of the E relative to basis coordinates system B, it is as follows:
First by posture spin matrix R3×3, the transformational relation of rotated matrix and quaternary number obtains posture spin matrix pair The rotation quaternary number Q answered, while obtaining translation vector P=[px(u),py(u),pz(u)]T
7-2) the approximate quaternary number that the translation vector P of three dimensions is converted into space-time, conversion formula is as follows:
Dp=cos (ψ/2)+sin (ψ/2) v (16)
In formula, ψ=| P |/Rl, v is the unit vector on translation vector, v=P/ | P |;When | P | when=0, v is zero vector;
7-3) by below equation, calculating obtains robot end's pose and changed to the Double quaternions space bit of space-time AppearanceG portions and H portions;
In formula,For quaternary number DpConjugation;
7-4) the dual rotary track of Double quaternions carries out discretization and obtains a series of interpolation Double quaternions points, it is necessary to by its turn Change rotation quaternary number and translation vector into, transfer algorithm is as follows:
Q=(G+H)/(2cos ψ) (17)
In formula,
Step 8: carrying out inverse kinematics processing to end effector of robot pose obtained by interpolation, joint angles are obtained, and Drive joint motions.
Specific method is:Adjacent interpolated point in robot task space is considered as terminal, then terminal posture can be revolved Torque battle array RsWith corresponding translation vector Ps, posture spin matrix ReWith corresponding translation vector PeData, change at double four respectively First number space pose:
Wherein,For posture spin matrix RsCorresponding Double quaternions spatial pose, GsAnd HsForCorresponding unit quaternary Number,For posture spin matrix ReCorresponding Double quaternions spatial pose, GeAnd HeForCorresponding unit quaternion.
G portions and H portions respectively to terminal Double quaternions spatial pose carries out spherical linear interpolation, can obtain:
In formula, G (t) represents the spherical linear interpolation in the G portions of terminal Double quaternions spatial pose, and H (t) represents terminal The spherical linear interpolation in the H portions of Double quaternions spatial pose, α=arccos (Gs·Ge), β=arccos (Hs·He)(Gs·Ge、 Hs·HeRespectively GsWith Ge、HsWith HeThe dot product of two quaternary numbers), l (t) ∈ [0,1] can be obtained by normalizing interpolation cycle.
According to above formula, the spherical linear interpolation of Double quaternions spatial pose is represented by:
The formula is a kind of method for expressing of Double quaternions spherical linear interpolation, comprising again during actual interpolation calculation The G portions of quaternary number and the spherical linear interpolation of two, H portions part, pass through G portions and the spherical linear of the unit quaternion in H portions respectively Interpolation completes the spherical linear interpolation of Double quaternions, obtains the Double quaternions of interpolation intermediate point, Double quaternions spherical linear interpolation Double quaternions as shown in Figures 2 and 3, are then converted into by the position of space line section with posture difference by the inverse process of step 7 The pose homogeneous transform matrix T of interpolation intermediate point.Handled finally by the inverse kinematics of robot model, obtain real-time joint angle Degree, and drive each joint motions.
Described above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these improve and deformed Also it should be regarded as protection scope of the present invention.

Claims (2)

1. the trajectory planning control method of the industrial robot free curve based on Double quaternions, it is characterised in that including following Step:
1) mathematical modeling and end effector of robot of the end effector of robot spatial pose based on Double quaternions are set up The free curve mathematical modeling described in task space NURBS;
2) control point sequence D of the end effector of robot in the task space NURBS free curves described, and control are given Point correspondence posture R;
The control point sequence D is expressed as:D={ d0, d1..., dn, n is control point number;
The dominating pair of vertices answers posture to use posture spin matrix R3×3Represent;
3) solve the step 2 according to hartley-Judd's method) control point sequence in the corresponding knot vector U in control point, specifically Process is as follows:
For given control point di, i=0,1 ..., n predefine a k non-homogeneous B spline curve, while determining its Knot vector U=[u0,u1,…,un+k+1] in specific nodal value, the solution of nodal value is as follows:
The multiplicity of two end nodes is taken as k+1, the domain of definition of curve is taken into specification parameter field, i.e. u ∈ [uk,un+1]=[0, 1], then u0=u1=...=uk=0, un+1=un+2=...=un+k+1=1, remaining nodal value need to calculate solution, as follows:
Calculation formula is as follows:
<mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>i</mi> <mo>-</mo> <mi>k</mi> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>s</mi> <mo>-</mo> <mi>k</mi> </mrow> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula, ljFor each length of side of controlling polygon, lj=| dj-dj-1|,
It can be obtained by formula (4):
<mrow> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>s</mi> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>i</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>s</mi> <mo>-</mo> <mi>k</mi> </mrow> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>s</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mi>s</mi> <mo>-</mo> <mi>k</mi> </mrow> <mrow> <mi>s</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>l</mi> <mi>j</mi> </msub> </mrow> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
Then can must be all nodal value;
Wherein, u is the densification nodal value between the two neighboring nodes of knot vector U, ui, i=0,1 ... ..., n+k+1 represent node Some specific nodal value in vector U;
4) densification process is carried out to knot vector U according to Adams differential equations theoretical algorithm, detailed process is as follows:
It is expressed as using the implicit schemes of the three step quadravalence Adams differential equations:
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mi>T</mi> <mn>24</mn> </mfrac> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>19</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <mn>5</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
Wherein, T is interpolation cycle,Respectively ui-2、ui-1、ui、ui+1First derivative;
WillAbove formula is substituted into, can be obtained:
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mn>1</mn> <mn>24</mn> </mfrac> <mrow> <mo>(</mo> <mfrac> <mrow> <mn>9</mn> <msub> <mi>&amp;Delta;L</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> <msqrt> <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>+</mo> <mfrac> <mrow> <mn>9</mn> <msub> <mi>&amp;Delta;L</mi> <mi>i</mi> </msub> </mrow> <msqrt> <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>-</mo> <mfrac> <mrow> <mn>5</mn> <msub> <mi>&amp;Delta;L</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mrow> <msqrt> <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;L</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mrow> <msqrt> <mrow> <msubsup> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>y</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mover> <mi>z</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> <mn>2</mn> </msubsup> </mrow> </msqrt> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
ΔLiRepresent control point diFeeding step-length;
Being combined using forward and backward difference replaces the method for differential to be simplified:
Backward difference,Forward difference,
Forward difference,Forward difference
Above formula is substituted into formula (7), obtained:
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mi>T</mi> <mn>24</mn> </mfrac> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mn>19</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <mn>5</mn> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>u</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
And then the Adams differential equation interpolation algorithm iterative formulas after being simplified:
<mrow> <msub> <mover> <mi>u</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <mrow> <mo>(</mo> <mn>9</mn> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>-</mo> <mn>6</mn> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
Then densification deutomerite point vector can be obtained, wherein,Represent ui+1Discreet value;
5) according to step 1) in end effector of robot spatial pose mathematical modeling, and using adaptive-feedrate adjustment calculate Method is modified processing to the knot vector after densification, finally obtains optimal densification knot vector, and correcting process process is as follows:
By parameterNURBS equations are substituted into as the discreet value of parameter interpolation, obtain corresponding estimating interpolated point:
<mrow> <mover> <mi>p</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mover> <mi>u</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Represent discreet valueEstimate interpolated point,
It is so as to obtain corresponding feeding step-length of estimating:
<mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>L</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> <mo>=</mo> <mo>|</mo> <mover> <mi>p</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mi>p</mi> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>|</mo> <mo>=</mo> <msqrt> <mrow> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>x</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>z</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
Estimate feeding step-lengthWith feeding step delta LiBetween the deviation that exists, use relative error δiTo represent:
<mrow> <msub> <mi>&amp;delta;</mi> <mi>i</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mrow> <msub> <mi>&amp;Delta;L</mi> <mi>i</mi> </msub> <mo>-</mo> <mi>&amp;Delta;</mi> <msub> <mover> <mi>L</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> </mrow> <mo>|</mo> </mrow> <mrow> <msub> <mi>&amp;Delta;L</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
As relative error δiWhen in allowed band, thenFor required p (ui+1), otherwise it is modified as the following formula, until reaching To δiIn allowed band:
<mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>+</mo> <mfrac> <mrow> <msub> <mi>&amp;Delta;L</mi> <mi>i</mi> </msub> </mrow> <mrow> <mi>&amp;Delta;</mi> <msub> <mover> <mi>L</mi> <mo>~</mo> </mover> <mi>i</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>u</mi> <mo>~</mo> </mover> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
Finally obtain optimal densification knot vector;
6) utilize step 5) optimal densification knot vector, and according to step 1) in end effector of robot in task space The free curve mathematical modeling of NURBS descriptions, the final interpolated point position obtained on curve;
7) according to the interpolated point position of adjacent space curve and attitude data, Double quaternions conversion is carried out, is comprised the following steps that:
7-1) for each robot end's pose homogeneous transform matrixBTE, it is as follows:
<mrow> <msup> <mrow></mrow> <mi>B</mi> </msup> <msub> <mi>T</mi> <mi>E</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>R</mi> </mtd> <mtd> <mi>P</mi> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
First by posture spin matrix R3×3, the transformational relation of rotated matrix and quaternary number obtains posture spin matrix corresponding Quaternary number Q is rotated, while obtaining translation vector P=[px(u),py(u),pz(u)]T
The translation vector P of three dimensions 7-2) is converted into the quaternary number of space-time, conversion formula is as follows:
Dp=cos (ψ/2)+sin (ψ/2) v (16)
In formula, ψ=| P |/Rl, RlFor the big radius of a ball of space-time, v is the unit vector on translation vector, v=P/ | P |;When | P | when=0, v is zero vector;
7-3) by below equation, calculating obtains robot end's pose and changed to the Double quaternions spatial pose of space-time G portions and H portions;
<mrow> <mi>G</mi> <mo>=</mo> <msub> <mi>D</mi> <mi>p</mi> </msub> <mi>Q</mi> <mo>,</mo> <mi>H</mi> <mo>=</mo> <msubsup> <mi>D</mi> <mi>p</mi> <mo>*</mo> </msubsup> <mi>Q</mi> </mrow>
In formula,For quaternary number DpConjugation;
7-4) the dual rotary track of Double quaternions carries out discretization and obtains a series of interpolation Double quaternions points, it is necessary to convert thereof into Quaternary number and translation vector are rotated, transfer algorithm is as follows:
Q=(G+H)/(2cos ψ) (17)
<mrow> <mi>P</mi> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msub> <mi>R</mi> <mi>l</mi> </msub> <mi>&amp;psi;</mi> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;psi;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mi>G</mi> <mo>-</mo> <mi>H</mi> <mo>)</mo> </mrow> <msup> <mi>Q</mi> <mo>*</mo> </msup> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <mi>&amp;psi;</mi> <mo>&amp;NotEqual;</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>(</mo> <mi>&amp;psi;</mi> <mo>=</mo> <mn>0</mn> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
In formula,
8) inverse kinematics processing is carried out to end effector of robot pose obtained by interpolation, obtains joint angles, and drive joint Motion.
2. the trajectory planning control method of the industrial robot free curve according to claim 1 based on Double quaternions, Characterized in that, the step 1) in,
The mathematical modeling of end effector of robot spatial pose based on Double quaternions is:
<mrow> <mover> <mi>G</mi> <mo>~</mo> </mover> <mo>=</mo> <mi>&amp;xi;</mi> <mi>G</mi> <mo>+</mo> <mi>&amp;eta;</mi> <mi>H</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein,End effector of robot Double quaternions spatial pose is represented, ξ and η meet ξ2=ξ, η2=η, ξ+η=1, ξ η =0, G and H are unit quaternion;
End effector of robot is in the task space NURBS free curve mathematical modelings described:Any one k NURBS Curve is represented as a Piecewise Rational multinomial vector function:
<mrow> <mi>p</mi> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <msub> <mi>d</mi> <mi>i</mi> </msub> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>n</mi> </munderover> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, p (u) represents end effector of robot in the position vector of the task space NURBS free curves described, ωiClaim For weight factor;diFor free curve control point;N is control point number;Ni,k(u) it is by knot vector The B-spline basic function of decision, is represented by De Buer-Cox recursive definition formula:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mtable> <mtr> <mtd> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </mtd> <mtd> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <mi>u</mi> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>o</mi> <mi>t</mi> <mi>h</mi> <mi>e</mi> <mi>r</mi> <mi>w</mi> <mi>i</mi> <mi>s</mi> <mi>e</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mi>u</mi> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mi>i</mi> </msub> </mrow> </mfrac> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <mi>u</mi> </mrow> <mrow> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mrow> </mfrac> <msub> <mi>N</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>u</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, regulationU is the densification nodal value between the two neighboring nodes of knot vector U, ui, i=0,1 ... ..., n+k+ 1, represent some specific nodal value in knot vector U.
CN201610266117.3A 2016-04-26 2016-04-26 The trajectory planning control method of industrial robot free curve based on Double quaternions Expired - Fee Related CN105773620B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610266117.3A CN105773620B (en) 2016-04-26 2016-04-26 The trajectory planning control method of industrial robot free curve based on Double quaternions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610266117.3A CN105773620B (en) 2016-04-26 2016-04-26 The trajectory planning control method of industrial robot free curve based on Double quaternions

Publications (2)

Publication Number Publication Date
CN105773620A CN105773620A (en) 2016-07-20
CN105773620B true CN105773620B (en) 2017-09-12

Family

ID=56399369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610266117.3A Expired - Fee Related CN105773620B (en) 2016-04-26 2016-04-26 The trajectory planning control method of industrial robot free curve based on Double quaternions

Country Status (1)

Country Link
CN (1) CN105773620B (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107053176B (en) * 2017-04-09 2019-07-12 北京工业大学 A kind of error modeling method of six-DOF robot end spaces curvilinear path
CN107263472A (en) * 2017-06-16 2017-10-20 广东工业大学 A kind of robot motion's curve processing method and system
CN107807612B (en) * 2017-12-12 2020-09-22 科德数控股份有限公司 Numerical control machine tool spherical surface machining method based on quaternion spiral spherical surface interpolation method
CN108646667B (en) * 2018-03-05 2019-11-05 北京华航唯实机器人科技股份有限公司 Orbit generation method and device, terminal
CN108614569B (en) * 2018-06-22 2021-01-15 北京敏捷动力科技有限公司 Method for tracking and controlling controlled moving object
CN108942943B (en) * 2018-08-16 2020-03-17 居鹤华 Positive kinematics calculation method of multi-axis robot based on axis invariants
CN109531573B (en) * 2018-12-25 2022-03-29 珞石(山东)智能科技有限公司 Robot posture smooth path generation method based on sample lines
CN109664303B (en) * 2019-02-28 2021-10-12 武汉工程大学 Error-controllable B-spline transition type smooth trajectory generation method for four-axis industrial robot
CN110757454B (en) * 2019-10-12 2022-08-16 广州中国科学院先进技术研究所 Path planning method and device for cooperative rotation of double robots
JP7262373B2 (en) * 2019-11-19 2023-04-21 株式会社日立製作所 Trajectory plan generation device, trajectory plan generation method, and trajectory plan generation program
CN111897216B (en) * 2020-07-16 2021-07-02 华中科技大学 Multi-motion-segment speed planning and interpolation method
CN111913441B (en) * 2020-08-06 2021-11-09 南京工程学院 Corner smooth transition method based on track mode
CN112318499A (en) * 2020-10-16 2021-02-05 西安工程大学 Special-shaped prefabricated body robot needling forming path planning method
CN112269356B (en) * 2020-10-27 2022-03-18 南京溧航仿生产业研究院有限公司 NURBS track interpolation method for robot
CN112419415B (en) * 2020-12-08 2022-06-17 浙江德尚韵兴医疗科技有限公司 Ultrasonic scanning method for realizing pose planning based on CRS curve fitting
CN112698623B (en) * 2020-12-29 2021-11-05 南京埃斯顿自动化股份有限公司 Multi-axis contour control method for multi-axis contour application occasion
CN113211433B (en) * 2021-04-21 2022-09-20 山东科技大学 Separated visual servo control method based on composite characteristics
CN113103240B (en) * 2021-04-29 2022-08-23 哈尔滨工业大学 Method, device and system for realizing C2 continuous robot trajectory planning
CN113103241B (en) * 2021-04-29 2022-08-23 哈尔滨工业大学 Method, device and system for realizing G2 continuous robot double-NURBS track interpolation
CN113103239B (en) * 2021-04-29 2022-09-13 哈尔滨工业大学 Robot attitude trajectory generation method and device and storage medium
CN113733099A (en) * 2021-09-28 2021-12-03 广州大学 Robot smooth track planning method, computer and storage medium
CN113997157A (en) * 2021-11-11 2022-02-01 吉林大学 Multi-surface common-body optical curved surface polishing machine tool and method based on macro-micro composite driving
CN116197917B (en) * 2023-04-28 2023-08-01 苏州艾利特机器人有限公司 Self-adaptive maximum acceleration calculation method and device, storage medium and electronic equipment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60262213A (en) * 1984-06-06 1985-12-25 Nippei Toyama Corp Movement control method of industrial robot
JPH05185386A (en) * 1992-01-16 1993-07-27 Fujitsu Ltd Linear motion control system for robot finger
US9517556B2 (en) * 2012-06-29 2016-12-13 Mitsubishi Electric Corporation Robot control apparatus and robot control method
CN102825602B (en) * 2012-08-21 2015-03-25 华北电力大学(保定) PSD (Position Sensitive Detector)-based industrial robot self-calibration method and device
CN103568012B (en) * 2013-10-24 2015-10-21 安徽埃夫特智能装备有限公司 A kind of planing method of arc welding robot biplane swinging arc track
CN104635762B (en) * 2015-01-13 2017-06-06 北京航空航天大学 A kind of autokinesis angle computational methods towards SRS copy man arms
CN104965517B (en) * 2015-07-07 2018-01-26 张耀伦 A kind of planing method of robot cartesian space track
CN105269565B (en) * 2015-10-30 2017-04-05 福建长江工业有限公司 A kind of six axle grinding and polishing industrial robot off-line programings and modification method

Also Published As

Publication number Publication date
CN105773620A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
CN105773620B (en) The trajectory planning control method of industrial robot free curve based on Double quaternions
CN108000501B (en) Novel trajectory planning method for series robot
CN106647282B (en) Six-degree-of-freedom robot trajectory planning method considering tail end motion error
Gong et al. Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator
JP3207728B2 (en) Control method of redundant manipulator
Chen et al. An approach to the path planning of tube–sphere intersection welds with the robot dedicated to J-groove joints
CN105856231B (en) A kind of motion control method of particular configuration six-shaft industrial robot
CN108237534A (en) A kind of space collision free trajectory method of continuous type mechanical arm
CN111459160B (en) Large-scale track smoothing method for unmanned washing and sweeping vehicle on open road
WO2023024317A1 (en) Robot obstacle avoidance method and apparatus, and robot
CN112975992B (en) Error-controllable robot track synchronous optimization method
CN110653137B (en) Spraying method for keeping spray head vertical to spraying surface
Tarokh et al. Real-time motion tracking of robot manipulators using adaptive genetic algorithms
CN111791234A (en) Anti-collision control algorithm for working positions of multiple robots in narrow space
CN106844951B (en) Method and system for solving inverse kinematics of super-redundant robot based on segmented geometric method
CN115213905B (en) Method and system for controlling position and pose of redundant mechanical arm and robot
CN116061173A (en) Six-degree-of-freedom redundant task track planning method for mechanical arm for live working
CN110561419A (en) arm-shaped line constraint flexible robot track planning method and device
CN109366486B (en) Flexible robot inverse kinematics solving method, system, equipment and storage medium
CN104070523A (en) Method for interpolating circular arcs in real time for industrial robots on basis of space coordinate transformation
CN114147720A (en) Universal inverse kinematics solving method and device for multi-degree-of-freedom mechanical arm
CN116330267A (en) Control method based on industrial robot wrist singular point calculation
CN111515954B (en) Method for generating high-quality motion path of mechanical arm
CN111958602A (en) Real-time inverse solution method for wrist offset type 6-axis robot
CN112276940A (en) Six-degree-of-freedom non-spherical wrist robot inverse kinematics solving method

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170912