CN105772665A - 350㎜直径的34CrMo圆管钢坯及其炼制方法 - Google Patents

350㎜直径的34CrMo圆管钢坯及其炼制方法 Download PDF

Info

Publication number
CN105772665A
CN105772665A CN201610169218.9A CN201610169218A CN105772665A CN 105772665 A CN105772665 A CN 105772665A CN 201610169218 A CN201610169218 A CN 201610169218A CN 105772665 A CN105772665 A CN 105772665A
Authority
CN
China
Prior art keywords
34crmo
round pipe
pipe
pipe billet
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610169218.9A
Other languages
English (en)
Other versions
CN105772665B (zh
Inventor
李红光
陈天明
郭华
李扬洲
陈亮
郭奠荣
杨文中
李志强
冯远超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Original Assignee
Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd filed Critical Pangang Group Panzhihua Iron and Steel Research Institute Co Ltd
Priority to CN201610169218.9A priority Critical patent/CN105772665B/zh
Publication of CN105772665A publication Critical patent/CN105772665A/zh
Application granted granted Critical
Publication of CN105772665B publication Critical patent/CN105772665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/114Treating the molten metal by using agitating or vibrating means
    • B22D11/115Treating the molten metal by using agitating or vibrating means by using magnetic fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

本发明公开了一种350㎜直径的34CrMo圆管钢坯及其炼制方法,属于钢管炼轧领域。提供一种合金成份含量合理,内部晶像结构中中心偏析低的34CrMo圆管钢坯及其炼制方法。所述的34CrMo圆管钢坯包括C、Si、Mn、P、S、Cr、Mo、Cu、Ni,残余元素Nb%、Ti、B、V+Nb+Ti+B+Zr、As、Sn、As+Sn+Pb+Sb+Bi以及Fe;其中,成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82。所述的炼制方法包括转炉冶炼、LF炉精炼、RH精炼以及φ350mm断面的34CrMo圆管钢坯连铸几个步骤。

Description

350㎜直径的34CrMo圆管钢坯及其炼制方法
技术领域
本发明涉及一种34CrMo圆管钢坯,尤其是涉及一种350㎜直径的34CrMo圆管钢坯,属于钢管炼轧技术领域。本发明还涉及一种用于制造所述350㎜直径的34CrMo圆管钢坯的炼制方法。
背景技术
34CrMo管坯钢主要用于生产油气开采、运输使用的油井管用钢,钢种化学组分按重量百分比为:C:0.31%~0.36%、Si:0.20%~0.35%、Mn:0.65%~0.85%、P≤0.015%、S≤0.010%、Cr:0.95%~1.15%、Mo:0.17%~0.24%、Cu≤0.15%、Ni≤0.20%,残余元素要求:Nb≤0.010%、Ti≤0.010%、B≤0.005%,且V+Nb+Ti+B+Zr≤0.15%;As≤0.015%,Sn≤0.010%,As+Sn+Pb+Sb+Bi≤0.045%,余量为Fe。产品在使用时在使用应力和硫化氢气体的共同作用下,往往会在受力远低于其本身屈服强度时突然发生脆断(称为硫化氢应力腐蚀),往往造成生泄露等问题,对生产及环保造成不利影响。随着社会经济的发展,油气运输效率要求更高、开采难度增大等发展趋势不断对铸坯质量提出更加苛刻的要求。尤其如铸坯中心疏松等缺陷,对铸坯轧制穿管加工及成品质量产生不利影响。因此,铸坯中心疏松的控制就显极为重要。
连铸坯疏松的产生,主要是由于连铸生产过程中铸坯柱状晶发达,等轴晶率偏低,柱状晶枝晶间发生粘接,形成密闭空间,钢液继续冷却凝固,体积收缩,而空间外部钢液无法及时补缩而形成。所形成的疏松在后续轧制工艺过程中不能全部有效消除,影响产品质量。对于34CrMo管坯钢来说,成分本身决定了铸坯中心疏松趋势更大;再者,由于铸坯断面相对较大且为圆坯,其比表面积更小铸坯传热效率更低,铸坯中心疏松的控制更加困难。作为冶金工作研究,提高34CrMo圆管坯铸坯质量一直以来都是研究的重点,尤其对于大规格34CrMo圆管坯中心疏松的控制。
例如:
CN102021488A公开了一种核岛无缝钢管用钢及其生产方法。本发明的核岛无缝钢管用钢,其化学成分按重量百分比计为:0<C≤0.20%,0.10%≤Si≤0.35%,0.80%≤Mn≤1.60%,0<P≤0.020%,0<S≤0.015%,0<Cr≤0.25%,0<Ni≤0.50%,0<Cu≤0.18%,0<Mo≤0.10%,0<V≤0.06%,0.020%≤Al≤0.050%,0<Sn≤0.030%,Fe为余量。该发明的核岛无缝钢管用钢满足碳当量(Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15)≤0.48的条件,控制钢的主要元素碳、锰含量,稳定钢管模拟消除应力热处理后的拉伸性能,确保管体和模拟消除应力热处理试样拉伸性能同时满足技术标准要求。将残余元素镍作为合金元素加入,提高了核岛无缝钢管用钢低温冲击韧性,满足其0℃、-20℃冲击韧性要求。但是对于φ350mm断面生产较大规格34CrMo圆管坯中心疏松控制的具体方法并未涉及。
CN101984093A公开一种热轧钢管连铸圆坯热装方法及系统,其方法包括步骤:精炼后的钢水浇铸成连铸圆坯;用火焰枪在连铸圆坯生产线上将连铸圆坯切成倍尺长度,而成热连铸圆坯;倍尺长度的热连铸圆坯至少具有两个流向,第一部分热连铸圆坯通过第一圆坯输送辊道进入到预热炉预热或保温,接着通过第二圆坯输送辊道送到高温炉加热;第二部分热连铸圆坯通过第二圆坯输送辊道直接送到高温炉加热;将送到高温炉加热的热连铸圆坯通过热锯设备热锯切成定尺长度;将热锯切成定尺长度的连铸圆坯送去热定心、穿孔、轧管;接着进入下道工序。该发明充分利用热连铸圆坯的热量,节省大量燃料;同时减少所需设备和厂房,降低建厂投资和设备维修费用。但是对于φ350mm断面生产较大规格34CrMo圆管坯中心疏松控制,提高铸坯内部质量的具体方法并未涉及。
CN103537642A公开了一种控制连铸圆坯机铸坯拉速的新方法,将连铸坯拉速的控制方法分为两个阶段。第一阶段,连铸坯脱开引锭头之前(约10—30余分钟),铸坯的拉速控制按传统的方法制定—根据中间包钢水实际过热度而定。第二阶段,铸坯脱开引锭头之后,铸坯的实际拉速应按铸坯在矫直段的铸坯表面实际温度来决定,即根据矫直段处铸坯的表面实际数据来调整铸坯实际拉速数据,使得铸坯尽早脱离理论脆性温度区域723℃-912℃这个危险温度区间,大幅减少铸坯由于自身的组织相变而导致的铸坯表面容易产生裂纹的几率,其次兼顾中间包钢水温度。便于有效改善或基本解决弧形大圆坯连铸机钢坯表面裂纹容易产生现象,在保证铸坯质量的前提下,较大幅度地提高连铸机整体生产效率、进一步提高铸坯成材率,更好的改善大圆连铸坯表面质量。但是对于φ350mm断面生产较大规格34CrMo圆管坯中心疏松控制,提升铸坯中心区域致密度的具体方法并未涉及。
发明内容
本发明所要解决的技术问题是:提供一种合金成份含量合理,内部晶像结构的中心疏松质量好的350㎜直径的34CrMo圆管钢坯。本发明还提供一种用于所述34CrMo圆管钢坯的炼制方法。
为解决上述技术问题所采用的技术方案是:一种350㎜直径的34CrMo圆管钢坯,所述的34CrMo圆管钢坯为包括下述重量份组的圆管钢坯料,
所述的重份组分包括C:0.31%~0.36%、Si:0.20%~0.35%、Mn:0.65%~0.85%、P≤0.015%、S≤0.010%、Cr:0.95%~1.15%、Mo:0.17%~0.24%、Cu≤0.15%、Ni≤0.20%,残余元素:Nb≤0.010%、Ti≤0.010%、B≤0.005%,且V+Nb+Ti+B+Zr≤0.15%;As≤0.015%,Sn≤0.010%,As+Sn+Pb+Sb+Bi≤0.045%,余量为Fe;
其中,成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82。
一种用于所述34CrMo圆管钢坯的炼制方法,所述的炼制方法包括转炉冶炼、LF炉精炼、RH精炼以及φ350mm断面的34CrMo圆管钢坯连铸几个步骤,
其中,在所述φ350mm断面的34CrMo圆管钢坯连铸时,结晶器电磁搅拌参数为搅拌电流300~400A,2~4Hz;凝固末端电磁搅拌参数为搅拌电流150~300A,频率6.0~8.0Hz;过热度控制在20~40℃;拉速控制在0.75~0.90m/min;二冷比水量控制在0.21~0.29L/kg
进一步的是,在转炉冶炼时,转炉终点碳按照≥0.05%进行控制,终点磷≤0.010%,终点温度≥1670~1690℃控制,出钢挡渣,控制渣厚在80mm以内。
本发明的有益效果是:通过合理调整构成本申请所述34CrMo圆管钢坯的合金成分的构成结构,并采用本申请提供的上述炼制方法,便可以有效的保证成品34CrMo圆管钢坯内部的晶像结构组织朝我们需要的方便发展,保证其中的中心疏松质量达到我们需要的等级和占比要求,使成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82,从而达到有效提高铸坯凝固组织均匀性的目的,进而提高产品的使用性,尽量避免产品钢管在使用过程中出现脆断的状况。
具体实施方式
为了解决现有技术中由于构成所述34CrMo圆管钢坯的合金成分以及炼铸方法不够合理造成的产品在使用性能欠佳,使用过程中容易出现脆断现象的技术问题,本发明提供的一种合金成份含量合理,内部晶像结构的中心疏松质量好的350㎜直径的34CrMo圆管钢坯,以及用于所述34CrMo圆管钢坯的炼制方法。所述的34CrMo圆管钢坯为包括下述重量份组的圆管钢坯料,
所述的重份组分包括C:0.31%~0.36%、Si:0.20%~0.35%、Mn:0.65%~0.85%、P≤0.015%、S≤0.010%、Cr:0.95%~1.15%、Mo:0.17%~0.24%、Cu≤0.15%、Ni≤0.20%,残余元素:Nb≤0.010%、Ti≤0.010%、B≤0.005%,且V+Nb+Ti+B+Zr≤0.15%;As≤0.015%,Sn≤0.010%,As+Sn+Pb+Sb+Bi≤0.045%,余量为Fe;
其中,成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82。
所述的炼制方法包括转炉冶炼、LF炉精炼、RH精炼以及φ350mm断面的34CrMo圆管钢坯连铸几个步骤,
其中,在所述φ350mm断面的34CrMo圆管钢坯连铸时,结晶器电磁搅拌参数为搅拌电流300~400A,2~4Hz;凝固末端电磁搅拌参数为搅拌电流150~300A,频率6.0~8.0Hz;过热度控制在20~40℃;拉速控制在0.75~0.90m/min;二冷比水量控制在0.21~0.29L/kg钢。
其中,在转炉冶炼时,转炉终点碳按照≥0.05%进行控制,终点磷≤0.010%,终点温度≥1670~1690℃控制,出钢挡渣,控制渣厚在80mm以内。
这样,通过合理调整构成本申请所述34CrMo圆管钢坯的合金成分的构成结构,并采用本申请提供的上述炼制方法,便可以有效的保证成品34CrMo圆管钢坯内部的晶像结构组织朝我们需要的方便发展,保证其中的中心疏松质量达到我们需要的等级和占比要求,使成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82,从而达到有效提高铸坯凝固组织均匀性的目的,进而提高产品的使用性,尽量避免产品钢管在使用过程中出现脆断的状况。
通常情况下,连铸工艺过程中铸坯凝固组织从铸坯表面向中心呈现“激冷层细晶区、柱状晶区、中心等轴晶区”的结晶器组织区域。为改善铸坯疏松、提高铸坯中心致密度,目前冶金行业涌现出多种工艺技术,其中改善铸坯中心疏松的方法就有电磁搅拌技术及凝固末端压下技术,而对于圆坯,为保证铸坯外形尺寸规整需求,不使用凝固末端压下技术。因此,电磁搅拌是目前使用效果较为明显技术手段之一。
本发明技术提供一种提高φ350mm断面生产较大规格34CrMo圆管坯中心疏松控制的方法。本技术发明的关键在于通过“结晶器电磁搅拌+凝固末端电磁搅拌”组合式电磁搅拌的方法实现对铸坯中心疏松趋势严重的较大规格34CrMo圆管坯中心疏松进行控制,缩小中心疏松区域范围、提高铸坯低倍评级质量水平及铸坯致密度具体值。其作用机理为:结晶器电磁搅拌通过磁场产生电磁力矩,改变结晶器内部钢液流场、温度场分布情况,促进结晶器内钢液成分、温度均匀化,减弱凝固传热方向性,促进坯壳均匀生长;进一步地,凝固末端电磁搅拌通过强制驱动糊状区钢液的流动,对柱状晶组织冲刷熔断,提高等轴晶形核率,抑制柱状晶生长,提高铸坯等轴晶率,最终实现铸坯中心均匀冷却凝固,实现疏松控制;但是,凝固末端电磁搅拌强度过强则容易造成枝晶尖端冲刷严重,导致低熔点强流动性的低溶质浓度钢液呈环形聚集,形成白亮带;再者,合理的过热度及拉速匹配控制是对铸坯凝固传热控制的关键,即铸坯中心质量控制的关键。
本发明技术所要提供的一种φ350mm断面生产较大规格34CrMo管坯钢的工艺流程为转炉冶炼→LF炉精炼→RH精炼→φ350mm断面连铸,本发明关键点在于连铸环节的控制,而冶炼环节主要在于温度及成分的控制,下面对其进行相应介绍:
第一步:转炉冶炼
转炉终点碳按照≥0.05%进行控制,终点磷≤0.010%,终点温度≥1670~1690℃控制,出钢挡渣,控制渣厚在80mm以内。
第二步:LF炉精炼钢水
LF精炼全程吹氩搅拌,氩气流量以钢液微微波动为宜,严禁出现大翻现象。LF出站目标[S]≤0.008%,且[P]+[S]≤0.020%;出站Als按照0.040%~0.050%控制,精炼结束后吹氩≥5min,出站温度按1600~1620℃控制。
第三步:RH精炼
RH精炼要求氩气流量按1100~1400NL/min控制,真空度<3mbar的处理时间≥10min,真空处理结束后吹氩≥5min,出站温度控制在1560~1580℃控制。
第四步:连铸钢水
连铸环节为本发明控制关键点,而铸坯中心疏松控制的重要关键技术参数为:组合电磁搅拌工艺参数要求设置——结晶器电磁搅拌参数为搅拌电流300~400A,2~4Hz;凝固末端电磁搅拌参数为搅拌电流150~300A,频率6.0~8.0Hz;过热度控制在20~40℃;拉速控制在0.75~0.90m/min;二冷比水量控制在0.21~0.29/kg钢。
而对于结晶器出口处形成一定厚度坯壳的结晶器冷却则控制在2400~2600L/min;
下面结合实施例进一步说明本发明:
实施例1
某炼钢厂采用120t转炉冶炼→LF炉精炼→RH精炼→四机四流铸机φ350mm断面连铸生产34CrMo圆管坯。转炉吹炼结束时,终点碳为0.08%进行控制,终点磷为0.008%,终点温度控制在1670℃,钢包渣厚控制为71mm。
钢水到达LF精炼炉处,进行吹氩钢液微微波动,未出现大翻现象,出站Als控制为0.040%,精炼结束后对钢液进行软吹氩,吹氩时间为6min,LF处理结束后,定温为1600℃,LF出站[S]为0.005%,[S]+[P]为0.017%。
钢水到站后,RH精炼吹氩氩气流量为1235NL/min控制,真空度<3mbar的处理时间12min,真空处理结束后吹氩7min,出站温度控制在1560℃。
RH真空处理结束后调运至四机四流铸机φ350mm断面进行钢液浇铸,与本发明要求相关的关键技术参数实际控制为:结晶器电磁搅拌:搅拌电流300A,搅拌频率2.0Hz;凝固末端电磁搅拌:搅拌电流230A,搅拌频率6.0Hz;钢液实际连铸过程过热度控制在20~28℃;拉速为0.9m/min;结晶器冷却控制在2400L/min;二冷比水量控制在0.240/kg钢。
上述技术发明稳定运用后,铸坯质量得到良好控制,铸坯疏松低倍检测结果为:铸坯疏松度0.5~1.0级,疏松区域面积比例25.0%,铸坯金属原位分析致密度检测,中心区域为0.82。
实施例2
某炼钢厂采用120t转炉冶炼→LF炉精炼→RH精炼→四机四流铸机φ350mm断面连铸生产34CrMo圆管坯。转炉吹炼结束时,终点碳为0.06%进行控制,终点磷为0.010%,终点温度控制在1690℃,钢包渣厚控制为62mm。
钢水到达LF精炼炉处,进行吹氩钢液微微波动,未出现大翻现象,出站Als控制为0.043%,精炼结束后对钢液进行软吹氩,吹氩时间为6.5min,LF处理结束后,定温为1613℃,LF出站[S]为0.006%,[S]+[P]为0.015%。
钢水到站后,RH精炼吹氩氩气流量为1400NL/min控制,真空度<3mbar的处理时间11.6min,真空处理结束后吹氩5.3min,出站温度控制在1580℃。
RH真空处理结束后调运至四机四流铸机φ350mm断面进行钢液浇铸,与本发明要求相关的关键技术参数实际控制为:结晶器电磁搅拌:搅拌电流400A,搅拌频率3.0Hz;凝固末端电磁搅拌:搅拌电流300A,搅拌频率7.2Hz;钢液实际连铸过程过热度控制在29~40℃;拉速为0.90m/min;结晶器冷却控制在2600L/min;二冷比水量控制在0.29/kg钢。
上述技术发明稳定运用后,铸坯质量得到良好控制,铸坯疏松低倍检测结果为:铸坯疏松度0.5~1.0级,疏松区域面积比例24.8%,铸坯金属原位分析致密度检测,中心区域为0.84。
实施例3
某炼钢厂采用120t转炉冶炼→LF炉精炼→RH精炼→四机四流铸机φ350mm断面连铸生产34CrMo圆管坯。转炉吹炼结束时,终点碳为0.10%进行控制,终点磷为0.007%,终点温度控制在1674℃,钢包渣厚控制为80mm。
钢水到达LF精炼炉处,进行吹氩钢液微微波动,未出现大翻现象,出站Als控制为0.050%,精炼结束后对钢液进行软吹氩,吹氩时间为6.2min,LF处理结束后,定温为1620℃,LF出站[S]为0.007%,[S]+[P]为0.019%。
钢水到站后,RH精炼吹氩氩气流量为1100NL/min控制,真空度<3mbar的处理时间11min,真空处理结束后吹氩5.5min出站温度控制在1571℃。
RH真空处理结束后调运至四机四流铸机φ350mm断面进行钢液浇铸,与本发明要求相关的关键技术参数实际控制为:结晶器电磁搅拌:搅拌电流355A,搅拌频率2.0Hz;凝固末端电磁搅拌:搅拌电流150A,搅拌频率8.0Hz;钢液实际连铸过程过热度控制在21~32℃;拉速为0.82m/min;结晶器冷却控制在2550L/min;二冷比水量控制在0.21/kg钢。
上述技术发明稳定运用后,铸坯质量得到良好控制,铸坯疏松低倍检测结果为:铸坯疏松度0.5~1.0级,疏松区域面积比例25.2%,铸坯金属原位分析致密度检测,中心区域为0.81。
上述实施例说明采用本发明技术生产的φ350mm断面34CrMo圆管坯铸坯质量得到了有效控制,特别是铸坯中心疏松缺陷的控制,酸洗低倍中心疏松评级全≤1.0级,中心疏松区域面积比例≤25.2%,疏松区域最大长度为142mm,对铸坯中心位置区域采用金属原位分析仪进行致密度检测,均控制在0.81以上。

Claims (3)

1.一种350㎜直径的34CrMo圆管钢坯,其特征在于:所述的34CrMo圆管钢坯为包括下述重量份组的圆管钢坯料,
所述的重份组分包括C:0.31%~0.36%、Si:0.20%~0.35%、Mn:0.65%~0.85%、P≤0.015%、S≤0.010%、Cr:0.95%~1.15%、Mo:0.17%~0.24%、Cu≤0.15%、Ni≤0.20%,残余元素:Nb≤0.010%、Ti≤0.010%、B≤0.005%,且V+Nb+Ti+B+Zr≤0.15%;As≤0.015%,Sn≤0.010%,As+Sn+Pb+Sb+Bi≤0.045%,余量为Fe;
其中,成品34CrMo圆管钢坯的疏松度为0.5~1.0级,疏松区域面积比例24.8%~25.0%,金属原位分析致密度的中心区域为0.81~0.82。
2.一种用于权利要求1所述34CrMo圆管钢坯的炼制方法,其特征在于:所述的炼制方法包括转炉冶炼、LF炉精炼、RH精炼以及φ350mm断面的34CrMo圆管钢坯连铸几个步骤,
其中,在所述φ350mm断面的34CrMo圆管钢坯连铸时,结晶器电磁搅拌参数为搅拌电流300~400A,2~4Hz;凝固末端电磁搅拌参数为搅拌电流150~300A,频率6.0~8.0Hz;过热度控制在20~40℃;拉速控制在0.75~0.90m/min;二冷比水量控制在0.21~0.29L/kg
3.根据权利要求2所述的炼制方法,其特征在于:在转炉冶炼时,转炉终点碳按照≥0.05%进行控制,终点磷≤0.010%,终点温度≥1670~1690℃控制,出钢挡渣,控制渣厚在80mm以内。
CN201610169218.9A 2016-03-23 2016-03-23 350㎜直径的34CrMo圆管钢坯及其炼制方法 Active CN105772665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610169218.9A CN105772665B (zh) 2016-03-23 2016-03-23 350㎜直径的34CrMo圆管钢坯及其炼制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610169218.9A CN105772665B (zh) 2016-03-23 2016-03-23 350㎜直径的34CrMo圆管钢坯及其炼制方法

Publications (2)

Publication Number Publication Date
CN105772665A true CN105772665A (zh) 2016-07-20
CN105772665B CN105772665B (zh) 2018-03-16

Family

ID=56391067

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610169218.9A Active CN105772665B (zh) 2016-03-23 2016-03-23 350㎜直径的34CrMo圆管钢坯及其炼制方法

Country Status (1)

Country Link
CN (1) CN105772665B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106552910A (zh) * 2016-12-05 2017-04-05 东北特钢集团北满特殊钢有限责任公司 一种降低风电中碳钢连铸圆坯碳偏析的连铸工艺
CN108687317A (zh) * 2018-06-29 2018-10-23 攀钢集团攀枝花钢铁研究院有限公司 大方坯连铸生产42CrMoH钢的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260230A (en) * 1975-11-13 1977-05-18 Nippon Steel Corp Method of continuous casting for niicr stainless steel
JPS57152445A (en) * 1981-03-13 1982-09-20 Sumitomo Metal Ind Ltd Nonmagnetic roll and its manufacture
CN101012525A (zh) * 2007-02-02 2007-08-08 攀枝花钢铁(集团)公司 转炉连铸工艺生产低氧高碳铬轴承钢的方法
CN101508011A (zh) * 2009-03-31 2009-08-19 攀钢集团研究院有限公司 防止中碳锰钢铸坯表面纵裂的生产方法
CN104233114A (zh) * 2014-07-29 2014-12-24 天津市精成伟业机器制造有限公司 一种360MPa以上钢级非调质海洋工程结构管生产工艺
CN104259415A (zh) * 2014-10-23 2015-01-07 山东钢铁股份有限公司 一种连铸圆坯的连铸方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260230A (en) * 1975-11-13 1977-05-18 Nippon Steel Corp Method of continuous casting for niicr stainless steel
JPS57152445A (en) * 1981-03-13 1982-09-20 Sumitomo Metal Ind Ltd Nonmagnetic roll and its manufacture
CN101012525A (zh) * 2007-02-02 2007-08-08 攀枝花钢铁(集团)公司 转炉连铸工艺生产低氧高碳铬轴承钢的方法
CN101508011A (zh) * 2009-03-31 2009-08-19 攀钢集团研究院有限公司 防止中碳锰钢铸坯表面纵裂的生产方法
CN104233114A (zh) * 2014-07-29 2014-12-24 天津市精成伟业机器制造有限公司 一种360MPa以上钢级非调质海洋工程结构管生产工艺
CN104259415A (zh) * 2014-10-23 2015-01-07 山东钢铁股份有限公司 一种连铸圆坯的连铸方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
翟春海: "34CrMo4钢冲压气瓶的成形工艺优化", 《中国优秀硕士学位论文全文数据库(工程科技1辑)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106552910A (zh) * 2016-12-05 2017-04-05 东北特钢集团北满特殊钢有限责任公司 一种降低风电中碳钢连铸圆坯碳偏析的连铸工艺
CN106552910B (zh) * 2016-12-05 2018-07-17 建龙北满特殊钢有限责任公司 一种降低风电中碳钢连铸圆坯碳偏析的连铸工艺
CN108687317A (zh) * 2018-06-29 2018-10-23 攀钢集团攀枝花钢铁研究院有限公司 大方坯连铸生产42CrMoH钢的方法

Also Published As

Publication number Publication date
CN105772665B (zh) 2018-03-16

Similar Documents

Publication Publication Date Title
CN105803152B (zh) 30CrMo圆管坯钢铸坯的中心疏松控制方法
CN111101065B (zh) 一种高强度耐腐蚀耐高温焊丝钢及其生产方法
CN105568122B (zh) φ280mm的30CrMo圆管坯中心偏析控制方法
CN105458205B (zh) 高镍钢Gr.8连铸圆坯的生产方法
CN105537549B (zh) ‑100℃低温无缝钢管钢连铸圆坯的生产方法
CN105586531B (zh) 一种可有效控制37Mn圆管坯钢铸坯质量的生产方法
CN105803150B (zh) φ280mm的铬钼系列圆管坯铸坯质量控制方法
CN111945053A (zh) 复合变质处理高速钢轧辊制备方法
CN105772666B (zh) 30CrMo圆管坯钢铸坯的中心偏析控制方法
CN113385647A (zh) 一种高碳高锰钢立弯式板坯连铸方法
CN105803149B (zh) φ280mm的35CrMo圆管坯等轴晶率控制方法
CN105695659B (zh) φ280mm的37Mn圆管坯铸坯质量控制方法
CN111715858A (zh) 一种实现低过热度连续铸造的生产方法
CN105624540A (zh) 30CrMo圆管坯钢铸坯的等轴晶率控制方法
CN110331333B (zh) X80管线用大直径无缝钢管的管坯及其生产方法
CN105772665B (zh) 350㎜直径的34CrMo圆管钢坯及其炼制方法
CN105568166B (zh) 350㎜直径的34CrMo圆管钢坯及其炼铸方法
CN108705050A (zh) 大方坯连铸生产34CrMo4氧气瓶钢的方法
CN102019389B (zh) P91钢圆坯连铸方法
CN105779869A (zh) 30Mn圆管坯钢铸坯内部质量控制的方法
CN105603302A (zh) 350mm直径的34CrMo圆管钢坯及其冶炼方法
CN105603301A (zh) 30CrMo圆管坯钢铸坯内部质量控制方法
CN103031488B (zh) 一种热轧钢制造方法及热轧钢
CN109439840A (zh) 一种小方坯连铸机生产高锰钢的方法
CN105803151B (zh) φ280mm的35CrMo圆管坯中心疏松控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant