CN105760700A - Adaptive fixed-point IVA algorithm applicable to analysis on multi-subject complex fMRI data - Google Patents
Adaptive fixed-point IVA algorithm applicable to analysis on multi-subject complex fMRI data Download PDFInfo
- Publication number
- CN105760700A CN105760700A CN201610165248.2A CN201610165248A CN105760700A CN 105760700 A CN105760700 A CN 105760700A CN 201610165248 A CN201610165248 A CN 201610165248A CN 105760700 A CN105760700 A CN 105760700A
- Authority
- CN
- China
- Prior art keywords
- complex
- fmri data
- beta
- scv
- subject
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002599 functional magnetic resonance imaging Methods 0.000 title claims abstract description 58
- 230000003044 adaptive effect Effects 0.000 title claims abstract description 9
- 238000004458 analytical method Methods 0.000 title abstract description 11
- 238000009826 distribution Methods 0.000 claims abstract description 22
- 239000011159 matrix material Substances 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000007405 data analysis Methods 0.000 claims abstract description 10
- 238000007476 Maximum Likelihood Methods 0.000 claims abstract description 7
- 230000008569 process Effects 0.000 claims abstract description 3
- 210000004556 brain Anatomy 0.000 claims description 9
- 230000002087 whitening effect Effects 0.000 claims description 6
- 230000006835 compression Effects 0.000 claims description 3
- 238000007906 compression Methods 0.000 claims description 3
- 230000021615 conjugation Effects 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 230000006870 function Effects 0.000 abstract description 22
- 230000003925 brain function Effects 0.000 abstract description 6
- 208000014644 Brain disease Diseases 0.000 abstract description 2
- 238000003745 diagnosis Methods 0.000 abstract description 2
- 238000012880 independent component analysis Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 2
- 125000002015 acyclic group Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 230000008309 brain mechanism Effects 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004886 head movement Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
一种适于多被试复数fMRI数据分析的自适应定点IVA算法,属于生物医学信号处理领域。采用基于多维广义高斯分布(MGGD)的非线性函数估计复数fMRI数据的源向量成分(SCV)分布;采用最大似然法自适应地估计MGGD的形状参数,与变化SCV分布自动匹配;在SCV主导子空间更新基于MGGD的非线性函数,实现对复数fMRI数据的消噪;在算法更新过程中加入输入数据的伪协方差阵,直接利用复数fMRI数据的非环形特性,进一步提高IVA分析复数fMRI数据的针对性。本发明能够有效分析高噪声水平但脑功能信息最为全面的多被试复数fMRI数据,在被试间差异性大且信噪比低的不利情况下,能为脑功能研究和脑疾病诊断提供更好的依据。
An adaptive fixed-point IVA algorithm suitable for multi-subject complex fMRI data analysis belongs to the field of biomedical signal processing. Using nonlinear functions based on multidimensional generalized Gaussian distribution (MGGD) to estimate the source vector component (SCV) distribution of complex fMRI data; using the maximum likelihood method to adaptively estimate the shape parameters of MGGD, automatically matching with the changing SCV distribution; in SCV-dominated The subspace update is based on the nonlinear function of MGGD to realize the denoising of the complex fMRI data; the pseudo-covariance matrix of the input data is added in the algorithm update process, and the non-circular characteristics of the complex fMRI data are directly used to further improve the IVA analysis of the complex fMRI data pertinence. The invention can effectively analyze complex fMRI data of multiple subjects with high noise level but the most comprehensive brain function information, and can provide more information for brain function research and brain disease diagnosis under the unfavorable conditions of large differences among subjects and low signal-to-noise ratio good basis.
Description
技术领域technical field
本发明涉及生物医学信号处理领域,特别是涉及一种多被试复数功能磁共振成像(functionalmagneticresonanceimaging,fMRI)数据的分析方法。The invention relates to the field of biomedical signal processing, in particular to an analysis method for multi-subject complex functional magnetic resonance imaging (functionalmagneticresonanceimaging, fMRI) data.
背景技术Background technique
fMRI是目前脑科学研究不可或缺的强有力工具。通过对fMRI数据的分析,人们能更全面和更深层次地揭示脑功能和脑机理。原始采集到的fMRI数据是复数,包括幅值数据和相位数据。其中,相位数据的噪声比较大,导致复数fMRI数据的噪声比幅值fMRI数据大。为此,人们在大多数fMRI研究中直接丢弃相位fMRI数据,而只进行幅值fMRI数据分析。然而,越来越多的研究表明,相位数据包含着很多独特而有生理意义的信息,如功能激活期间的血氧化水平、大小血管的影响、不同组织类型的标识,等等。因此,对复数fMRI数据进行分析有助于将脑科学研究推向深入。fMRI is an indispensable and powerful tool for current brain science research. Through the analysis of fMRI data, people can more comprehensively and deeply reveal brain function and brain mechanism. Raw acquired fMRI data is complex, including magnitude data and phase data. Among them, the noise of the phase data is relatively large, causing the noise of the complex fMRI data to be larger than that of the amplitude fMRI data. For this reason, phase fMRI data are discarded directly in most fMRI studies, and only magnitude fMRI data analysis is performed. However, more and more studies have shown that phase data contains a lot of unique and physiologically meaningful information, such as blood oxygenation levels during functional activation, the influence of large and small blood vessels, identification of different tissue types, and so on. Therefore, the analysis of complex fMRI data is helpful to advance the research of brain science.
独立向量分析(independentvectoranalysis,IVA)是一种联合独立成分分析(independentcomponentanalysis,ICA)方法,能解决单ICA方法在多被试fMRI数据分析中的顺序模糊问题。通过IVA算法分析,可以从多被试fMRI数据中获取各被试的多个(通常20-50个)脑空间激活区(spatialmap,SM)成分及其相应的时间过程(timecourse,TC)成分,从而获得各被试空时响应的差异信息,为后续脑功能研究和临床诊断提供重要依据。Independent vector analysis (IVA) is a joint independent component analysis (ICA) method, which can solve the order ambiguity problem of single ICA method in multi-subject fMRI data analysis. Through the analysis of the IVA algorithm, multiple (usually 20-50) brain spatial activation area (spatial map, SM) components and their corresponding time course (time course, TC) components of each subject can be obtained from the fMRI data of multiple subjects. In this way, the difference information of the space-time response of each subject can be obtained, which can provide an important basis for the follow-up brain function research and clinical diagnosis.
IVA通过最小化源向量成分(sourcevectorcomponent,SCV,以fMRI数据分析为例,SCV包含了各被试相同的SM成分)之间的互信息,同时最大化SCV内部成分的相关性来实现SM信号分离。IVA算法通常选取多维概率密度函数或者非线性函数来实现SCV概率密度分布的估计。目前,IVA有实数算法和复数算法。其中,实数IVA算法已用于多被试幅值fMRI数据分析;复数IVA算法已用于语音频域盲分离,但尚未应用到多被试复数fMRI数据分析中,主要问题有三:IVA achieves SM signal separation by minimizing the mutual information between source vector components (source vector component, SCV, taking fMRI data analysis as an example, SCV contains the same SM components of each subject), while maximizing the correlation of SCV internal components . IVA algorithm usually selects multi-dimensional probability density function or nonlinear function to realize the estimation of SCV probability density distribution. Currently, IVA has real arithmetic and complex arithmetic. Among them, the real IVA algorithm has been used in the analysis of multi-subject amplitude fMRI data; the complex IVA algorithm has been used in the blind separation of speech and audio domains, but it has not been applied to the multi-subject complex fMRI data analysis. There are three main problems:
第一,复数fMRI数据噪声大。由于缺乏消噪措施,现有复数IVA算法无法对多被试复数fMRI数据进行直接有效的分析。First, complex fMRI data are noisy. Due to the lack of denoising measures, the existing complex IVA algorithm cannot perform direct and effective analysis on multi-subject complex fMRI data.
第二,多被试复数fMRI数据的SCV分布有别于频域语音。其结果是,现有复数IVA算法中的多维概率密度函数或者非线性函数只适合于语音信号,不适合多被试复数fMRI数据。Second, the SCV distribution of multi-subject complex fMRI data differs from that of frequency-domain speech. As a result, the multidimensional probability density function or nonlinear function in the existing complex IVA algorithm is only suitable for speech signals, not suitable for multi-subject complex fMRI data.
第三,多被试复数fMRI数据的SCV分布差异大。其原因在于,复数fMRI数据的SCV成分种类繁多,包括任务相关成分、瞬时任务相关成分、默认网络成分、听觉成分、视觉成分、运动成分、扫描仪噪声成分、呼吸噪声成分、头动噪声成分等几十种。在这种情况下,采用固定式多维概率密度函数或非线性函数已不能准确地估计各SCV成分的分布。Third, the SCV distributions of multi-subject complex fMRI data varied widely. The reason for this is that complex fMRI data have a wide variety of SCV components, including task-related components, instantaneous task-related components, default network components, auditory components, visual components, motion components, scanner noise components, breathing noise components, head movement noise components, etc. Dozens of them. In this case, the distribution of each SCV component cannot be accurately estimated by using a fixed multidimensional probability density function or a nonlinear function.
发明内容Contents of the invention
本发明的目的在于,提供一种适于多被试复数fMRI数据分析的自适应定点IVA算法,通过引入fMRI数据消噪、复数fMRI数据的非环形特性,以及自适应地学习SCV分布,解决上述三方面问题,在多被试复数fMRI数据的IVA分析中取得显著优于现有算法的结果。The object of the present invention is to provide an adaptive fixed-point IVA algorithm suitable for multi-subject complex fMRI data analysis, by introducing fMRI data denoising, non-circular characteristics of complex fMRI data, and adaptively learning SCV distribution to solve the above-mentioned problem. Three aspects of the problem, in the IVA analysis of multi-subject complex fMRI data, the results are significantly better than the existing algorithms.
本发明的技术方案是,采用基于多维广义高斯分布(multivariategeneralizedGaussiandistribution,MGGD)的非线性函数估计复数fMRI数据的SCV分布;采用最大似然估计(maximumlikelihoodestimation,MLE)方法自适应地估计MGGD的形状参数,从而与不断变化的SCV分布自动匹配;在SCV主导子空间更新基于MGGD的非线性函数,实现对复数fMRI数据的消噪;在算法更新过程中加入输入数据的伪协方差阵,以直接利用复数fMRI数据的非环形特性,进一步提高IVA对复数fMRI数据分析的针对性。具体实现步骤如下:The technical solution of the present invention is to adopt a non-linear function based on multivariate generalized Gaussian distribution (MGGD) to estimate the SCV distribution of complex fMRI data; adopt the maximum likelihood estimation (maximumlikelihoodestimation, MLE) method to adaptively estimate the shape parameter of MGGD, In order to automatically match with the changing SCV distribution; update the nonlinear function based on MGGD in the SCV dominant subspace to realize the denoising of complex fMRI data; add the pseudo-covariance matrix of the input data in the algorithm update process to directly use the complex number The acyclic nature of fMRI data further improves the pertinence of IVA for complex fMRI data analysis. The specific implementation steps are as follows:
第一步:输入多被试复数fMRI数据k=1,…,K。其中K表示被试数目;J表示时间维的全脑扫描次数;M表示空间维的脑内体素数目。Step 1: Input multi-subject complex fMRI data k=1,...,K. Among them, K represents the number of subjects; J represents the number of whole brain scans in the time dimension; M represents the number of voxels in the brain in the space dimension.
第二步:对各被试复数fMRI数据X(k)分别进行PCA压缩和白化。设各被试的SM和TC的成分数为N。将被试k的复数fMRI数据X(k)压缩并白化为 为压缩阵,N<J,将时间维由J降为N,为白化阵,使得的方差为1。The second step: perform PCA compression and whitening on the complex fMRI data X (k) of each subject. Let N be the number of SM and TC components of each subject. Compress and whiten the complex fMRI data X (k) of subject k as As a compressed matrix, N<J, reduce the time dimension from J to N, is a whitening matrix, such that has a variance of 1.
第三步:初始化。随机初始化解混矩阵k=1,…,K,作用于计算得到第n个SCV成分的初始值 是W(k)的第n列,n=1,…,N,是的第m列,m=1,…,M,上标T表示转置,上标H表示共轭转置。为简单起见,以下忽略m,将yn(m)、和x(k)(m)简写为yn、和x(k)。利用式(1)计算自适应定点IVA算法的代价函数初始值 The third step: initialization. Randomly initialize the unmixing matrix k=1,...,K, acting on Calculate the initial value of the nth SCV component is the nth column of W (k) , n=1,...,N, yes In the mth column of , m=1,...,M, superscript T means transpose, and superscript H means conjugate transpose. For simplicity, m is ignored in the following, and y n (m), and x (k) (m) are abbreviated as y n , and x (k) . Using formula (1) to calculate the initial value of the cost function of the adaptive fixed-point IVA algorithm
其中,E表示数学期望,p(yn)是yn的概率密度函数;G(·)为实值非线性函数;|·|表示取复数的模值。设λn是协方差矩阵的最大特征值,为λn对应的特征向量,令则式(1)中G(·)采用式(2)所示基于MGGD的非线性函数:Among them, E represents mathematical expectation, p(y n ) is the probability density function of y n ; G(·) is a real-valued nonlinear function; |·| represents the modulus value of complex numbers. Let λn be the covariance matrix The largest eigenvalue of , is the eigenvector corresponding to λ n , let Then G( ) in formula (1) adopts the nonlinear function based on MGGD shown in formula (2):
其中,βn为MGGD的形状参数,也是各SCV分布的形状参数,初始化βn=β0,β0可取0.4~0.5。Wherein, β n is the shape parameter of MGGD, and is also the shape parameter of each SCV distribution, the initialization β n = β 0 , β 0 can be 0.4-0.5.
第四步:更新解混矩阵W(k)。对W(k)的每一列n=1,…,N,分别按照式(3)进行更新:Step 4: Update the unmixing matrix W (k) . For each column of W (k) n=1,...,N, update according to formula (3):
上标*表示共轭,G′(·)和G″(·)分别为G(·)的一阶导数和二阶导数:The superscript * indicates conjugation, and G′(·) and G″(·) are the first and second derivatives of G(·) respectively:
W(k)各列全部更新之后,对W(k)再进行式(6)所示去相关操作:After all the columns of W (k) are updated, the de-correlation operation shown in formula (6) is performed on W (k) :
W(k)←(W(k)(W(k))H)-12W(k)(6)W (k) ←(W (k) (W (k) ) H ) -12 W (k) (6)
第五步:采用基于Newton-Raphson优化的最大似然估计方法,估计并更新各SCV分布的形状参数βn:Step 5: Estimate and update the shape parameter β n of each SCV distribution by using the maximum likelihood estimation method based on Newton-Raphson optimization:
其中,βn的最大似然估计为where the maximum likelihood estimate of β n is
式中,Γ(·)为伽马函数;Σn的逆阵为In the formula, Γ(·) is the gamma function; the inverse of Σ n is
第六步:计算本次迭代的代价函数。记本次迭代次数为iter,采用式(1)计算本次迭代的代价函数 Step 6: Calculate the cost function of this iteration. Record the number of iterations this time as iter, and use formula (1) to calculate the cost function of this iteration
第七步:迭代终止条件判断。计算本次迭代代价函数与上次迭代代价函数之差当的绝对值小于预设阈值ε或者达到最大迭代次数itermax时,自适应定点IVA算法结束迭代,否则返回第四步。预设阈值ε的取值范围可设置为10-5~10-6,最大迭代次数itermax可取为500~2000。Step 7: Judging the iteration termination condition. Calculate the cost function of this iteration The difference from the cost function of the previous iteration when When the absolute value of is less than the preset threshold ε or reaches the maximum number of iterations iter max , the adaptive fixed-point IVA algorithm ends the iteration, otherwise returns to the fourth step. The value range of the preset threshold ε can be set as 10 -5 to 10 -6 , and the maximum number of iterations iter max can be set as 500 to 2000.
第八步:计算各被试的N个SM成分和N个TC成分n=1,…,N,k=1,…,K,如下:Step 8: Calculate the N SM components of each subject and N TC components n=1,...,N, k=1,...,K, as follows:
其中, in,
第九步:进行相位校正与SM相位消噪。采用文章“Yu,M.C.,Lin,Q.H.,Kuang,L.D.,Gong,X.F.,Cong,F.,Calhoun,V.D.,2015.ICAoffullcomplex-valuedfMRIdatausingphaseinformationofspatialmaps.JournalofNeuroscienceMethods24,75-91”中的相位校正和消噪方法,首先应用各TC成分进行相位校正,然后去除对应SM成分中相位范围在-π/4~π/4之外的体素,得到相位消噪的SM成分。Step 9: Perform phase correction and SM phase denoising. Using the phase correction and denoising method in the article "Yu, M.C., Lin, Q.H., Kuang, L.D., Gong, X.F., Cong, F., Calhoun, V.D., 2015. ICAoffullcomplex-valued fMRI data using phase information of spatial maps. Journal of Neuroscience Methods 24, 75-91", first Apply each TC component for phase correction, and then remove voxels in the corresponding SM component whose phase range is outside -π/4 to π/4, to obtain the phase-denoised SM component.
第十步:输出各被试相位消噪后的N个SM成分,以及相位校正后的N个TC成分。Step 10: Output N SM components after phase denoising and N TC components after phase correction for each subject.
本发明所达到的效果和益处是,与现有快速定点IVA算法(fastfixed-pointIVA,FIVA)、非环快速定点IVA算法(non-circularfastfixed-pointIVA,non-FIVA)、IVA-GL算法(该算法先用基于多维高斯分布(multivariateGaussiandistribution)的IVA-G算法进行初始化,再用基于多维拉普拉斯分布(multivariateLaplacedistribution)的IVA_L算法进行分离),以及在FIVA和non-FIVA中进一步加入SCV主导子空间消噪的FIVAs和non-FIVAs共五种IVA算法相比,本发明在被试间差异性大且信噪比低的不利情况下呈现出明显优势。其中,在16被试敲击手指任务下采集的复数fMRI数据分析中,以各算法估计的SM成分幅值与先验参考信号的相关系数为性能指标,较之上述五种IVA算法,本发明所估计任务相关成分的性能提高了9%~49%;所估计默认网络DMN(defaultmodenetwork)成分的性能提高了12%~21%。另外,本发明所估计任务相关成分与DMN成分的SCV内部错误率(SCV中出现不一致成分的比例)较之上述五种IVA算法分别降低了40%~65%和71%~84%。因此,本发明能够有效分析高噪声水平但脑功能信息最为全面的多被试复数fMRI数据,进而为脑功能研究和脑疾病诊断提供更好的依据。The effect and the benefit that the present invention reaches are, and existing fast fixed-point IVA algorithm (fastfixed-pointIVA, FIVA), acyclic fast fixed-point IVA algorithm (non-circularfastfixed-pointIVA, non-FIVA), IVA-GL algorithm (the algorithm First use the IVA-G algorithm based on multivariate Gaussian distribution (multivariateGaussiandistribution) for initialization, and then use the IVA_L algorithm based on multivariate Laplace distribution (multivariateLaplacedistribution) for separation), and further add SCV dominant subspace to FIVA and non-FIVA Compared with five IVA algorithms including FIVAs for denoising and non-FIVAs, the present invention has obvious advantages in the unfavorable situation of large differences among subjects and low signal-to-noise ratio. Among them, in the analysis of complex fMRI data collected under the task of knocking fingers by 16 subjects, the correlation coefficient of the SM component amplitude estimated by each algorithm and the prior reference signal is used as the performance index. Compared with the above five IVA algorithms, the present invention The performance of the estimated task-related components is improved by 9%-49%; the performance of the estimated default network DMN (default mode network) component is improved by 12%-21%. In addition, the SCV internal error rate (proportion of inconsistent components in SCV) of task-related components and DMN components estimated by the present invention is respectively reduced by 40%-65% and 71%-84% compared with the above five IVA algorithms. Therefore, the present invention can effectively analyze multi-subject complex fMRI data with high noise level but the most comprehensive brain function information, thereby providing better basis for brain function research and brain disease diagnosis.
附图说明Description of drawings
附图是本发明分析多被试复数fMRI数据的工作流程图。Accompanying drawing is the working flow chart of analyzing multi-subject complex fMRI data in the present invention.
具体实施方式detailed description
下面结合技术方案和附图,详细叙述本发明的一个具体实施例。A specific embodiment of the present invention will be described in detail below in conjunction with the technical scheme and accompanying drawings.
现有16被试在执行敲打手指任务下采集的复数fMRI数据,即K=16。每个被试都进行了J=165次扫描,每次扫描都获得了53×63×46的全脑数据,脑内体素数M=59610。假设各被试的SM和TC的成分数N=50,采用本发明进行多被试复数fMRI数据分析的步骤如附图所示。There are 16 complex fMRI data collected under the finger-tapping task, that is, K=16. Each subject underwent J=165 scans, each scan obtained whole brain data of 53×63×46, and the number of voxels in the brain M=59610. Assuming that the number of SM and TC components of each subject is N=50, the steps of the multi-subject complex fMRI data analysis using the present invention are shown in the accompanying drawings.
第一步:输入多被试复数fMRI数据k=1,…,16。Step 1: Input multi-subject complex fMRI data k=1,...,16.
第二步:对各被试复数fMRI数据X(k)分别进行PCA压缩和白化。将每个被试的复数fMRI数据X(k)压缩并白化为压缩阵白化阵 The second step: perform PCA compression and whitening on the complex fMRI data X (k) of each subject. Compress and whiten the complex fMRI data X (k) for each subject as compressed array whitening array
第三步:初始化。随机初始化解混矩阵k=1,…,16,设置各SCV分布的形状参数βn初始值β0=0.4,n=1,…,50。采用式(1)计算自适应定点IVA算法的代价函数初值 The third step: initialization. Randomly initialize the unmixing matrix k=1,...,16, set the initial value of the shape parameter β n of each SCV distribution β 0 =0.4, n=1,...,50. Using formula (1) to calculate the initial value of the cost function of the adaptive fixed-point IVA algorithm
第四步:更新解混矩阵W(k)。采用式(3)更新解混矩阵W(k)的所有列n=1,…,50;采用式(6)对W(k)进行去相关。Step 4: Update the unmixing matrix W (k) . Use equation (3) to update all columns of the unmixing matrix W (k) n=1,...,50; using formula (6) to decorrelate W (k) .
第五步:采用式(7)更新各SCV分布的形状参数βn,n=1,…,50。Step 5: Use formula (7) to update the shape parameter β n of each SCV distribution, where n=1, . . . , 50.
第六步:采用式(1)计算本次迭代的代价函数 Step 6: Use formula (1) to calculate the cost function of this iteration
第七步:迭代终止条件判断。预设阈值ε=10-6,最大迭代次数itermax=1000,计算本次迭代代价函数与上次迭代代价函数之差当的绝对值小于10-6或者达到最大迭代次数1000时,算法迭代结束,否则返回第四步。Step 7: Judging the iteration termination condition. The preset threshold ε=10- 6 , the maximum number of iterations iter max =1000, calculate the cost function of this iteration The difference from the cost function of the previous iteration when When the absolute value of is less than 10- 6 or reaches the maximum number of iterations 1000, the algorithm iteration ends, otherwise return to the fourth step.
第八步:采用式(10)和式(11)计算各被试的50个SM成分和50个TC成分 Step 8: Calculate the 50 SM components of each subject using formula (10) and formula (11) and 50 TC ingredients
第九步:进行相位校正与SM相位消噪。首先应用各TC成分进行相位校正,然后去除对应SM成分中相位范围在-π/4~π/4之外的体素,得到相位消噪的SM。Step 9: Perform phase correction and SM phase denoising. Firstly, each TC component is applied for phase correction, and then voxels in the corresponding SM component whose phase range is outside -π/4 to π/4 are removed to obtain a phase-denoised SM.
第十步:输出各被试相位消噪后的50个SM成分,以及相位校正后的50个TC成分。Step 10: Output 50 SM components after phase denoising and 50 TC components after phase correction for each subject.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610165248.2A CN105760700B (en) | 2016-03-18 | 2016-03-18 | A kind of adaptive fixed point IVA algorithms for being suitable for more subject plural number fMRI data analyses |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610165248.2A CN105760700B (en) | 2016-03-18 | 2016-03-18 | A kind of adaptive fixed point IVA algorithms for being suitable for more subject plural number fMRI data analyses |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105760700A true CN105760700A (en) | 2016-07-13 |
CN105760700B CN105760700B (en) | 2018-06-08 |
Family
ID=56345579
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610165248.2A Active CN105760700B (en) | 2016-03-18 | 2016-03-18 | A kind of adaptive fixed point IVA algorithms for being suitable for more subject plural number fMRI data analyses |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105760700B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108903942A (en) * | 2018-07-09 | 2018-11-30 | 大连理工大学 | A method of utilizing plural number fMRI spatial source phase identification spatial diversity |
CN109498017A (en) * | 2018-12-11 | 2019-03-22 | 长沙理工大学 | A kind of constant CPD method of quickly shifting suitable for more being tested the analysis of fMRI data |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006024040A (en) * | 2004-07-08 | 2006-01-26 | Nec Corp | Parameter estimation method, system and program in adjacent category logit model |
CN101354433A (en) * | 2007-07-27 | 2009-01-28 | 西门子公司 | Method and device for recording and processing a sequence of time-successive image datasets |
CN101833955A (en) * | 2010-01-22 | 2010-09-15 | 大连理工大学 | A Method of Independent Component Analysis with Complex Number Constraints Based on Negentropy Maximization |
CN102855352A (en) * | 2012-08-17 | 2013-01-02 | 西北工业大学 | Method for clustering videos by using brain imaging space features and bottom layer vision features |
CN103870710A (en) * | 2014-03-30 | 2014-06-18 | 大连理工大学 | Tensor grouping method for multi-subject fMRI data analysis |
CN103961103A (en) * | 2014-05-07 | 2014-08-06 | 大连理工大学 | Method for performing phase correction on ICA estimation components of plural fMRI data |
CN103985092A (en) * | 2014-05-07 | 2014-08-13 | 大连理工大学 | Post-processing noise elimination method for performing ICA analysis of plural f MRI data |
CN105069307A (en) * | 2015-08-19 | 2015-11-18 | 大连理工大学 | Multi-subject fMRI data analysis method combining ICA and shift invariant CPD |
-
2016
- 2016-03-18 CN CN201610165248.2A patent/CN105760700B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006024040A (en) * | 2004-07-08 | 2006-01-26 | Nec Corp | Parameter estimation method, system and program in adjacent category logit model |
CN101354433A (en) * | 2007-07-27 | 2009-01-28 | 西门子公司 | Method and device for recording and processing a sequence of time-successive image datasets |
CN101833955A (en) * | 2010-01-22 | 2010-09-15 | 大连理工大学 | A Method of Independent Component Analysis with Complex Number Constraints Based on Negentropy Maximization |
CN102855352A (en) * | 2012-08-17 | 2013-01-02 | 西北工业大学 | Method for clustering videos by using brain imaging space features and bottom layer vision features |
CN103870710A (en) * | 2014-03-30 | 2014-06-18 | 大连理工大学 | Tensor grouping method for multi-subject fMRI data analysis |
CN103961103A (en) * | 2014-05-07 | 2014-08-06 | 大连理工大学 | Method for performing phase correction on ICA estimation components of plural fMRI data |
CN103985092A (en) * | 2014-05-07 | 2014-08-13 | 大连理工大学 | Post-processing noise elimination method for performing ICA analysis of plural f MRI data |
CN105069307A (en) * | 2015-08-19 | 2015-11-18 | 大连理工大学 | Multi-subject fMRI data analysis method combining ICA and shift invariant CPD |
Non-Patent Citations (3)
Title |
---|
TUOMO SIPOLA ET AL ;: "《DIFFUSION MAP FOR CLUSTERING FMRI SPATIAL MAPS EXTRACTED BY INDEPENDENT COMPONENT ANALYSIS》", 《2013 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING》 * |
丛丰裕 等;: "《在线复值独立分量分析算法》", 《上海交通大学学报》 * |
林秋华 等;: "《基于参考独立分量分析的语音增强方法》", 《大连理工大学学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108903942A (en) * | 2018-07-09 | 2018-11-30 | 大连理工大学 | A method of utilizing plural number fMRI spatial source phase identification spatial diversity |
CN109498017A (en) * | 2018-12-11 | 2019-03-22 | 长沙理工大学 | A kind of constant CPD method of quickly shifting suitable for more being tested the analysis of fMRI data |
CN109498017B (en) * | 2018-12-11 | 2022-05-06 | 长沙理工大学 | Fast shift invariant CPD method suitable for multi-test fMRI data analysis |
Also Published As
Publication number | Publication date |
---|---|
CN105760700B (en) | 2018-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Albera et al. | ICA-based EEG denoising: a comparative analysis of fifteen methods | |
Setzer et al. | Infimal convolution regularizations with discrete l1-type functionals | |
Aminghafari et al. | Multivariate denoising using wavelets and principal component analysis | |
Friman et al. | Adaptive analysis of fMRI data | |
Chen et al. | Sieve inference on possibly misspecified semi-nonparametric time series models | |
Chan et al. | Alternating direction method for image inpainting in wavelet domains | |
Zhang | Morphologically constrained ICA for extracting weak temporally correlated signals | |
CN103034778B (en) | Be applicable to the individual brain function network extraction method of how tested brain function data analysis | |
Xu et al. | A fast algorithm for cosine transform based tensor singular value decomposition | |
Phegade et al. | ICA based ECG signal denoising | |
Jansson et al. | Volterra modeling of the Smooth Pursuit System with application to motor symptoms characterization in Parkinson's disease | |
Wu et al. | A fast tensor completion method based on tensor QR decomposition and tensor nuclear norm minimization | |
CN105760700B (en) | A kind of adaptive fixed point IVA algorithms for being suitable for more subject plural number fMRI data analyses | |
CN107967674B (en) | MRI image denoising method based on image block self-similarity prior | |
CN105069307B (en) | A kind of combination independent component analysis and the more subject functional magnetic resonance imaging data analysis methods for moving constant specification Multidimensional decomposition technique | |
CN111325288B (en) | Clustering idea-based multi-view dynamic brain network characteristic dimension reduction method | |
CN105912851B (en) | A method of utilizing PCA and other than ring type characteristic estimating plural number fMRI data model order | |
CN108282424B (en) | Fourth-order tensor joint diagonalization algorithm for four-dataset joint blind source separation | |
Reimherr et al. | Optimal function-on-scalar regression over complex domains | |
Yao et al. | An efficient joint compression and sparsity estimation matching pursuit algorithm for artificial intelligence application | |
CN109124623B (en) | Electroencephalogram signal inter-effect connectivity detection method based on three-dimensional nonlinear partial direct coherent function | |
CN106651770A (en) | Method for reconstructing multispectral super-resolution imaging based on Lapras norm regularization | |
CN106651983A (en) | Magnetic resonance image reconstruction method and apparatus | |
Gao et al. | Aspects of 2D-adaptive Fourier decompositions | |
Tian et al. | Smooth-threshold GEE variable selection for varying coefficient partially linear models with longitudinal data |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |