CN105760695A - Method for predicting hydrogen sulfide output in drainage pipeline - Google Patents
Method for predicting hydrogen sulfide output in drainage pipeline Download PDFInfo
- Publication number
- CN105760695A CN105760695A CN201610136984.5A CN201610136984A CN105760695A CN 105760695 A CN105760695 A CN 105760695A CN 201610136984 A CN201610136984 A CN 201610136984A CN 105760695 A CN105760695 A CN 105760695A
- Authority
- CN
- China
- Prior art keywords
- biofilm
- hydrogen sulfide
- parameters
- module
- water quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 110
- 229910000037 hydrogen sulfide Inorganic materials 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 139
- 239000007789 gas Substances 0.000 claims abstract description 78
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims abstract description 45
- 238000004088 simulation Methods 0.000 claims abstract description 39
- 238000009792 diffusion process Methods 0.000 claims abstract description 34
- 239000010865 sewage Substances 0.000 claims abstract description 27
- 230000008859 change Effects 0.000 claims abstract description 17
- 230000019086 sulfide ion homeostasis Effects 0.000 claims abstract description 15
- 238000005070 sampling Methods 0.000 claims abstract description 12
- 101100436085 Caenorhabditis elegans asm-3 gene Proteins 0.000 claims abstract description 10
- 239000000126 substance Substances 0.000 claims description 62
- 239000010410 layer Substances 0.000 claims description 58
- 238000006243 chemical reaction Methods 0.000 claims description 38
- 239000012071 phase Substances 0.000 claims description 37
- 230000004103 aerobic respiration Effects 0.000 claims description 33
- 230000004099 anaerobic respiration Effects 0.000 claims description 30
- 238000003860 storage Methods 0.000 claims description 25
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 22
- 239000001301 oxygen Substances 0.000 claims description 22
- 229910052760 oxygen Inorganic materials 0.000 claims description 22
- 239000005416 organic matter Substances 0.000 claims description 16
- 239000013618 particulate matter Substances 0.000 claims description 16
- 239000002356 single layer Substances 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 14
- 238000012937 correction Methods 0.000 claims description 13
- 230000000813 microbial effect Effects 0.000 claims description 13
- 241000894006 Bacteria Species 0.000 claims description 12
- 238000005842 biochemical reaction Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 claims description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims description 12
- 230000002779 inactivation Effects 0.000 claims description 12
- 230000009603 aerobic growth Effects 0.000 claims description 11
- 230000009604 anaerobic growth Effects 0.000 claims description 11
- 230000007062 hydrolysis Effects 0.000 claims description 11
- 230000000704 physical effect Effects 0.000 claims description 10
- 230000009471 action Effects 0.000 claims description 8
- 230000012010 growth Effects 0.000 claims description 8
- 238000004299 exfoliation Methods 0.000 claims description 7
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 claims description 5
- 230000001651 autotrophic effect Effects 0.000 claims description 5
- 239000008346 aqueous phase Substances 0.000 claims description 4
- 238000000855 fermentation Methods 0.000 claims description 4
- 230000004151 fermentation Effects 0.000 claims description 4
- 150000007524 organic acids Chemical class 0.000 claims description 4
- 230000003647 oxidation Effects 0.000 claims description 4
- 238000007254 oxidation reaction Methods 0.000 claims description 4
- 238000002161 passivation Methods 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 230000029058 respiratory gaseous exchange Effects 0.000 claims description 3
- 239000002344 surface layer Substances 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 229910002651 NO3 Inorganic materials 0.000 description 9
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 244000005700 microbiome Species 0.000 description 7
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- WHBHBVVOGNECLV-OBQKJFGGSA-N 11-deoxycortisol Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 WHBHBVVOGNECLV-OBQKJFGGSA-N 0.000 description 5
- 230000007797 corrosion Effects 0.000 description 5
- 238000005260 corrosion Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- 230000008512 biological response Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000013178 mathematical model Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 231100000572 poisoning Toxicity 0.000 description 2
- 230000000607 poisoning effect Effects 0.000 description 2
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000013517 stratification Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- XXCLTDOQUREFHZ-UHFFFAOYSA-L C(C)(=O)[O-].[Na+].C(C)(=O)[O-].[Zn+2] Chemical compound C(C)(=O)[O-].[Na+].C(C)(=O)[O-].[Zn+2] XXCLTDOQUREFHZ-UHFFFAOYSA-L 0.000 description 1
- 101100436077 Caenorhabditis elegans asm-1 gene Proteins 0.000 description 1
- 101100436078 Caenorhabditis elegans asm-2 gene Proteins 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 101100204282 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) Asm-1 gene Proteins 0.000 description 1
- 206010029350 Neurotoxicity Diseases 0.000 description 1
- 206010042434 Sudden death Diseases 0.000 description 1
- 206010044221 Toxic encephalopathy Diseases 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 238000005273 aeration Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-M hydrosulfide Chemical compound [SH-] RWSOTUBLDIXVET-UHFFFAOYSA-M 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 230000031852 maintenance of location in cell Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007135 neurotoxicity Effects 0.000 description 1
- 231100000228 neurotoxicity Toxicity 0.000 description 1
- 230000001546 nitrifying effect Effects 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 239000002846 particulate organic matter Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 231100001229 severe poisoning Toxicity 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013076 target substance Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/10—Analysis or design of chemical reactions, syntheses or processes
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Theoretical Computer Science (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Activated Sludge Processes (AREA)
Abstract
本发明公开了排水管道中硫化氢产生量的预测方法,包括:S1、对排水管内的污水进行密集采样特性分析,同时获得该排水管的管道参数;S2、基于ASM3模型,建立水质模块、动态生物膜模块和液?气扩散模块;S3、获取用户输入的预测模型的模拟参数以及生物膜初始值;S4、运行预测模型,获得稳定的生物膜参数;S5、计算获得每隔一段时间后排水管道末端出水的硫化物和硫化氢气体浓度;S6、对预测模型进行校准;S7、采用校准后的预测模型对排水管道中硫化氢的产生量进行实时预测。本发明可以模拟排水管道中的生物动态变化,准确的预测获得硫化氢的产生量,可广泛应用于污染气体的产生预测领域中。
The invention discloses a method for predicting the amount of hydrogen sulfide produced in a drainage pipe, which includes: S1, performing intensive sampling characteristic analysis on the sewage in the drainage pipe, and obtaining the pipeline parameters of the drainage pipe at the same time; S2, based on the ASM3 model, establishing a water quality module, dynamic Biofilm module and liquid-gas diffusion module; S3. Obtain the simulation parameters of the prediction model input by the user and the initial value of the biofilm; S4. Run the prediction model to obtain stable biofilm parameters; S5. Calculate and obtain drainage after a certain period of time The concentration of sulfide and hydrogen sulfide gas in the effluent at the end of the pipeline; S6. Calibrate the prediction model; S7. Use the calibrated prediction model to predict the amount of hydrogen sulfide produced in the drainage pipeline in real time. The invention can simulate the biological dynamic change in the drainage pipeline, accurately predict and obtain the hydrogen sulfide production, and can be widely used in the field of pollution gas production prediction.
Description
技术领域technical field
本发明涉及给排水系统的污染气体产生预测领域,特别是涉及排水管道中硫化氢产生量的预测方法。The invention relates to the field of prediction of pollution gas generation in water supply and drainage systems, in particular to a method for predicting hydrogen sulfide generation in drainage pipes.
背景技术Background technique
名词解释:Glossary:
COD:全称Chemical Oxygen Demand,化学需氧量,是以化学方法测量水样中需要被氧化的还原性物质的量;COD: The full name is Chemical Oxygen Demand, chemical oxygen demand, which is a chemical method to measure the amount of reducing substances that need to be oxidized in water samples;
H2S:硫化氢;H 2 S: hydrogen sulfide;
NH3:氨气;NH 3 : ammonia gas;
CH4:甲烷; CH4 : methane;
SRB:硫酸盐还原菌;SRB: Sulfate Reducing Bacteria;
ASM:活性污泥系列模型(Activated Sludge Models:ASM1,ASM2,ASM2D andASM3);ASM: Activated Sludge Models (Activated Sludge Models: ASM1, ASM2, ASM2D and ASM3);
T:温度;T: temperature;
VFA:挥发性有机酸;VFA: volatile organic acids;
DO:溶解氧;DO: dissolved oxygen;
SO4 2-:硫酸盐;SO 4 2- : Sulfate;
DS:溶解性硫化物;DS: soluble sulfide;
TS:总硫化物;TS: total sulfide;
TCOD:总化学需氧量;TCOD: total chemical oxygen demand;
SCOD:溶解性化学需氧量;SCOD: dissolved chemical oxygen demand;
VSS:挥发性悬浮物;VSS: volatile suspended solids;
NH4-N:氨氮;NH 4 -N: ammonia nitrogen;
NOx-N:硝态氮;NOx-N: nitrate nitrogen;
Q:流量;Q: traffic;
HRT:水力停留时间;HRT: hydraulic retention time;
ASM模型组分相关名词解释:Explanation of terms related to ASM model components:
SO:可溶性组分包括溶解氧;SO: Soluble components include dissolved oxygen ;
SF:易生物降解可溶性有机物;S F : easily biodegradable soluble organic matter;
SI:惰性可溶性有机物;S I : inert soluble organic matter;
SNH:铵盐和氨氮;S NH: ammonium salt and ammonia nitrogen;
N2:分子氮;N 2 : molecular nitrogen;
SNO:硝态氮;S NO : nitrate nitrogen;
SALK:碱度;S ALK : Alkalinity;
SSO4:硫酸盐; SSO4 : sulfate;
SH2S:水中硫化物;S H2S : sulfide in water;
XI:颗粒性惰性有机物;X I : Granular inert organic matter;
XS:慢速生物降解物质;X S : slow biodegradable substances;
XH:异养生物量;X H : heterotrophic biomass;
XSTO:异氧生物的细胞内贮藏产物;X STO : intracellular storage product of heterooxic organisms;
XA:硝化生物;X A : nitrifying organisms;
XTS:悬浮物;X TS : Suspended matter;
XINA:惰化微生物;X INA : Inert microorganisms;
XSRB:硫酸盐还原菌;X SRB : Sulfate-reducing bacteria;
XNR-SOB:反硝化脱硫细菌。X NR-SOB : denitrification desulfurization bacteria.
城市排水管网是城市基础设施必不可少的组成部分。近年来。随着城市的快速发展,排水管网的规模也逐渐增大,然而在污水运输的过程中,在生物化学作用下,一些物质会以有害气态的形式出现,如H2S、NH3、CH4等等。其中,硫化氢H2S作为一种可以导致水质恶化、变黑发臭的恶臭污染物,同时还具有毒性、腐蚀性,对管道维护等等都有威胁。硫化氢的威胁包括:①H2S导致排水管道腐蚀。美国休斯顿渠务署的一项研究表明,该市70%的受损排水管道是由硫化氢腐蚀造成的;而比利时的Flanders,由于硫化氢腐蚀造成的损失达5百万欧元/年,约为该城市每年污水收集处理费用的10%;在我国上海市,硫化氢的腐蚀也是导致排水管道损坏的主因之一。②H2S具有恶臭,逸散到空气中会造成臭味污染。③H2S具有强烈的神经毒性,可致人急性重度中毒并迅速昏迷甚至猝死,在上海、浙江、江苏、广东等沿海地区已多起发生下水道维护工人中毒死亡事件。Urban drainage network is an essential part of urban infrastructure. In recent years. With the rapid development of the city, the scale of the drainage pipe network is gradually increasing. However, in the process of sewage transportation, some substances will appear in the form of harmful gases under the action of biochemistry, such as H 2 S, NH 3 , CH 4 and so on. Among them, hydrogen sulfide H 2 S is a foul-smelling pollutant that can lead to deterioration of water quality, blackening and odor, and is also toxic and corrosive, threatening pipeline maintenance and so on. Threats of hydrogen sulfide include: ① H 2 S leads to corrosion of drainage pipes. A study by the Houston Drainage Services Department in the United States showed that 70% of the city's damaged drainage pipes were caused by hydrogen sulfide corrosion; while in Flanders, Belgium, the loss due to hydrogen sulfide corrosion reached 5 million euros/year, about 10% of the city's annual sewage collection and treatment costs; in Shanghai, my country, hydrogen sulfide corrosion is also one of the main causes of damage to drainage pipes. ②H 2 S has a foul smell, and if it escapes into the air, it will cause odor pollution. ③H 2 S has strong neurotoxicity, which can cause acute severe poisoning and rapid coma or even sudden death. In Shanghai, Zhejiang, Jiangsu, Guangdong and other coastal areas, there have been many poisoning deaths of sewer maintenance workers.
一般来说,城市居民生活污水并不含有硫化物,而排污管内的硫化物是污水在管道运输过程中,由管壁的生物膜内层的SRB产生,并经扩散释放到大气中的。下水道硫化氢的产生是一个复杂过程,它受到温度、有机物浓度、硫酸盐浓度、生物膜结构、多种微生物作用、溶解氧浓度、硝酸盐浓度、水力停留时间、污水流速等等诸多因素的影响。同时,城市排水管网具有很高的复杂性,水质水量具有不稳定性,因此H2S的产生位置、浓度、时间具有很高的不确定性,且呈现明显的日夜波动和季节波动特点。Generally speaking, the domestic sewage of urban residents does not contain sulfide, and the sulfide in the sewage pipe is produced by the SRB in the inner layer of the biofilm on the pipe wall during the pipeline transportation of sewage, and is released into the atmosphere through diffusion. The generation of hydrogen sulfide in the sewer is a complex process, which is affected by many factors such as temperature, organic matter concentration, sulfate concentration, biofilm structure, various microbial actions, dissolved oxygen concentration, nitrate concentration, hydraulic retention time, sewage flow rate, etc. . At the same time, the urban drainage network is very complex, and the water quality and quantity are unstable. Therefore, the location, concentration, and time of H 2 S generation are highly uncertain, and present obvious day-night fluctuations and seasonal fluctuations.
当前对下水道恶臭气态污染物的控制主要采取曝气充氧、投加硝酸盐、氢氧化钠、铁盐等方法,但是由于排水管网中水量、水质波动大,H2S等恶臭气态污染物在不同时间、不同污水管段中的浓度差异很大,这就导致了药剂成本过高或控制效果的低效的现象。At present, the control of odorous gaseous pollutants in sewers mainly adopts aeration and oxygenation, dosing of nitrate, sodium hydroxide, iron salt, etc. The concentration in different sewage pipe sections varies greatly at different times, which leads to high cost of chemicals or low efficiency of control effect.
为了实现下水道硫化氢的定量控制,建立数学模型、预测下水道中硫化氢的产生、排放位置与浓度是关键。对下水道硫化氢的产生量进行预测的相关数学模型,目前主要有丹麦Aalborg大学开发的WATS模型和澳大利亚昆士兰大学开发的SewerX模型,但上述模型存在缺陷,不能模拟下水道生物动态变化,体现不了生物膜对下水道硫化氢产生与转化的重要影响,因此用于硫化氢产排预测多有不便,无法准确地预测获得硫化氢的排放量。In order to realize the quantitative control of hydrogen sulfide in the sewer, it is the key to establish a mathematical model and predict the generation, discharge location and concentration of hydrogen sulfide in the sewer. The relevant mathematical models for predicting the production of hydrogen sulfide in sewers mainly include the WATS model developed by Aalborg University in Denmark and the SewerX model developed by the University of Queensland in Australia. However, the above models have defects and cannot simulate the dynamic changes of sewer organisms and cannot reflect biofilms. It has an important impact on the generation and conversion of hydrogen sulfide in sewers, so it is inconvenient to use it in the prediction of hydrogen sulfide production and discharge, and it is impossible to accurately predict the emission of hydrogen sulfide.
发明内容Contents of the invention
为了解决上述的技术问题,本发明的目的是提供排水管道中硫化氢产生量的预测方法。In order to solve the above-mentioned technical problems, the object of the present invention is to provide a method for predicting the amount of hydrogen sulfide produced in drainage pipes.
本发明解决其技术问题所采用的技术方案是:The technical solution adopted by the present invention to solve its technical problems is:
排水管道中硫化氢产生量的预测方法,包括以下步骤:A method for predicting the amount of hydrogen sulfide produced in a drainage pipeline, comprising the following steps:
S1、对排水管内的污水进行密集采样特性分析,测得实时的进水水质参数和出水水质参数,同时获得该排水管的管道参数;S1. Analyze the characteristics of intensive sampling of the sewage in the drainage pipe, measure the real-time influent water quality parameters and effluent water quality parameters, and obtain the pipeline parameters of the drainage pipe at the same time;
S2、基于ASM3模型,建立水质模块、动态生物膜模块和液-气扩散模块,形成硫化氢产生量的预测模型,并将进水水质水量参数和排水管的管道参数作为该预测模型的输入;S2. Based on the ASM3 model, establish a water quality module, a dynamic biofilm module, and a liquid-gas diffusion module to form a prediction model of hydrogen sulfide production, and use the influent water quality and quantity parameters and the pipeline parameters of the drainage pipe as the input of the prediction model;
S3、获取用户输入的预测模型的模拟参数以及生物膜初始值;S3. Acquire the simulation parameters of the prediction model and the initial value of the biofilm input by the user;
S4、运行预测模型,采用水质模块进行水质参数计算,并采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟,进而在到达管道生物膜稳定期后,获得稳定的生物膜参数;S4. Run the prediction model, use the water quality module to calculate water quality parameters, and use the dynamic biofilm module to calculate the dynamic change of biofilm, simulate physical effects and biochemical effects, and then obtain stable biofilm after reaching the stable period of pipeline biofilm Biofilm parameters;
S5、将管道参数和实时的进水水质水量参数作为预测模型的输入,运行预测模型计算获得气、水和生物膜内物质的浓度,并按设定时间输出每隔一段时间的排水管道末端出水的硫化物和硫化氢气体浓度;S5. Use the pipeline parameters and real-time influent water quality and water quantity parameters as the input of the prediction model, run the prediction model to calculate the concentration of gas, water and biofilm substances, and output the outlet water at the end of the drainage pipe at intervals according to the set time sulfide and hydrogen sulfide gas concentrations;
S6、根据预测获得的每个时刻的硫化氢气体浓度与其对应的出水水质水量参数中的硫化氢气体浓度之间的差值,对预测模型进行校准;S6. Calibrate the prediction model according to the difference between the hydrogen sulfide gas concentration at each moment obtained by prediction and the hydrogen sulfide gas concentration in the corresponding effluent water quality and quantity parameters;
S7、采用校准后的预测模型对排水管道中硫化氢的产生量进行实时预测。S7. Using the calibrated prediction model to predict the amount of hydrogen sulfide produced in the drainage pipeline in real time.
进一步,所述进水水质水量参数和出水水质水量参数均包括pH值、温度以及挥发性有机酸、溶解氧、硫酸盐、溶解性硫化物、总硫化物、总化学需氧量、溶解性化学需氧量、挥发性悬浮物、氨氮、硝态氮、和气相硫化氢气体的浓度,所述排水管的管道参数包括管道流态、管道形状、管长、管径、坡降、粗糙率以及管道流量。Further, the influent water quality and quantity parameters and the effluent water quality and quantity parameters both include pH value, temperature and volatile organic acids, dissolved oxygen, sulfate, dissolved sulfide, total sulfide, total chemical oxygen demand, dissolved chemical Oxygen demand, volatile suspended matter, ammonia nitrogen, nitrate nitrogen, and the concentration of gaseous hydrogen sulfide gas, the pipeline parameters of the drainage pipe include pipeline flow state, pipeline shape, pipe length, pipe diameter, slope, roughness ratio and pipeline flow.
进一步,所述步骤S2中所述水质模块用于计算水相中有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、XH好氧生长、XH厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸以及XA的厌氧呼吸的微生物反应速率,并进行温度校正。Further, the water quality module in the step S2 is used to calculate the hydrolysis of organic matter in the water phase, the aerobic storage of SF , the anaerobic storage of SF, the aerobic growth of X H, the anaerobic growth of X H , the Microbial reaction rates of aerobic respiration, anaerobic respiration of X H , aerobic respiration of X STO , anaerobic respiration of X STO , nitrification, aerobic respiration of X A , and anaerobic respiration of X A , with temperature correction.
进一步,所述步骤S2中动态生物膜模块是通过以下方式建立的:Further, the dynamic biofilm module is established in the following manner in the step S2:
S21、获取初始状态下生物膜的分层数、单层厚度、每个分层中的每类溶解态物质以及每个分层中的每类颗粒态物质后,结合下式进行计算,并不断调整单层厚度、每个分层中的每类溶解态物质以及每个分层中的每类颗粒态物质,直到满足下式后获得动态生物膜模型:S21. After obtaining the number of layers of the biofilm in the initial state, the thickness of a single layer, each type of dissolved substance in each layer, and each type of particulate matter in each layer, calculate it in conjunction with the following formula, and continuously Adjust the monolayer thickness, each type of dissolved substance in each layer, and each type of particulate matter in each layer until the following equation is satisfied to obtain a dynamic biofilm model:
上式中,j表示生物膜的分层数,n表示生物膜的总分层数,z表示生物膜分层深度,△Zj表示生物膜的单层厚度,表示第j分层中第i类颗粒态物质,i、j、z均为正整数,εl表示第j分层中液体的体积分数,表示颗粒态物质在第j分层中所占的体积分数,表示颗粒态物质的COD密度;In the above formula, j represents the number of layers of the biofilm, n represents the total number of layers of the biofilm, z represents the depth of the biofilm layer, △ Z j represents the thickness of a single layer of the biofilm, Indicates the i-th type of granular matter in the j-th layer, i, j, and z are all positive integers, ε l represents the volume fraction of the liquid in the j-th layer, Indicates the volume fraction of granular matter in the jth stratum, Indicates particulate matter COD density;
S22、建立颗粒态物质在生物膜内部的粘附公式、剥落速率公式以及溶解态物质在生物膜内部的扩散公式;S22. Establishing the adhesion formula of the particulate matter inside the biofilm, the exfoliation rate formula and the diffusion formula of the dissolved substance inside the biofilm;
S23、建立生物膜内有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、好氧生长、厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸、XA的厌氧呼吸、SRB生长、SRB衰亡、异养菌失活、XSTO钝化、自养菌失活、SRB失活、硫化物氧化、发酵和复氧的微生物反应式,同时建立硫酸盐与硫化物的反应式。S23. Establish the hydrolysis of organic matter in the biofilm , aerobic storage of SF, anaerobic storage of SF, aerobic growth, anaerobic growth, aerobic respiration of X H , anaerobic respiration of X H , good performance of X STO Oxygen respiration, X STO anaerobic respiration, nitrification, X A aerobic respiration, X A anaerobic respiration, SRB growth, SRB decline, heterotrophic bacteria inactivation, X STO passivation, autotrophic bacteria inactivation, SRB Microbial reaction equations for inactivation, sulfide oxidation, fermentation, and reoxygenation, while establishing the reaction equations for sulfate and sulfide.
进一步,所述步骤S21中生物膜的单层厚度的调整范围为0.5×10-4~1.5×10-4m。Further, the adjustment range of the single layer thickness of the biofilm in the step S21 is 0.5×10 -4 to 1.5×10 -4 m.
进一步,所述液-气扩散模块用于根据亨利定律以及单位换算方法,结合动态生物膜模块计算获得的溶解态硫化氢,计算获得气相中硫化氢气体浓度。Further, the liquid-gas diffusion module is used to calculate and obtain the hydrogen sulfide gas concentration in the gas phase according to Henry's law and the unit conversion method, combined with the dissolved hydrogen sulfide calculated by the dynamic biofilm module.
进一步,所述步骤S7,包括:Further, the step S7 includes:
S71、获取管道参数和实时的进水水质水量参数作为预测模型的输入,同时获得设定的模拟条件参数,进而进行预测模型初始化;S71. Obtain pipeline parameters and real-time influent water quality and quantity parameters as inputs to the prediction model, and obtain set simulation condition parameters at the same time, and then initialize the prediction model;
S72、根据管道参数计算排水管内的水力参数;S72. Calculate the hydraulic parameters in the drainage pipe according to the pipeline parameters;
S73、计算水相中复氧的含量;S73, calculating the content of reoxygenation in the aqueous phase;
S74、采用水质模块计算水相中有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、XH好氧生长、XH厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸以及XA的厌氧呼吸的生物化学反应后获得各物质的反应速率,并进行温度校正;S74. Using the water quality module to calculate the hydrolysis of organic matter in the water phase, the aerobic storage of SF, the anaerobic storage of SF, the aerobic growth of X H , the anaerobic growth of X H , the aerobic respiration of X H , and the anaerobic storage of X H Aerobic respiration, aerobic respiration of X STO , anaerobic respiration of X STO , nitrification, aerobic respiration of X A and anaerobic respiration of X A are obtained after the biochemical reaction of each substance, and temperature correction is performed;
S75、采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟计算后,获得每隔一段时间后排水管道末端出水的硫化物和硫化氢气体浓度。S75. Using the dynamic biofilm module to calculate the dynamic change of the biofilm, simulate the physical action, and simulate the biochemical action to obtain the concentration of sulfide and hydrogen sulfide gas in the outlet water at the end of the drainage pipe after a period of time.
进一步,所述步骤S75,包括:Further, the step S75 includes:
S751、采用动态生物膜模块计算水相中各物质与生物膜表层物质进行粘附、剥落以及扩散的物理作用反应;S751, using the dynamic biofilm module to calculate the physical reaction of the substances in the water phase and the surface layer of the biofilm for adhesion, peeling and diffusion;
S752、计算生物膜中各物质的微生物反应并进行温度校正后,获得硫酸盐与溶解态硫化物的总量;S752. After calculating the microbial reaction of each substance in the biofilm and performing temperature correction, the total amount of sulfate and dissolved sulfide is obtained;
S753、根据亨利定律以及单位换算方法,结合动态生物膜模块计算获得的溶解态硫化氢,计算获得气相中硫化氢气体浓度。S753. According to Henry's law and the unit conversion method, combined with the dissolved hydrogen sulfide calculated by the dynamic biofilm module, calculate and obtain the hydrogen sulfide gas concentration in the gas phase.
本发明的有益效果是:本发明的排水管道中硫化氢产生量的预测方法,包括:S1、对排水管内的污水进行密集采样特性分析,测得实时的进水水质水量参数和出水水质水量参数,同时获得该排水管的管道参数;S2、基于ASM3模型,建立水质模块、动态生物膜模块和液-气扩散模块,形成硫化氢产生量的预测模型,并将进水水质水量参数和排水管的管道参数作为该预测模型的输入;S3、获取用户输入的预测模型的模拟参数以及生物膜初始值;S4、运行预测模型,采用水质模块进行水质参数计算,并采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟,进而在到达管道生物膜稳定期后,获得稳定的生物膜参数;S5、将管道参数和实时的进水水质水量参数作为预测模型的输入,计算获得每隔一段时间后排水管道末端出水的硫化物和硫化氢气体浓度;S6、根据预测获得的每个时刻的硫化氢气体浓度与其对应的出水水质水量参数中的硫化氢气体浓度之间的差值,对预测模型进行校准;S7、采用校准后的预测模型对排水管道中硫化氢的产生量进行实时预测。本方法可以模拟排水管道中的生物动态变化,准确的预测获得硫化氢的产生量,在本方法的基础上,可以实现高效、低成本、准确地控制市政排水管道H2S气体浓度,减少管道腐蚀,延长管道寿命、降低维修管道时的硫化氢中毒风险、避免硫化氢恶臭对居民生活干扰。The beneficial effects of the present invention are: the method for predicting the amount of hydrogen sulfide produced in the drainage pipe of the present invention includes: S1, performing intensive sampling characteristic analysis on the sewage in the drainage pipe, and measuring the real-time parameters of the quality and quantity of the influent water and the parameters of the quality and quantity of the effluent water , and at the same time obtain the pipeline parameters of the drainage pipe; S2. Based on the ASM3 model, establish a water quality module, a dynamic biofilm module and a liquid-gas diffusion module to form a prediction model of hydrogen sulfide production, and combine the influent water quality and quantity parameters with the drainage pipe The pipeline parameters are used as the input of the prediction model; S3. Obtain the simulation parameters of the prediction model input by the user and the initial value of the biofilm; S4. Run the prediction model, use the water quality module to calculate the water quality parameters, and use the dynamic biofilm module to calculate the biofilm Calculation of dynamic changes, physical action simulation and biochemical action simulation, and then after reaching the pipeline biofilm stabilization period, stable biofilm parameters are obtained; S5, the pipeline parameters and real-time influent water quality and water quantity parameters are used as the input of the prediction model, Calculate and obtain the concentration of sulfide and hydrogen sulfide gas at the end of the drainage pipe after a period of time; S6, the hydrogen sulfide gas concentration at each moment obtained according to the prediction and the hydrogen sulfide gas concentration in the corresponding water quality and quantity parameters The difference value is used to calibrate the prediction model; S7, using the calibrated prediction model to perform real-time prediction of the amount of hydrogen sulfide produced in the drainage pipeline. This method can simulate the dynamic changes of organisms in drainage pipes and accurately predict the amount of hydrogen sulfide produced. Corrosion, prolonging the life of pipelines, reducing the risk of hydrogen sulfide poisoning when maintaining pipelines, and avoiding the interference of hydrogen sulfide odor on residents' lives.
附图说明Description of drawings
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
图1是本发明的排水管道中硫化氢产生量的预测方法的一具体实施例的流程示意图;Fig. 1 is the schematic flow sheet of a specific embodiment of the method for predicting hydrogen sulfide production in the drainage pipeline of the present invention;
图2是本发明的一具体实施例中动态生物膜模块的建立过程示意图;Fig. 2 is a schematic diagram of the establishment process of the dynamic biofilm module in a specific embodiment of the present invention;
图3是本发明的一具体实施例中排水管道内的生物化学反应示意图;Fig. 3 is a schematic diagram of the biochemical reaction in the drainage pipeline in a specific embodiment of the present invention;
图4是本发明的一具体实施例中运行预测模型进行硫化氢产生量预测的详细流程图;Fig. 4 is a detailed flow chart of operating the prediction model to carry out hydrogen sulfide production prediction in a specific embodiment of the present invention;
图5是本发明的一具体实施例中预测获得的硫化氢气体浓度与实测值的变化曲线示意图;Fig. 5 is a schematic diagram of the change curve of the predicted hydrogen sulfide gas concentration obtained in a specific embodiment of the present invention and the measured value;
图6是本发明的一具体实施例中预测获得的总硫化物与实测值的变化曲线示意图;Fig. 6 is a schematic diagram of the change curve between the predicted total sulfide and the measured value obtained in a specific embodiment of the present invention;
图7是本发明的一具体实施例中采用预测模型模拟正常情况下的硫化氢排放的变化曲线图;Fig. 7 is a change curve diagram of hydrogen sulfide discharge under normal conditions using a prediction model to simulate a specific embodiment of the present invention;
图8是本发明的一具体实施例中采用预测模型模拟优化方案一情况下的硫化氢排放的变化曲线图;Fig. 8 is a graph showing the variation of hydrogen sulfide emissions in the case of using a predictive model to simulate optimization scheme 1 in a specific embodiment of the present invention;
图9是本发明的一具体实施例中采用预测模型模拟优化方案二情况下的硫化氢排放的变化曲线图;Fig. 9 is a graph showing the change curve of hydrogen sulfide emission under the condition of using the prediction model to simulate the optimization scheme 2 in a specific embodiment of the present invention;
图10是本发明的一具体实施例中采用预测模型模拟优化方案三情况下的硫化氢排放的变化曲线图。Fig. 10 is a graph showing the variation of hydrogen sulfide emission in the case of using the prediction model to simulate the optimization scheme 3 in a specific embodiment of the present invention.
具体实施方式detailed description
本发明提供了一种排水管道中硫化氢产生量的预测方法,包括以下步骤:The invention provides a method for predicting the amount of hydrogen sulfide produced in a drainage pipeline, comprising the following steps:
S1、对排水管内的污水进行密集采样特性分析,测得实时的进水水质参数和出水水质参数,同时获得该排水管的管道参数;S1. Analyze the characteristics of intensive sampling of the sewage in the drainage pipe, measure the real-time influent water quality parameters and effluent water quality parameters, and obtain the pipeline parameters of the drainage pipe at the same time;
S2、基于ASM3模型,建立水质模块、动态生物膜模块和液-气扩散模块,形成硫化氢产生量的预测模型,并将进水水质水量参数和排水管的管道参数作为该预测模型的输入;S2. Based on the ASM3 model, establish a water quality module, a dynamic biofilm module, and a liquid-gas diffusion module to form a prediction model of hydrogen sulfide production, and use the influent water quality and quantity parameters and the pipeline parameters of the drainage pipe as the input of the prediction model;
S3、获取用户输入的预测模型的模拟参数以及生物膜初始值;详细的,其中模拟参数包括:管道分段模拟的步长、分时模拟的步、模拟总时间、取样间隔、取样次数、生物膜稳定期;生物膜初始值包括:生物膜厚度、各类溶解态和颗粒态物质的浓度与比例、生物膜密度;S3. Obtain the simulation parameters of the prediction model input by the user and the initial value of the biofilm; in detail, the simulation parameters include: the step size of the pipeline segment simulation, the step of the time-sharing simulation, the total simulation time, the sampling interval, the number of sampling times, the biological Membrane stable period; the initial value of biofilm includes: biofilm thickness, concentration and proportion of various dissolved and particulate substances, and biofilm density;
S4、运行预测模型,采用水质模块进行水质参数计算,并采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟,进而在到达管道生物膜稳定期后,获得稳定的生物膜参数;S4. Run the prediction model, use the water quality module to calculate water quality parameters, and use the dynamic biofilm module to calculate the dynamic change of biofilm, simulate physical effects and biochemical effects, and then obtain stable biofilm after reaching the stable period of pipeline biofilm Biofilm parameters;
S5、将管道参数和实时的进水水质水量参数作为预测模型的输入,运行预测模型计算获得气、水和生物膜内物质的浓度,并按设定时间输出每隔一段时间的排水管道末端出水的硫化物和硫化氢气体浓度;S5. Use the pipeline parameters and real-time influent water quality and water quantity parameters as the input of the prediction model, run the prediction model to calculate the concentration of gas, water and biofilm substances, and output the outlet water at the end of the drainage pipe at intervals according to the set time sulfide and hydrogen sulfide gas concentrations;
S6、根据预测获得的每个时刻的硫化氢气体浓度与其对应的出水水质水量参数中的硫化氢气体浓度之间的差值,对预测模型进行校准;S6. Calibrate the prediction model according to the difference between the hydrogen sulfide gas concentration at each moment obtained by prediction and the hydrogen sulfide gas concentration in the corresponding effluent water quality and quantity parameters;
S7、采用校准后的预测模型对排水管道中硫化氢的产生量进行实时预测。S7. Using the calibrated prediction model to predict the amount of hydrogen sulfide produced in the drainage pipeline in real time.
进一步作为优选的实施方式,所述进水水质水量参数和出水水质水量参数均包括pH值、温度以及挥发性有机酸、溶解氧、硫酸盐、溶解性硫化物、总硫化物、总化学需氧量、溶解性化学需氧量、挥发性悬浮物、氨氮、硝态氮、和气相硫化氢气体的浓度,所述排水管的管道参数包括管道流态、管道形状、管长、管径、坡降、粗糙率以及管道流量。Further as a preferred embodiment, the influent water quality and water quantity parameters and the effluent water quality and water quantity parameters both include pH value, temperature and volatile organic acid, dissolved oxygen, sulfate, dissolved sulfide, total sulfide, total chemical oxygen demand amount, dissolved chemical oxygen demand, volatile suspended matter, ammonia nitrogen, nitrate nitrogen, and the concentration of gas phase hydrogen sulfide gas, the pipeline parameters of the drainage pipe include pipeline flow state, pipeline shape, pipe length, pipe diameter, slope drop, roughness, and pipe flow.
进一步作为优选的实施方式,所述步骤S2中所述水质模块用于计算水相中有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、XH好氧生长、XH厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸以及XA的厌氧呼吸的微生物反应速率,并进行温度校正。Further as a preferred embodiment, the water quality module in the step S2 is used to calculate the hydrolysis of organic matter in the water phase, the aerobic storage of SF , the anaerobic storage of SF, the aerobic growth of XH , the anaerobic growth of XH growth, aerobic respiration of X H , anaerobic respiration of X H , aerobic respiration of X STO , anaerobic respiration of X STO , nitrification, aerobic respiration of X A , and anaerobic respiration of X A , And perform temperature correction.
进一步作为优选的实施方式,所述步骤S2中动态生物膜模块是通过以下方式建立的:Further as a preferred embodiment, the dynamic biofilm module is established in the following manner in the step S2:
S21、获取初始状态下生物膜的分层数、单层厚度、每个分层中的每类溶解态物质以及每个分层中的每类颗粒态物质后,结合下式进行计算,并不断调整单层厚度、每个分层中的每类溶解态物质以及每个分层中的每类颗粒态物质,直到满足下式后获得动态生物膜模型:S21. After obtaining the number of layers of the biofilm in the initial state, the thickness of a single layer, each type of dissolved substance in each layer, and each type of particulate matter in each layer, calculate it in conjunction with the following formula, and continuously Adjust the monolayer thickness, each type of dissolved substance in each layer, and each type of particulate matter in each layer until the following equation is satisfied to obtain a dynamic biofilm model:
上式中,j表示生物膜的分层数,n表示生物膜的总分层数,z表示生物膜分层深度,△Zj表示生物膜的单层厚度,表示第j分层中第i类颗粒态物质,i、j、z均为正整数,εl表示第j分层中液体的体积分数,表示颗粒态物质在第j分层中所占的体积分数,表示颗粒态物质的COD密度;In the above formula, j represents the number of layers of the biofilm, n represents the total number of layers of the biofilm, z represents the depth of the biofilm layer, △ Z j represents the thickness of a single layer of the biofilm, Indicates the i-th type of granular matter in the j-th layer, i, j, and z are all positive integers, ε l represents the volume fraction of the liquid in the j-th layer, Indicates the volume fraction of granular matter in the jth stratum, Indicates particulate matter COD density;
S22、建立颗粒态物质在生物膜内部的粘附公式、剥落速率公式以及溶解态物质在生物膜内部的扩散公式;S22. Establishing the adhesion formula of the particulate matter inside the biofilm, the exfoliation rate formula and the diffusion formula of the dissolved substance inside the biofilm;
S23、建立生物膜内有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、好氧生长、厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸、XA的厌氧呼吸、SRB生长、SRB衰亡、异养菌失活、XSTO钝化、自养菌失活、SRB失活、硫化物氧化、发酵和复氧的微生物反应式,同时建立硫酸盐与硫化物的反应式。S23. Establish the hydrolysis of organic matter in the biofilm , aerobic storage of SF, anaerobic storage of SF, aerobic growth, anaerobic growth, aerobic respiration of X H , anaerobic respiration of X H , good performance of X STO Oxygen respiration, X STO anaerobic respiration, nitrification, X A aerobic respiration, X A anaerobic respiration, SRB growth, SRB decline, heterotrophic bacteria inactivation, X STO passivation, autotrophic bacteria inactivation, SRB Microbial reaction equations for inactivation, sulfide oxidation, fermentation, and reoxygenation, while establishing the reaction equations for sulfate and sulfide.
进一步作为优选的实施方式,所述步骤S21中生物膜的单层厚度的调整范围为0.5×10-4~1.5×10-4m。As a further preferred embodiment, the adjustment range of the single layer thickness of the biofilm in the step S21 is 0.5×10 -4 to 1.5×10 -4 m.
进一步作为优选的实施方式,所述液-气扩散模块用于根据亨利定律以及单位换算方法,结合动态生物膜模块计算获得的溶解态硫化氢,计算获得气相中硫化氢气体浓度。As a further preferred embodiment, the liquid-gas diffusion module is used to calculate the hydrogen sulfide gas concentration in the gas phase in combination with the dissolved hydrogen sulfide calculated by the dynamic biofilm module according to Henry's law and the unit conversion method.
进一步作为优选的实施方式,所述步骤S7,包括:Further as a preferred implementation manner, the step S7 includes:
S71、获取管道参数和实时的进水水质水量参数作为预测模型的输入,同时获得设定的模拟条件参数,进而进行预测模型初始化;S71. Obtain pipeline parameters and real-time influent water quality and quantity parameters as inputs to the prediction model, and obtain set simulation condition parameters at the same time, and then initialize the prediction model;
S72、根据管道参数计算排水管内的水力参数;S72. Calculate the hydraulic parameters in the drainage pipe according to the pipeline parameters;
S73、计算水相中复氧的含量;S73, calculating the content of reoxygenation in the aqueous phase;
S74、采用水质模块计算水相中有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、XH好氧生长、XH厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸以及XA的厌氧呼吸的生物化学反应后获得各物质的反应速率,并进行温度校正;S74. Using the water quality module to calculate the hydrolysis of organic matter in the water phase, the aerobic storage of SF, the anaerobic storage of SF, the aerobic growth of X H , the anaerobic growth of X H , the aerobic respiration of X H , and the anaerobic storage of X H Aerobic respiration, aerobic respiration of X STO , anaerobic respiration of X STO , nitrification, aerobic respiration of X A and anaerobic respiration of X A are obtained after the biochemical reaction of each substance, and temperature correction is performed;
S75、采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟计算后,获得每隔一段时间后排水管道末端出水的硫化物和硫化氢气体浓度。S75. Using the dynamic biofilm module to calculate the dynamic change of the biofilm, simulate the physical action, and simulate the biochemical action to obtain the concentration of sulfide and hydrogen sulfide gas in the outlet water at the end of the drainage pipe after a period of time.
进一步作为优选的实施方式,所述步骤S75,包括:Further as a preferred implementation manner, the step S75 includes:
S751、采用动态生物膜模块计算水相中各物质与生物膜表层物质进行粘附、剥落以及扩散的物理作用反应;S751, using the dynamic biofilm module to calculate the physical reaction of the substances in the water phase and the surface layer of the biofilm for adhesion, peeling and diffusion;
S752、计算生物膜中各物质的微生物反应并进行温度校正后,获得硫酸盐与溶解态硫化物的总量;S752. After calculating the microbial reaction of each substance in the biofilm and performing temperature correction, the total amount of sulfate and dissolved sulfide is obtained;
S753、根据亨利定律以及单位换算方法,结合动态生物膜模块计算获得的溶解态硫化氢,计算获得气相中硫化氢气体浓度。S753. According to Henry's law and the unit conversion method, combined with the dissolved hydrogen sulfide calculated by the dynamic biofilm module, calculate and obtain the hydrogen sulfide gas concentration in the gas phase.
以下结合具体实施例对本发明做详细说明。The present invention will be described in detail below in conjunction with specific embodiments.
实施例一Embodiment one
参照图1的示意流程图,一种排水管道中硫化氢产生量的预测方法,包括:Referring to the schematic flow chart of Fig. 1, a method for predicting the amount of hydrogen sulfide produced in a drainage pipeline includes:
S1、对排水管内的污水进行密集采样特性分析,测得实时的进水水质水量参数和出水水质水量参数,同时获得该排水管的管道参数;具体为:每2h分别采集一个进水水样和出水水样,连续48h密集采样,其中进水水样用来进行预测模型的校准;出水水样用来验证模型的仿真程度,同时采用在线仪器odalog 7000测量进水水样和出水水样中产生的H2S的气体浓度。进行采样时采样频率和时间可根据需要任意调整。进水水质水量参数和出水水质水量参数是指排水管内废水的各组分比例,均包括PH值、T以及VFA、DO、SO4 2-、DS、TS、TCOD、SCOD、VSS、NH4-N、NOx-N、和H2S气体的浓度。本实施例中采集获得的进水水质水量参数的平均值如下表1所示:S1. Analyze the intensive sampling characteristics of the sewage in the drainage pipe, measure the real-time parameters of the influent water quality and water quantity and the effluent water quality and quantity parameters, and obtain the pipeline parameters of the drainage pipe at the same time; specifically: collect an influent water sample and water quantity every 2 hours The effluent water samples were intensively sampled continuously for 48 hours. The influent water samples were used to calibrate the prediction model; the effluent water samples were used to verify the simulation degree of the model. The gas concentration of H 2 S. When sampling, the sampling frequency and time can be adjusted arbitrarily as required. Influent water quality and quantity parameters and effluent water quality and quantity parameters refer to the proportion of each component of the wastewater in the drainage pipe, including PH value, T and VFA, DO, SO 4 2- , DS, TS, TCOD, SCOD, VSS, NH 4 - Concentrations of N, NOx-N, and H 2 S gases. The average values of the influent water quality and quantity parameters collected in this embodiment are shown in Table 1 below:
表1 排水管道中进水水质水量参数平均值Table 1 Average values of influent water quality and quantity parameters in drainage pipes
排水管的管道参数包括管道流态、管道形状、管长、管径、坡降、粗糙率以及管道流量。管道流态是指管道中污水流的形态是属于压力流还是重力流,管道形状可以为圆形、矩形等。本实施例的排水管的管道参数如下表2所示:The pipe parameters of the drain include pipe flow regime, pipe shape, pipe length, pipe diameter, slope, roughness, and pipe flow. The flow state of the pipeline refers to whether the form of the sewage flow in the pipeline belongs to pressure flow or gravity flow, and the shape of the pipeline can be circular, rectangular, etc. The pipeline parameters of the drainpipe of the present embodiment are shown in Table 2 below:
表2排水管的管道参数Table 2 Piping parameters of the drain pipe
S2、基于ASM3模型,利用fortran95高级语言对ASM3模型进行编写及修改,建立水质模块、动态生物膜模块和液-气扩散模块,形成硫化氢产生量的预测模型,并将进水水质水量参数和排水管的管道参数作为该预测模型的输入;S2. Based on the ASM3 model, use the fortran95 high-level language to write and modify the ASM3 model, establish a water quality module, a dynamic biofilm module and a liquid-gas diffusion module, form a prediction model for hydrogen sulfide production, and combine influent water quality and quantity parameters and The piping parameters of the drain are used as input to this predictive model;
按照活性污泥3号模型(ASM3模型)把排污管废水水质组分划分为:可溶性组分包括溶解氧SO、SI、SF、SNH、N2、SNO、SALK;和颗粒性组分包括XI、XS、XH、XSTO、XA、XTS。并增加组分XINA、XSRB、SSO4和SH2S等,构建水质模块、动态生物膜模块和液-气扩散模块。According to the activated sludge No. 3 model (ASM3 model), the water quality components of sewage pipe wastewater are divided into: soluble components include dissolved oxygen SO, S I , S F , SNH , N 2 , S NO , S ALK ; and particles Sexual components include XI , XS , XH, XSTO , XA , XTS . And add components X INA , X SRB , S SO4 and S H2S etc. to build water quality module, dynamic biofilm module and liquid-gas diffusion module.
根据《水和废水监测分析方法》(第四版,中国环境科学出版社)测量排污管污水中的水质指标:现场分析测定的水质指标包括VFA、DO、pH、T;剩余水样密封冷藏后送至实验室,在24小时内完成对SO4 2-、DS、TS、TCOD、SCOD、TSS、VSS、NH3-N、NOx-N等水质指标的分析测定,其中溶解态硫化物和总硫化物待测水样按国标方法预先用氢氧化铝、乙酸锌-乙酸钠固定;人工井MH17中的硫化氢浓度H2S(g)采用现场仪器(OdaLog 7000)在线测定,测定位置为距离水面1m高度平面。排水流量,根据压力输送泵工况记录获得。另外,异养菌、自养菌以及硫酸盐还原菌的产率系数、衰亡系数和最大生长速率等参数采用文献《A biofilm modelfor prediction of pollutant transformationin sewers》中的参考值,详细见表3所示:According to "Water and Wastewater Monitoring and Analysis Methods" (fourth edition, China Environmental Science Press) to measure the water quality indicators in the sewage of the sewage pipe: the water quality indicators determined by on-site analysis include VFA, DO, pH, T; the remaining water samples are sealed and refrigerated Send it to the laboratory to complete the analysis and determination of water quality indicators such as SO 4 2- , DS, TS, TCOD, SCOD, TSS, VSS, NH 3 -N, NO x -N within 24 hours, among which dissolved sulfide and The water samples to be tested for total sulfide were fixed in advance with aluminum hydroxide and zinc acetate-sodium acetate according to the national standard method; the hydrogen sulfide concentration H 2 S (g) in the artificial well MH17 was measured online with an on-site instrument (OdaLog 7000), and the measurement position was 1m height plane from the water surface. The drainage flow rate is obtained from the working condition record of the pressure delivery pump. In addition, parameters such as the yield coefficient, decay coefficient, and maximum growth rate of heterotrophic bacteria, autotrophic bacteria, and sulfate-reducing bacteria use the reference values in the literature "A biofilm model for prediction of pollutant transformation in sewers", as shown in Table 3 for details :
表3预测模型参数的取值Table 3 Values of prediction model parameters
实际上,排水管内硫化氢气体产生过程涉及固、液、气三相,水质模块、动态生物膜模块和液-气扩散模块分别对应污水相、固体生物膜和气相的反应。In fact, the hydrogen sulfide gas generation process in the drainage pipe involves solid, liquid, and gas phases, and the water quality module, dynamic biofilm module, and liquid-gas diffusion module correspond to the reactions of sewage phase, solid biofilm, and gas phase, respectively.
(1)水质模块:基于排污管污水的特性,本水质模块用于计算水相中有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、XH好氧生长、XH厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸以及XA的厌氧呼吸共12种微生物的的微生物反应速率,并进行温度校正。12种微生物的反应速率是通过对应的12个微生物反应式进行计算的,具体与ASM3模型类似,其具体公式如表4中的公式1~12。表4中展示的是排水管道中的生物化学及动力学矩阵,因为表格篇幅的原因,其中最后一列的反应速率的具体公式采用代号公式1~公式21表示,公式在表格底下列出,具体如下:(1) Water quality module: Based on the characteristics of sewage from sewage pipes, this water quality module is used to calculate the hydrolysis of organic matter in the water phase, the aerobic storage of SF, the anaerobic storage of SF , the aerobic growth of X H , and the anaerobic growth of X H Growth, aerobic respiration of X H , anaerobic respiration of X H , aerobic respiration of X STO , anaerobic respiration of X STO , nitrification, aerobic respiration of X A and anaerobic respiration of X A The microbial reaction rate is corrected for temperature. The reaction rates of the 12 kinds of microorganisms are calculated through the corresponding 12 microbial reaction formulas, which are similar to the ASM3 model, and the specific formulas are shown in formulas 1-12 in Table 4. Table 4 shows the biochemical and kinetic matrices in the drainage pipes. Due to the length of the table, the specific formulas of the reaction rates in the last column are represented by codes Formula 1 to Formula 21. The formulas are listed at the bottom of the table, as follows :
表4生物化学及动力学矩阵Table 4 Biochemical and kinetic matrix
上表中,iNBM表示微生物中的氮含量,iNXI表示XI中的氮含量。In the above table, iNBM represents the nitrogen content in microorganisms, and iNXI represents the nitrogen content in XI.
其中,公式1~公式21如下:Among them, Formula 1 to Formula 21 are as follows:
公式1: Formula 1:
公式2: Formula 2:
公式3: Formula 3:
公式4: Formula 4:
公式5:公式6: Formula 5: Formula 6:
公式7: Formula 7:
公式8: Formula 8:
公式9: Formula 9:
公式10: Formula 10:
公式11: Formula 11:
公式12: Formula 12:
公式13: Formula 13:
公式14:bSRBXSRB Formula 14: b SRB X SRB
公式15: Formula 15:
公式16: Formula 16:
公式17: Formula 17:
公式18: Formula 18:
公式19: Formula 19:
公式20:kSO·SO 0.1·SH2S Equation 20: k SO · S O 0.1 · S H2S
公式21: Formula 21:
公式22:kLa·(SO,sat-SO)Equation 22: k L a (S O,sat -S O )
表4中的x1,x2,…x20和y1,y2,…y21可根据各个反应过程中COD和N守恒方程得出:x 1 , x 2 ,...x 20 and y 1 , y 2 ,...y 21 in Table 4 can be obtained according to the conservation equations of COD and N in each reaction process:
如求水解反应的x1和y1:For example, x1 and y1 of the hydrolysis reaction are calculated:
只看COD守恒:Just look at the COD conservation:
只看N守恒:Just look at the conservation of N:
两式子即可解出x1和y1。The two formulas can solve x1 and y1.
另外,污水中的硫化物形成由生物膜模块反应生成并扩散到水相中的未解离的硫化物根据离子平衡方程计算,形成溶解态的硫化氢,如下:In addition, the sulfide formation in sewage is generated by the biofilm module reaction and diffuses into the water phase. The undissociated sulfide is calculated according to the ion balance equation to form dissolved hydrogen sulfide, as follows:
其中,k1为H2S的一级解离常数;[HS-]为硫氢根离子(HS-)的离子浓度mg/L,[H+]为H+离子的离子浓度mg/L;[H2S]为未解离硫化氢分子(H2S)的浓度;k2为H2S的二级解离常数;[S2-]为负二价的硫离子(S2-)的离子浓度。Among them, k1 is the first-order dissociation constant of H 2 S; [HS - ] is the ion concentration mg/L of hydrogen sulfide ion (HS - ), [H + ] is the ion concentration mg/L of H + ion; [ H 2 S] is the concentration of undissociated hydrogen sulfide molecules (H 2 S); k2 is the second-order dissociation constant of H 2 S; [S 2- ] is the ion of negative divalent sulfide ion (S 2- ) concentration.
(2)动态生物膜模块:排污管里微生物特别是SRB对于硫化物的含量具有巨大影响作用,而SRB主要分布在管壁的生物膜中(或底泥)的深层,所以生物膜模型对于排污管的H2S污染必不可少并且起主要作用。基于生物膜对于排污管H2S产生的巨大影响程度,本动态生物膜模块包括可动态变化的生物膜和复杂的物理生物化学反应。具体包括:(2) Dynamic biofilm module: microorganisms in sewage pipes, especially SRB, have a huge impact on the content of sulfide, and SRB is mainly distributed in the deep layer of biofilm (or sediment) on the pipe wall, so the biofilm model is very important for sewage discharge. H2S contamination of the tubes is essential and plays a major role. Based on the great impact of biofilm on H 2 S production in sewage pipes, this dynamic biofilm module includes dynamically changing biofilm and complex physical and biochemical reactions. Specifically include:
1)生物膜的动态变化:为了体现生物膜的异质性,需要对生物膜密度在垂向上动态变化进行模拟。在本模型的密度方法参照Horn模式:密度包括质量密度和COD密度两种。对于某一生物膜分层中的某种颗粒性有机质,其COD密度有最大值限制,实际浓度与最大限制值的比例为该物质的容积率,各种物质的体积分数与该分层中的液体体积分数之和为1,而质量密度则根据TS来计算。由于各种颗粒物的COD密度最大限值不同,虽然容积率总和保持不变,但随着生物膜分层中各种微生物构成的改变,质量密度可以体现动态垂向差异。1) Dynamic change of biofilm: In order to reflect the heterogeneity of biofilm, it is necessary to simulate the dynamic change of biofilm density in the vertical direction. The density method in this model refers to the Horn model: density includes mass density and COD density. For a certain granular organic matter in a biofilm layer, its COD density has a maximum limit, the ratio of the actual concentration to the maximum limit value is the volume ratio of the substance, and the volume fraction of various substances is related to the COD density in the layer. The liquid volume fractions sum to 1, while the mass density is calculated from TS. Since the maximum limit of COD density of various particles is different, although the sum of the volume ratio remains unchanged, the mass density can reflect the dynamic vertical difference as the composition of various microorganisms in the biofilm stratification changes.
动态生物膜模块的建立过程如下:参照图2,获取初始状态下生物膜的分层数j、单层厚度△Zj、每个分层中的每类溶解态物质Si,j以及每个分层中的每类颗粒态物质Xi,j后,结合下式进行计算,并不断调整单层厚度△Zj、每个分层中的每类溶解态物质Si,j以及每个分层中的每类颗粒态物质Xi,j,直到满足下式后获得动态生物膜模型:The establishment process of the dynamic biofilm module is as follows: Referring to Figure 2, obtain the layer number j of the biofilm in the initial state, the thickness of a single layer △Z j , each type of dissolved substance S i,j in each layer, and each After each type of granular substance X i,j in the stratification, calculate with the following formula, and constantly adjust the thickness of the single layer △ Z j , each type of dissolved substance S i,j in each stratum, and the Each type of granular substance X i,j in the layer until the dynamic biofilm model is obtained after satisfying the following formula:
上式中,j表示生物膜的分层数,n表示生物膜的总分层数,z表示生物膜分层深度,△Zj表示生物膜的单层厚度,表示第j分层中第i类颗粒态物质,i、j、z均为正整数,εl表示第j分层中液体的体积分数,表示颗粒态物质在第j分层中所占的体积分数,表示颗粒态物质的COD密度;In the above formula, j represents the number of layers of the biofilm, n represents the total number of layers of the biofilm, z represents the depth of the biofilm layer, △ Z j represents the thickness of a single layer of the biofilm, Indicates the i-th type of granular matter in the j-th layer, i, j, and z are all positive integers, ε l represents the volume fraction of the liquid in the j-th layer, Indicates the volume fraction of granular matter in the jth stratum, Indicates particulate matter COD density;
生物膜的单层厚度△Zj的调整范围为0.5×10-4~1.5×10-4m,若△Zj小于0.5*10-4则并入上一层,若△Zj大于1.5×10-4m则分为两层;The adjustment range of the single layer thickness △Z j of the biofilm is 0.5×10 -4 ~ 1.5×10 -4 m, if △Z j is less than 0.5*10 -4 , it will be merged into the previous layer; if △Z j is greater than 1.5× 10 -4 m is divided into two layers;
2)复杂的物理生物化学反应:包括物理作用和生物化学作用2) Complex physical and biochemical reactions: including physical and biochemical effects
物理作用,包括粘附、剥落和溶解态物质的扩散Physical effects, including adhesion, exfoliation, and diffusion of dissolved substances
一般认为,悬浮颗粒物粘附于固体介质的过程主要是一个物理过程,水体中的悬浮颗粒物浓度、水力条件与固体表面粗糙度对这一过程有一定影响,粘附公式如下:It is generally believed that the process of suspended particulates adhering to solid media is mainly a physical process. The concentration of suspended particulates in water, hydraulic conditions and solid surface roughness have certain influences on this process. The adhesion formula is as follows:
上式中,是颗粒态物质Xi从水体中粘附到固体表面的速率,单位为gCODm-3d-1;是指水体中颗粒态物质Xi的浓度,单位为gCODm-3,其中上标w代表水体;katt是粘附速率常数,单位为d-1。In the above formula, is the rate at which the particulate substance Xi adheres to the solid surface from the water body, and the unit is gCODm -3 d -1 ; refers to the concentration of particulate matter Xi in the water body, the unit is gCODm -3 , where the superscript w stands for the water body; k att is the adhesion rate constant, the unit is d -1 .
管道内生物膜剥落速率主要受本身剥落速率和水流剪切力影响,采用以下公式进行仿真:The peeling rate of the biofilm in the pipeline is mainly affected by the peeling rate and the shear force of the water flow. The following formula is used for simulation:
上式中,是颗粒物质Xi的剥落速率,单位为gCODm-3d-1;kdet是剥落常数,单位为gm-5;μH是异养微生物的最大生长速率,单位为d-1;Lf是生物膜厚度,单位为m;τw是剪切力,单位为N m-2;Mi是颗粒物质Xi的TS质量;而MTS则是整块生物膜的TS质量;Sf摩擦坡降;Rh为水力半径,单位为m;ρw是水的质量密度,单位为gm-3;而g是重力加速度,单位为m2s-1;是生物膜j分层中颗粒物质Xi的剥落速率,单位为gCODm-3d-1;Xi,j是生物膜j分层中颗粒态有机物Xi的浓度。In the above formula, is the exfoliation rate of granular matter X i , the unit is gCODm -3 d -1 ; k det is the exfoliation constant, the unit is gm -5 ; μ H is the maximum growth rate of heterotrophic microorganisms, the unit is d -1 ; L f is Biofilm thickness, in m; τ w is the shear force, in N m -2 ; M i is the TS mass of particulate matter X i ; and M TS is the TS mass of the whole biofilm; S f friction slope R h is the hydraulic radius, the unit is m; ρ w is the mass density of water, the unit is gm -3 ; and g is the gravitational acceleration, the unit is m 2 s -1 ; is the exfoliation rate of particulate matter X i in layer j of biofilm, unit is gCODm -3 d -1 ; X i,j is the concentration of particulate organic matter X i in layer j of biofilm.
渗透扩散是溶解态物质进入生物膜内部的主要途径。采用分子扩散的方程式来描述,假定这一扩散过程遵从Fick第一定律:Osmotic diffusion is the main way for dissolved substances to enter the biofilm. Described by the equation of molecular diffusion, it is assumed that this diffusion process obeys Fick's first law:
上式中,Ji,j是溶解态物质Si穿越生物膜j分层边界的扩散通量单位为gm-2s-1;Si,j是溶解态物质Si在生物膜j层的浓度,单位为gm-3;Df,i,j是溶解态物质Si在生物膜j层中的扩散系数,单位为m2s-1;Dw是水体中的扩散系数,单位为m2s-1,而fD是生物膜中溶质扩散的有效系数;ρm为生物膜的质量密度,单位为gm-3;In the above formula, J i,j is the diffusion flux of dissolved substance S i across the layer boundary of biofilm j in gm -2 s -1 ; S i,j is the diffusion flux of dissolved substance S i in layer j of biofilm Concentration, unit is gm -3 ; D f,i,j is the diffusion coefficient of dissolved substance S i in biofilm layer j, unit is m 2 s -1 ; D w is the diffusion coefficient in water body, unit is m 2 s -1 , and f D is the effective coefficient of solute diffusion in the biofilm; ρ m is the mass density of the biofilm, and the unit is gm -3 ;
另外,溶解氧扩散系数由以下公式得到:In addition, the dissolved oxygen diffusion coefficient is obtained from the following formula:
Dw,O2=4.864×10-13T2+2.880×10-11T+1.268×10-9 D w, O2 =4.864×10 -13 T 2 +2.880×10 -11 T+1.268×10 -9
其中,T为水温,单位为℃。Where, T is the water temperature in °C.
生物化学作用:根据排水管道的特性,与水相生物化学作用不同,把生物膜内的生物化学反应划分为有机物的水解、SF的好氧贮藏、SF的厌氧贮藏、好氧生长、厌氧生长、XH的好氧呼吸、XH的厌氧呼吸、XSTO的好氧呼吸、XSTO厌氧呼吸、硝化作用、XA的好氧呼吸、XA的厌氧呼吸、SRB生长、SRB衰亡、异养菌失活、XSTO钝化、自养菌失活、SRB失活、硫化物氧化、发酵和复氧共21个微生物反应式,和13种组分包括SO、SF、SI、SNH、SNO、SSO4、SH2S、XI、XS、XH、XSTO、XA和XSRB,如表4和图3所示。Biochemical action: According to the characteristics of the drainage pipeline, which is different from the water phase biochemical action, the biochemical reaction in the biofilm is divided into hydrolysis of organic matter, aerobic storage of SF, anaerobic storage of SF, aerobic growth, Anaerobic growth, X H aerobic respiration, X H anaerobic respiration, X STO aerobic respiration, X STO anaerobic respiration, nitrification, X A aerobic respiration, X A anaerobic respiration, SRB growth , SRB decay, heterotrophic bacteria inactivation, X STO passivation, autotrophic bacteria inactivation, SRB inactivation, sulfide oxidation, fermentation and reoxygenation, a total of 21 microbial reaction equations, and 13 components including SO, S F , S I , S NH , S NO , S SO4 , S H2S , X I , X S , X H , X STO , X A and X SRB , as shown in Table 4 and Figure 3.
同时,建立硫酸盐与硫化物的反应式,如表5所示:Simultaneously, set up the reaction formula of sulfate and sulfide, as shown in table 5:
表5硫酸盐与硫化物的生物化学及动力学矩阵Table 5 Biochemical and kinetic matrix of sulfate and sulfide
同样的,上表中,iNBM是微生物中的氮含量,iNXI是XI中的氮含量。Similarly, in the above table, iNBM is the nitrogen content in microorganisms, and iNXI is the nitrogen content in XI .
表5中的x1,x4,x5和y1,y2,y3可根据下面各个反应过程中COD守恒方程得出:x 1 , x 4 , x 5 and y 1 , y 2 , y 3 in Table 5 can be obtained according to the following COD conservation equations in each reaction process:
生物化学反应与扩散系数都与温度有关,实际下水道中的温度与模型模拟温度,即标准反应温度(20℃)或标准系数温度(25℃)有差别,无论水相模块还是生物膜模块均需要对其进行修正,采用下式进行修正:Both the biochemical reaction and the diffusion coefficient are related to temperature. The temperature in the actual sewer is different from the simulated temperature of the model, that is, the standard reaction temperature (20°C) or the standard coefficient temperature (25°C). Both the water phase module and the biofilm module need to To correct it, use the following formula to correct it:
上式中,r为某温度下微生物的仿真反应速率,r20℃为20摄氏度下的反应速率,θT为校正因子,水相中生物反应因子取1.07,生物膜中生物反应因子取1.03,复氧反应(公式21)取1.024。In the above formula, r is the simulated reaction rate of microorganisms at a certain temperature, r 20°C is the reaction rate at 20°C, θ T is the correction factor, the biological response factor in the water phase is taken as 1.07, and the biological response factor in the biofilm is taken as 1.03, The reoxygenation reaction (formula 21) takes 1.024.
(3)由(1)中得到的溶解态H2S扩散到气相中,当其在液-气界面达到平衡时,采用亨利定律和单位换算得出气相中H2S污染物浓度,计算公式如下:(3) The dissolved H 2 S obtained in (1) diffuses into the gas phase. When it reaches equilibrium at the liquid-gas interface, use Henry's law and unit conversion to obtain the concentration of H 2 S pollutants in the gas phase. The calculation formula as follows:
上式中,P*是分压,单位为kpa;C是溶液中浓度,单位为mol/L;H是亨利常数;V是气体体积,单位为m3;n是物质的量,单位为mol;R是气体常量;T是温度,单位为K;Cg是气相中物质浓度,单位为kg/m3;M是物质质量,单位为kg。In the above formula, P * is the partial pressure, the unit is kpa; C is the concentration in the solution, the unit is mol/L; H is Henry’s constant; V is the gas volume, the unit is m 3 ; n is the amount of substance, the unit is mol ; R is the gas constant; T is the temperature, the unit is K; Cg is the concentration of the substance in the gas phase, the unit is kg/m3; M is the mass of the substance, the unit is kg.
S3、获取用户输入的预测模型的模拟参数以及生物膜初始值,作为预测模型的输入。显然的,结合表2中的排水管的管道参数也是预测模型的输入。本实施例中获取的模拟参数如表6所示。S3. Obtaining the simulation parameters of the prediction model and the initial value of the biofilm input by the user as inputs of the prediction model. Obviously, the pipe parameters combined with the drainpipes in Table 2 are also input to the predictive model. The simulation parameters obtained in this embodiment are shown in Table 6.
表6模拟参数Table 6 Simulation parameters
S4、运行预测模型,采用水质模块进行水质参数计算,并采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟,进而在到达管道生物膜稳定期后,获得稳定的生物膜参数。具体为:运行预测模型,采用水质模块进行水质参数计算,得到水相中物质经过物理、化学、生物变化后的浓度,采用液-气扩散模块进行气体中硫化氢浓度的模拟,再采用动态生物膜模块进行生物膜的动态变化计算、物理作用模拟和生物化学作用模拟,得到生物膜内物质经过物理、化学、生物变化后的浓度,再与水相进行物质扩散与交换,经过长时间运行,达到设定的生物膜稳定时间后,获得稳定的生物膜参数。本步骤的一具体实施例如图4所示,具体包括:S4. Run the prediction model, use the water quality module to calculate water quality parameters, and use the dynamic biofilm module to calculate the dynamic change of biofilm, simulate physical effects and biochemical effects, and then obtain stable biofilm after reaching the stable period of pipeline biofilm Biofilm parameters. Specifically: run the prediction model, use the water quality module to calculate water quality parameters, obtain the concentration of substances in the water phase after physical, chemical, and biological changes, use the liquid-gas diffusion module to simulate the concentration of hydrogen sulfide in the gas, and then use the dynamic biological The membrane module performs dynamic change calculation of biofilm, physical action simulation and biochemical action simulation, and obtains the concentration of substances in the biofilm after physical, chemical, and biological changes, and then conducts material diffusion and exchange with the water phase. After a long period of operation, After the set biofilm stabilization time is reached, stable biofilm parameters are obtained. A specific embodiment of this step is shown in Figure 4, specifically including:
1.1、程序开始;1.1. The program starts;
1.2、定义各类参数的数据类型及分配数组空间;1.2. Define the data types of various parameters and allocate array space;
1.3、读取现场管道的管道、水力和水质数据,包括表2的管道条件参数及表1中的水量和水质指标。读取表6的模拟条件参数,假设总模拟时长为ttmax,生物膜稳定期时长tini,管道分xmax段,生物膜为动态变化的ymax层(每层在0.5*10-4与1.5*10-4m之间);1.3. Read the pipeline, hydraulic and water quality data of the on-site pipeline, including the pipeline condition parameters in Table 2 and the water quantity and water quality indicators in Table 1. Read the simulation condition parameters in Table 6, assuming that the total simulation time is ttmax, the biofilm stable period is tini, the pipeline is divided into xmax sections, and the biofilm is a dynamically changing ymax layer (each layer is between 0.5*10 -4 and 1.5*10 - 4 m);
1.4、判断步骤1.3参数是否全部输入完毕,若是,则进入步骤1.5,若否,则回到步骤1.3;1.4. Determine whether all the parameters in step 1.3 have been input, if so, go to step 1.5, if not, go back to step 1.3;
1.5、模拟开始,模拟时间设定t=0,根据步骤1.3的参数与模型内部公式形成整条管道的环境初值,包括水质和生物膜初始值,完成模型初始化;1.5. Start the simulation, set the simulation time to t=0, form the initial environmental value of the entire pipeline according to the parameters in step 1.3 and the internal formula of the model, including the initial value of water quality and biofilm, and complete the model initialization;
1.6、水力计算:根据表2的管道条件和管道流量计算,此刻t时间第x管段(开始时候x=1,即第一段管道)的水深、流速、雷诺数(Re)、.弗汝德数(Fr)、剪切力等对生物膜粘附和脱落具有重要影响的水力条件。1.6. Hydraulic calculation: According to the pipeline conditions and pipeline flow calculation in Table 2, the water depth, flow velocity, Reynolds number (Re), Froude The hydraulic conditions such as the number (Fr) and shear force have an important impact on biofilm adhesion and detachment.
1.7、复氧计算:计算水相中DO的恢复速度,DO含量严重影响硫化物浓度;1.7. Reoxygenation calculation: Calculate the recovery rate of DO in the water phase, and the DO content seriously affects the sulfide concentration;
1.8、物质在水相中发生表4中公式(1)~(12)的生物化学反应,计算物质在水相中的浓度,共imax种物质。1.8. Substances undergo the biochemical reactions of formulas (1) to (12) in Table 4 in the water phase, and the concentration of the substances in the water phase is calculated to obtain a total of imax substances.
1.9、生物化学反应的温度校正:步骤1.8的微生物反应速率受温度影响,模型初始设定为20℃,均需要进行温度修正。1.9. Temperature correction of biochemical reactions: The microbial reaction rate in step 1.8 is affected by temperature. The initial model setting is 20°C, and temperature correction is required.
1.10、由步骤1.9输出的在水相中imax种物质与生物膜表层物质进行交换包括溶解态物质的扩散、颗粒物物质的粘附和剥落。1.10. The exchange of imax substances in the aqueous phase with the biofilm surface substances output by step 1.9 includes diffusion of dissolved substances, adhesion and peeling of particulate substances.
1.11、步骤1.10完成后,分别进行硫化氢的液-气扩散与生物膜内部的生物化学反应和物质交换。一方面,硫化氢的液-气扩散主要是水相中硫化物一部分形成未解离的H2S,未解离H2S经过亨利定律扩散到气相中形成H2S气体;另一方面,生物膜内部的生物化学反应和物质交换主要是imax种物质分层的生物膜之间进行如表4中生物化学反应,经过温度校正后,输出的物质浓度分别上一层和下一层的生物膜进行物质交换,再判断该层生物膜是否需要调整(若△Zj小于0.5*10-4则并入上一层;若△Zj大于1.5*10-4则分两层,共ymax层)。1.11. After step 1.10 is completed, the liquid-gas diffusion of hydrogen sulfide and the biochemical reaction and material exchange inside the biofilm are carried out respectively. On the one hand, the liquid-gas diffusion of hydrogen sulfide is mainly due to the formation of undissociated H2S by part of the sulfide in the water phase, and the undissociated H2S diffuses into the gas phase through Henry's law to form H2S gas; on the other hand, the biochemical The reaction and material exchange are mainly the biochemical reactions in Table 4 between the imax material layered biofilms. After temperature correction, the output material concentrations are exchanged with the biofilms of the upper layer and the lower layer respectively, and then Determine whether this layer of biofilm needs to be adjusted (if △Z j is less than 0.5*10 -4 , it will be merged into the previous layer; if △Z j is greater than 1.5*10 -4 , it will be divided into two layers, a total of ymax layers).
1.12、计算下一管段,即x+1段的物质浓度:回到步骤1.6,直至全部管段模拟完成,即管段xmax计算完毕。1.12. Calculate the substance concentration of the next pipe section, that is, the x+1 section: return to step 1.6 until the simulation of all pipe sections is completed, that is, the calculation of pipe section xmax is completed.
1.13、计算下一模拟时刻,即t+△t时刻的物质浓度:回到步骤1.5,管道设定x=1重新开始计算。当t≥tini,即表示管道水质和生物膜条件被认为与实际管道符合,方可进行下一步骤,同时模拟时长tt值此时为0。1.13. Calculate the material concentration at the next simulation time, that is, the time t+Δt: go back to step 1.5, set the pipeline to x=1 and restart the calculation. When t≥tini, it means that the pipeline water quality and biofilm conditions are considered to be consistent with the actual pipeline, and the next step can be performed, and the simulation time tt value is 0 at this time.
1.14、输出结果:根据需要把目标时间、目标管段、目标生物膜层和目标物质的浓度输出,本实施例为输出末段管道水相中硫化物和气相中硫化氢浓度。1.14. Output result: Output the target time, target pipe section, target biofilm layer and target substance concentration as required. In this embodiment, the concentration of sulfide in the water phase and hydrogen sulfide in the gas phase of the final pipeline is output.
1.15、计算下一模拟时刻,即tt+△t的物质浓度:回到步骤1.6,直至tt≥ttmax。1.15. Calculate the substance concentration at the next simulation moment, that is, tt+Δt: return to step 1.6 until tt≥ttmax.
1.16、程序结束。1.16. The program ends.
S5、将管道参数和实时的进水水质水量参数作为预测模型的输入,计算获得每隔一段时间后排水管道末端出水的硫化物和硫化氢气体浓度。S5. Using the pipeline parameters and the real-time influent water quality and quantity parameters as the input of the prediction model, calculate and obtain the concentration of sulfide and hydrogen sulfide gas in the outlet water at the end of the drainage pipeline after a period of time.
S6、根据预测获得的每个时刻的硫化氢气体浓度与其对应的出水水质水量参数中的硫化氢气体浓度之间的差值,对预测模型进行校准,校准的参数主要包括μSRB和KSRB,O。根据预测模型的污水中的总硫化物和气相中的H2S仿真结果与实测值进行对比,将模型参数μSRB校正为5.6d-1,KSRB,O校正为1.0gO2m-3,仿真结果与实测数据较为吻合,如图5和6。预测模型能够仿真硫化物和H2S气态污染物的变化趋势和浓度。图5和图6展示了在2012.7.11至2012.7.13期间实测MH17的H2S气体平均值为12.9ppm,而模拟曲线的平均值为12.5ppm。模型能够模拟S2-和H2S的浓度变化外,还能够预测H2S气体溢出的峰值时间。S6. Calibrate the prediction model according to the difference between the hydrogen sulfide gas concentration at each moment obtained by prediction and the hydrogen sulfide gas concentration in the corresponding effluent water quality and quantity parameters, and the calibration parameters mainly include μ SRB and K SRB, O. According to the comparison between the simulation results of the total sulfide in the sewage and the H 2 S in the gas phase of the prediction model and the measured values, the model parameter μ SRB is corrected to 5.6d -1 , K SRB,O is corrected to 1.0gO 2 m -3 , The simulation results are in good agreement with the measured data, as shown in Figures 5 and 6. The prediction model can simulate the change trend and concentration of sulfide and H 2 S gaseous pollutants. Figures 5 and 6 show that the average value of H 2 S gas in MH17 measured from 2012.7.11 to 2012.7.13 was 12.9ppm, while the average value of the simulated curve was 12.5ppm. The model can not only simulate the concentration changes of S 2- and H 2 S, but also predict the peak time of H 2 S gas overflow.
S7、采用校准后的预测模型对排水管道中硫化氢的产生量进行实时预测,模拟改变硝酸盐投加量对硫化氢的控制效果,给出有效、经济的控制方案。S7. Use the calibrated prediction model to predict the amount of hydrogen sulfide produced in the drainage pipeline in real time, simulate the control effect of changing the dosage of nitrate on hydrogen sulfide, and provide an effective and economical control plan.
方案仿真:改变硝酸盐投加量H2S的产生情况Scenario simulation: H 2 S generation by changing the dosage of nitrate
前面提到该管道硫化氢污染严重,尽管机场有关方面已投加硝酸钙治理(比重1.4的硝酸钙溶液,白天70L/h,夜间84L/h),但硫化氢污染问题仍然严峻。为有效降低硫化氢污染,模型模拟三种不同硝酸钙投加量的方案:分别为①减少50%投药量;②增加50%投药量;和③增加100%投药量。结果如下:As mentioned above, the hydrogen sulfide pollution of the pipeline is serious. Although the relevant authorities of the airport have added calcium nitrate treatment (calcium nitrate solution with a specific gravity of 1.4, 70L/h during the day and 84L/h at night), the problem of hydrogen sulfide pollution is still serious. In order to effectively reduce hydrogen sulfide pollution, the model simulates three different dosages of calcium nitrate: ① reduce the dosage by 50%; ② increase the dosage by 50%; and ③ increase the dosage by 100%. The result is as follows:
如图7为采用校正后的预测模型连续运行180h的硫化氢气体模拟曲线,模拟的平均H2S浓度为6.6ppm,峰值为33ppm,以此作为控制硫化氢模拟案例的背景值。Figure 7 shows the hydrogen sulfide gas simulation curve of the 180h continuous operation of the corrected prediction model. The simulated average H 2 S concentration is 6.6ppm and the peak value is 33ppm, which is used as the background value for the control hydrogen sulfide simulation case.
①优化方案一、减少50%的硝酸盐投加量,如图8,模拟结果显示,若投药量减少50%,则H2S的平均浓度从6.6上升至19.5ppm。这结果表明硝酸盐的存在与投加量对控制下水道硫化物有重要作用①Optimization plan 1: reduce the dosage of nitrate by 50%, as shown in Figure 8, the simulation results show that if the dosage is reduced by 50%, the average concentration of H 2 S will rise from 6.6 to 19.5ppm. This result indicates that the presence and dosage of nitrate play an important role in controlling sulfide in sewers
②优化方案二、增加50%的硝酸盐投加量,如图9,模拟曲线表示当投药量增加50%时,H2S的平均浓度得到有效降低,从6.6降低到1.9ppm,降低了71%,并且所有峰值浓度均低于30ppm。尽管增加50%的投药量仍然存在较高浓度的硫化氢气体峰值情况,但能够有效地控制H2S的平均浓度。②Optimization plan 2: Increase the dosage of nitrate by 50%, as shown in Figure 9, the simulation curve shows that when the dosage increases by 50%, the average concentration of H 2 S is effectively reduced, from 6.6 to 1.9ppm, which is a reduction of 71 %, and all peak concentrations were below 30ppm. Although the peak concentration of hydrogen sulfide gas still exists when the dosage is increased by 50%, the average concentration of H 2 S can be effectively controlled.
③优化方案三、增加100%的硝酸盐投加量,当投药量增加一倍时,平均H2S浓度从6.6降低至1.1ppm,降低了88%,如图10。在大部分情况下H2S的浓度达到零值,但由于流量的变化,仍然存在H2S峰值的情况。显然结果表明投药量增加一倍,仍然会出现某时间H2S溢出的现象。与增加50%的投药量相比,治理效果略微上升,但成本大大提高,是其1.3倍。③Optimization scheme 3: Increase the dosage of nitrate by 100%. When the dosage is doubled, the average H 2 S concentration is reduced from 6.6 to 1.1ppm, which is 88% lower, as shown in Figure 10. In most cases, the concentration of H 2 S reaches zero, but due to the change of the flow rate, there are still peaks of H 2 S. Apparently, the results show that the doubling of the dosage will still cause H 2 S to overflow for a certain period of time. Compared with increasing the dosage by 50%, the treatment effect is slightly increased, but the cost is greatly increased, which is 1.3 times.
通过预测模型模拟增加硝酸盐的投加量令平均H2S浓度得以降低,并且投加越多产生的H2S浓度越低,但对于抑制H2S溢出现象作用不大。比较控制H2S效果与投药量可知,增加50%的投药量能达到较好的经济与控制硫化氢效果。The average H 2 S concentration can be reduced by increasing the dosage of nitrate simulated by the predictive model, and the higher the dosage, the lower the H 2 S concentration will be, but it has little effect on inhibiting the overflow of H 2 S. Comparing the effect of controlling H 2 S with the dosage, it can be seen that increasing the dosage by 50% can achieve better economical and hydrogen sulfide control effects.
上述硝酸盐控制市政排污管硫化氢污染的实施例为本发明较佳的实施方式,本发明还可模拟投加氧气、碱和铁盐等方式对水中硫化物和H2S气体进行控制效果仿真,甚至能对排污管的水质如COD、氨氮、DO、SO4 2-等物质浓度进行仿真。The above example of nitrate control of hydrogen sulfide pollution in municipal sewage pipes is a preferred embodiment of the present invention. The present invention can also simulate the control effect of sulfide and H2S gas in water by simulating the addition of oxygen, alkali and iron salts. , and can even simulate the concentration of substances such as COD, ammonia nitrogen, DO, SO 4 2- and other substances in the water quality of the sewage pipe.
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做出种种的等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。The above is a specific description of the preferred implementation of the present invention, but the invention is not limited to the described embodiments, those skilled in the art can also make various equivalent deformations or replacements without violating the spirit of the present invention , these equivalent modifications or replacements are all included within the scope defined by the claims of the present application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610136984.5A CN105760695B (en) | 2016-03-10 | 2016-03-10 | The prediction technique of hydrogen sulfide yield in drainage pipeline |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610136984.5A CN105760695B (en) | 2016-03-10 | 2016-03-10 | The prediction technique of hydrogen sulfide yield in drainage pipeline |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105760695A true CN105760695A (en) | 2016-07-13 |
CN105760695B CN105760695B (en) | 2018-08-31 |
Family
ID=56333041
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610136984.5A Active CN105760695B (en) | 2016-03-10 | 2016-03-10 | The prediction technique of hydrogen sulfide yield in drainage pipeline |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105760695B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106339586A (en) * | 2016-08-23 | 2017-01-18 | 环境保护部华南环境科学研究所 | Tracing method and prediction method of mustard gas pollution |
CN111354425A (en) * | 2020-05-08 | 2020-06-30 | 广西壮族自治区农业科学院 | Method for evaluating soil acidification effect driven by plant harvesting |
CN111982740A (en) * | 2020-06-30 | 2020-11-24 | 中国水利水电科学研究院 | Analysis method for migration and diffusion of water elements based on long-film sediment |
CN112632755A (en) * | 2020-12-03 | 2021-04-09 | 中煤科工集团重庆研究院有限公司 | Comprehensive judgment and identification method for risk of hydrogen sulfide disaster of abandoned oil well in coal mining area |
CN115563862A (en) * | 2022-09-27 | 2023-01-03 | 盐城工学院 | Pipeline hydrogen sulfide prediction method based on optimized combined prediction model |
CN118444575A (en) * | 2024-06-25 | 2024-08-06 | 中山大学 | A rapid prediction and precise control method for hydrogen sulfide in urban drainage networks based on artificial intelligence |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102436232A (en) * | 2011-10-18 | 2012-05-02 | 中国石油化工股份有限公司 | High-sulfur natural gas purification plant equipment maintenance system |
CN104007041A (en) * | 2014-04-17 | 2014-08-27 | 河南理工大学 | Device for determining content of hydrogen sulfide in coal bed |
-
2016
- 2016-03-10 CN CN201610136984.5A patent/CN105760695B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102436232A (en) * | 2011-10-18 | 2012-05-02 | 中国石油化工股份有限公司 | High-sulfur natural gas purification plant equipment maintenance system |
CN104007041A (en) * | 2014-04-17 | 2014-08-27 | 河南理工大学 | Device for determining content of hydrogen sulfide in coal bed |
Non-Patent Citations (3)
Title |
---|
FENG JIANG ET AL.: "A biofilm model for prediction of pollutant transformation in sewers", 《WATER RESEARCH》 * |
K SHARMA ET AL.: "PREDICTING HYDROGEN SULFIDE FORMATION IN SEWERS: A NEW MODEL", 《WATER》 * |
ORI LAHAV ET AL.: "A different approach for predicting H2S(g) emission rates in gravity sewers", 《WATER RESEARCH》 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106339586A (en) * | 2016-08-23 | 2017-01-18 | 环境保护部华南环境科学研究所 | Tracing method and prediction method of mustard gas pollution |
CN106339586B (en) * | 2016-08-23 | 2019-01-18 | 环境保护部华南环境科学研究所 | Mustard gas pollutes source tracing method and forecasting procedure |
CN111354425A (en) * | 2020-05-08 | 2020-06-30 | 广西壮族自治区农业科学院 | Method for evaluating soil acidification effect driven by plant harvesting |
CN111982740A (en) * | 2020-06-30 | 2020-11-24 | 中国水利水电科学研究院 | Analysis method for migration and diffusion of water elements based on long-film sediment |
CN112632755A (en) * | 2020-12-03 | 2021-04-09 | 中煤科工集团重庆研究院有限公司 | Comprehensive judgment and identification method for risk of hydrogen sulfide disaster of abandoned oil well in coal mining area |
CN112632755B (en) * | 2020-12-03 | 2024-04-30 | 中煤科工集团重庆研究院有限公司 | Comprehensive judgment method for hydrogen sulfide disaster risk of abandoned oil well in coal mining area |
CN115563862A (en) * | 2022-09-27 | 2023-01-03 | 盐城工学院 | Pipeline hydrogen sulfide prediction method based on optimized combined prediction model |
CN118444575A (en) * | 2024-06-25 | 2024-08-06 | 中山大学 | A rapid prediction and precise control method for hydrogen sulfide in urban drainage networks based on artificial intelligence |
CN118444575B (en) * | 2024-06-25 | 2024-11-05 | 中山大学 | Urban drainage pipe network hydrogen sulfide rapid prediction and accurate control method based on artificial intelligence |
Also Published As
Publication number | Publication date |
---|---|
CN105760695B (en) | 2018-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105760695B (en) | The prediction technique of hydrogen sulfide yield in drainage pipeline | |
Liu et al. | Sulfide and methane production in sewer sediments | |
Liang et al. | Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong | |
CN102799772B (en) | Towards the sample optimization method of prediction of air quality | |
Jin et al. | Non-negligible greenhouse gases from urban sewer system | |
CN106815448A (en) | A kind of river attenuation type pollutant analogy method | |
Chen et al. | Riverine N2O production, emissions and export from a region dominated by agriculture in Southeast Asia (Jiulong River) | |
Chen et al. | Variable sediment methane production in response to different source-associated sewer sediment types and hydrological patterns: Role of the sediment microbiome | |
Chen et al. | Toward better understanding and feasibility of controlling greenhouse gas emissions from treatment of industrial wastewater with activated sludge | |
Xi et al. | A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings | |
Taheriyoun et al. | Biofiltration performance and kinetic study of hydrogen sulfide removal from a real source | |
Chau | A three-dimensional eutrophication modeling in Tolo Harbour | |
Tanaka et al. | Transformations of carbon and sulfur wastewater components under aerobic–anaerobic transient conditions in sewer systems | |
CN105606782A (en) | Energy-saving type water quality monitoring equipment | |
CN105548474A (en) | Determination method of biochemical characteristic map of microorganism carrier for sewage treatment | |
Bove et al. | Development and modelling of a steel slag filter effluent neutralization process with CO2-enriched air from an upstream bioprocess | |
Chau et al. | Two-layered, 2D unsteady eutrophication model in boundary-fitted coordinate system | |
Chau | An unsteady three-dimensional eutrophication model in Tolo harbour, Hong Kong | |
CN104649413A (en) | Method for predicting exposure level of chemicals of anaerobic-anoxia-aerobic treatment system | |
CN115754202A (en) | Sediment pollution release simulation method and simulation device | |
CN104609559A (en) | Exposure level prediction method of organic chemical of anaerobic-aerobic treatment system of wastewater | |
Dylla | Downstream effects on denitrification and nitrous oxide from an advanced wastewater treatment plant upgrade | |
CN112326370A (en) | A collection device and detection method of volatile gas in black and odorous water body | |
Shaw et al. | Gaseous emissions from wastewater facilities | |
Willis et al. | New GHG methodology to estimate/quantify sewer methane |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |