CN105759533A - 一种硅基电光逻辑或/或非门 - Google Patents

一种硅基电光逻辑或/或非门 Download PDF

Info

Publication number
CN105759533A
CN105759533A CN201610210651.2A CN201610210651A CN105759533A CN 105759533 A CN105759533 A CN 105759533A CN 201610210651 A CN201610210651 A CN 201610210651A CN 105759533 A CN105759533 A CN 105759533A
Authority
CN
China
Prior art keywords
2mzi
outfan
bonder
electrooptical switching
2mmi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610210651.2A
Other languages
English (en)
Other versions
CN105759533B (zh
Inventor
陈伟伟
汪鹏君
周利强
杨甜军
张亚伟
李刚
杨建义
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201610210651.2A priority Critical patent/CN105759533B/zh
Publication of CN105759533A publication Critical patent/CN105759533A/zh
Application granted granted Critical
Publication of CN105759533B publication Critical patent/CN105759533B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F3/00Optical logic elements; Optical bistable devices

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

本发明公开了一种硅基电光逻辑或/或非门,包括两个2×2MZI型电光开关和一个2×1MMI耦合器,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器具有第一输入端、第二输入端和输出端,两个2×2MZI型电光开关为第一2×2MZI型电光开关和第二2×2MZI型电光开关;第一2×2MZI型电光开关的第一输出端和2×1MMI耦合器的第一输入端连接,第一2×2MZI型电光开关的第二输出端和第二2×2MZI型电光开关的第一输入端连接,第二2×2MZI型电光开关的第一输出端和2×1MMI耦合器的第二输入端连接,2×1MMI耦合器的输出端为或逻辑输出端,第二2×2MZI型电光开关的第二输出端为或非逻辑输出端;优点是具有高消光比、高速、大带宽和大制作容差。

Description

一种硅基电光逻辑或/或非门
技术领域
本发明涉及一种硅基光逻辑或/或非门,尤其是涉及一种硅基电光逻辑或/或非门。
背景技术
随着现代信息量的迅猛增长,人们对处理器信息处理能力要求越来越高,因此现有的处理器大都采用并行的多核结构。而如何在核与核以及核与外部的存储单元之间实现高效的数据交换与处理成为了亟待解决的问题。虽然速度、功耗以及带宽局限了电互连在现代高性能信息传输和处理系统中的应用,形成所谓的“电子瓶颈”。但是光是理想的信息载体,具有高速、大容量及并行的内在特性,作为目前的优势技术,硅基光子学可为解决这一问题提供了有效的途径。
光逻辑器件在光交换、光计算以及光互连中扮演着重要角色,近年来受到了越来越多的关注。光逻辑或/或非门是基本的光逻辑器件。现有的硅基光逻辑或/或非门,根据处理光信息的方式不同,可分为硅基全光逻辑或/或非门、硅基热光逻辑或/或非门和硅基电光逻辑或/或非门。硅基全光逻辑或/或非门通过利用泵浦光来控制信号光的输出,其工作原理主要是直接或间接地利用波导的非线性效应,譬如硅材料中的双光子吸收效应。虽然硅基全光逻辑或/或非门可以快速的运行,但是通过非线性效应实现逻辑功能时需要大脉冲使其不便于大规模集成。硅基热光逻辑或/或非门是利用硅材料中的热光效应实现电信号控制信号光,没有伴随的附加损耗,便于大规模集成,但是其速度比较慢,处于毫秒量级,远不能满足高速光交换、光计算和光互连的要求。硅基电光逻辑或/或非门利用硅材料具有较强的载流子色散效应来弥补硅基热光逻辑或/或非门速度慢的缺陷。载流子色散效应是硅材料中间接的电光效应,利用外加电压引起载流子浓度发生变化从而改变吸收系数和有效折射率。微环谐振腔具有灵活、紧凑以及低功耗等优势,所以被认为是构建硅基电光逻辑或/或非门的理想基本光学结构单元。但是,采用微环谐振腔结构的硅基电光逻辑或/或非门,由于环与环之间的耦合以及不同波长调谐转换时,容易出现毛刺而导致消光比较低,而且受其客观结构限制带宽较窄,制作容差较小。
发明内容
本发明所要解决的技术问题是提供一种具有高消光比、高速、大带宽和大制作容差的硅基电光逻辑或/或非门。
本发明解决上述技术问题所采用的技术方案为:一种硅基电光逻辑或/或非门,包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器,所述的2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,所述的2×1MMI耦合器具有第一输入端、第二输入端和输出端,所述的两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关和第二2×2MZI型电光开关;所述的第一2×2MZI型电光开关的第一输出端和所述的2×1MMI耦合器的第一输入端连接,所述的第一2×2MZI型电光开关的第二输出端和所述的第二2×2MZI型电光开关的第一输入端连接,所述的第二2×2MZI型电光开关的第一输出端和所述的2×1MMI耦合器的第二输入端连接,所述的2×1MMI耦合器的输出端为或逻辑输出端,所述的第二2×2MZI型电光开关的第二输出端为或非逻辑输出端。
所述的2×2MZI型电光开关包括两个结构相同的相移臂和两个结构相同的2×2MMI耦合器,所述的2×2MMI耦合器具有第一输入端、第二输入端、第一输出端和第二输出端,所述的两个结构相同的2×2MMI耦合器分别为第一2×2MMI耦合器和第二2×2MMI耦合器,所述的两个结构相同的相移臂分别为第一相移臂和第二相移臂;所述的第一2×2MMI耦合器的第一输入端为所述的2×2MZI的第一输入端,所述的第一2×2MMI耦合器的第二输入端为所述的2×2MZI型电光开关的第二输入端,所述的第一2×2MMI耦合器的第一输出端通过所述的第一相移臂和所述的第二2×2MMI耦合器的第一输入端连接,所述的第一2×2MMI耦合器的第二输出端通过所述的第二相移臂和所述的第二2×2MMI耦合器的第二输入端连接,所述的第二2×2MMI耦合器的第一输出端为所述的2×2MZI型电光开关的第一输出端,所述的第二2×2MMI耦合器的第二输出端为所述的2×2MZI型电光开关的第二输出端。该结构通过两个结构相同的基于干涉效应的MZI型电光开关和一个基于自镜像效应的2×1MMI耦合器组合,并利用基于自镜像效应的2×2MMI耦合器作为MZI型电光开关的分束和合束功能单元,可以进一步拓展带宽速度和提高消光比,且具有较大制作容差。
所述的相移臂为矩形波导,所述的矩形波导包括波导主体和衬底,所述的波导主体包括芯层和包覆在所述的芯层外侧的包层,所述的衬底固定在所述的包层的底部,所述的包层的材料为纯二氧化硅,所述的芯层包括从上到下依次连接的上层、中间层和下层,所述的上层和所述的下层的厚度相等且其材料均为硅,所述的中间层由三片厚度相同的石墨烯片和四片厚度相同的电介质片组成,每相邻两片所述的电介质片之间插入一片所述的石墨烯片。该结构中通过材料为硅的上层、中间层和材料为硅的下层来构成芯层,中间层由三片厚度相同的石墨烯片和四片厚度相同的电介质片组成,石墨烯片和电介质片与硅(上层和下层)结合在一起,在施加外部电压时,引起石墨烯片中石墨烯的化学势发生变化,从而改变等效折射率,降低了插入损耗,进一步提高消光比和速度,增大带宽和制作容差。
所述的上层和所述的下层的厚度均为170nm;所述的石墨烯片的厚度为0.34nm;所述的电介质片的材料为二氧化铪,所述的电介质片的厚度为5nm。该结构在维持高消光比、高速、大带宽和大制作容差优势的同时进一步降低功耗、缩短器件长度,便于未来的大规模集成。
与现有技术相比,本发明的优点在于通过两个结构相同的基于干涉效应的2×2MZI型电光开关和一个基于自镜像效应的2×1MMI耦合器来构造硅基电光逻辑或/或非门,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器具有第一输入端、第二输入端和输出端,两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关和第二2×2MZI型电光开关;第一2×2MZI型电光开关的第一输出端和2×1MMI耦合器的第一输入端连接,第一2×2MZI型电光开关的第二输出端和第二2×2MZI型电光开关的第一输入端连接,第二2×2MZI型电光开关的第一输出端和2×1MMI耦合器的第二输入端连接,2×1MMI耦合器的输出端为或逻辑输出端,第二2×2MZI型电光开关的第二输出端为或非逻辑输出端;当输入光从第一2×2MZI型电光开关的第一输入端输入,若加载在第一2×2MZI型电光开关的电压信号处于低电平时,第一2×2MZI型电光开关处于交叉工作状态,光信号从第一2×2MZI型电光开关的第二输出端输出,并经第二2×2MZI型电光开关的第一输入端输入,若加载在第二2×2MZI型电光开关的电压信号处于低电平时,第二2×2MZI型电光开关处于交叉工作状态,光信号从第二2×2MZI型电光开关的第二输出端输出,即从或非逻辑输出端输出;当输入光从第一2×2MZI型电光开关的第一输入端输入,若加载在第一2×2MZI型电光开关的电压信号处于低电平时,第一2×2MZI型电光开关处于交叉工作状态,光信号从第一2×2MZI型电光开关的第二输出端输出,并经第二2×2MZI型电光开关的第一输入端输入,若加载在第二2×2MZI型电光开关的电压信号处于高电平时,第二2×2MZI型电光开关处于直通工作状态,光信号从第二2×2MZI型电光开关的第一输出端输出,并经2×1MMI耦合器的第二输入端输入,2×1MMI耦合器对光信号进行耦合处理后从或逻辑输出端输出;当输入光从第一2×2MZI型电光开关的第一输入端输入,若加载在第一2×2MZI型电光开关的电压信号处于高电平时,第一2×2MZI型电光开关处于直通工作状态,光信号从第一2×2MZI型电光开关的第一输出端输出,并经2×1MMI耦合器的第一输入端输入,2×1MMI耦合器对光信号进行耦合处理后从或逻辑输出端输出;基于干涉效应的MZI型电光开关和基于自镜像效应的MMI耦合器具有高速,大带宽和大制作容差的优势,采用两者实现的硅基电光逻辑或/或非门具有高速,大带宽和大制作容差的特性,同时2×1MMI耦合器具有合束作用,可以补偿两个2×2MZI型电光开关客观存在的无法关断现象对消光比造成的不良影响,从而提高电光逻辑或/或非门的消光比,最终使本发明的硅基电光逻辑或/或非门具有高消光比、高速、大带宽和大制作容差。
附图说明
图1为本发明的硅基电光逻辑或/或非门的结构图;
图2为本发明的硅基电光逻辑或/或非门的2×2MZI型电光开关的结构图;
图3为本发明的硅基电光逻辑或/或非门的相移臂的剖视图;
图4为本发明的硅基电光逻辑或/或非门的2×2MZI型电光开关在化学势为0.5eV时的输出光谱图;
图5为本发明的硅基电光逻辑或/或非门的2×2MZI型电光开关在化学势为0.6eV时的输出光谱图;
图6为本发明的硅基电光逻辑或/或非门在10Gbit/s运行速度下的动态响应结果图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
实施例一:如图1所示,一种硅基电光逻辑或/或非门,包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器1,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器1(多模干涉耦合器)具有第一输入端、第二输入端和输出端,两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关2和第二2×2MZI型电光开关3;第一2×2MZI型电光开关2的第一输出端和2×1MMI耦合器1的第一输入端连接,第一2×2MZI型电光开关2的第二输出端和第二2×2MZI型电光开关3的第一输入端连接,第二2×2MZI型电光开关3的第一输出端和2×1MMI耦合器1的第二输入端连接,2×1MMI耦合器1的输出端为或逻辑输出端,第二2×2MZI型电光开关3的第二输出端为或非逻辑输出端。
本实施例中,2×2MZI型电光开关和2×1MMI耦合器1均采用其技术领域的成熟产品。
实施例二:如图1所示,一种硅基电光逻辑或/或非门,包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器1,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器1具有第一输入端、第二输入端和输出端,两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关2和第二2×2MZI型电光开关3;第一2×2MZI型电光开关2的第一输出端和2×1MMI耦合器1的第一输入端连接,第一2×2MZI型电光开关2的第二输出端和第二2×2MZI型电光开关3的第一输入端连接,第二2×2MZI型电光开关3的第一输出端和2×1MMI耦合器1的第二输入端连接,2×1MMI耦合器1的输出端为或逻辑输出端,第二2×2MZI型电光开关3的第二输出端为或非逻辑输出端。
如图2所示,本实施例中,2×2MZI型电光开关包括两个结构相同的相移臂和两个结构相同的2×2MMI耦合器,2×2MMI耦合器具有第一输入端、第二输入端、第一输出端和第二输出端,两个结构相同的2×2MMI耦合器分别为第一2×2MMI耦合器4和第二2×2MMI耦合器5,两个结构相同的相移臂分别为第一相移臂6和第二相移臂7;第一2×2MMI耦合器4的第一输入端为2×2MZI型电光开关的第一输入端,第一2×2MMI耦合器4的第二输入端为2×2MZI型电光开关的第二输入端,第一2×2MMI耦合器4的第一输出端通过第一相移臂6和第二2×2MMI耦合器5的第一输入端连接,第一2×2MMI耦合器4的第二输出端通过第二相移臂7和第二2×2MMI耦合器5的第二输入端连接,第二2×2MMI耦合器5的第一输出端为2×2MZI型电光开关的第一输出端,第二2×2MMI耦合器5的第二输出端为2×2MZI型电光开关的第二输出端。
本实施例中,2×1MMI耦合器1、2×2MMI耦合器和相移臂均采用其技术领域的成熟产品。
实施例三:如图1所示,一种硅基电光逻辑或/或非门,包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器1,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器1具有第一输入端、第二输入端和输出端,两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关2和第二2×2MZI型电光开关3;第一2×2MZI型电光开关2的第一输出端和2×1MMI耦合器1的第一输入端连接,第一2×2MZI型电光开关2的第二输出端和第二2×2MZI型电光开关3的第一输入端连接,第二2×2MZI型电光开关3的第一输出端和2×1MMI耦合器1的第二输入端连接,2×1MMI耦合器1的输出端为或逻辑输出端,第二2×2MZI型电光开关3的第二输出端为或非逻辑输出端。
如图2所示,本实施例中,2×2MZI型电光开关包括两个结构相同的相移臂和两个结构相同的2×2MMI耦合器,2×2MMI耦合器具有第一输入端、第二输入端、第一输出端和第二输出端,两个结构相同的2×2MMI耦合器分别为第一2×2MMI耦合器4和第二2×2MMI耦合器5,两个结构相同的相移臂分别为第一相移臂6和第二相移臂7;第一2×2MMI耦合器4的第一输入端为2×2MZI型电光开关的第一输入端,第一2×2MMI耦合器4的第二输入端为2×2MZI型电光开关的第二输入端,第一2×2MMI耦合器4的第一输出端通过第一相移臂6和第二2×2MMI耦合器5的第一输入端连接,第一2×2MMI耦合器4的第二输出端通过第二相移臂7和第二2×2MMI耦合器5的第二输入端连接,第二2×2MMI耦合器5的第一输出端为2×2MZI型电光开关的第一输出端,第二2×2MMI耦合器5的第二输出端为2×2MZI型电光开关的第二输出端。
如图3所示,本实施例中,相移臂为矩形波导,矩形波导包括波导主体和衬底,波导主体包括芯层和包覆在芯层外侧的包层8,衬底固定在包层8的底部,包层8的材料为纯二氧化硅,芯层包括从上到下依次连接的上层9、中间层和下层10,上层9和下层10的厚度相等且其材料均为硅,中间层由三片厚度相同的石墨烯片11和四片厚度相同的电介质片12组成,每相邻两片电介质片12之间插入一片石墨烯片11。
本实施例中,2×1MMI耦合器1和2×2MMI耦合器均采用其技术领域的成熟产品。
实施例四:如图1所示,一种硅基电光逻辑或/或非门,包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器1,2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,2×1MMI耦合器1具有第一输入端、第二输入端和输出端,两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关2和第二2×2MZI型电光开关3;第一2×2MZI型电光开关2的第一输出端和2×1MMI耦合器1的第一输入端连接,第一2×2MZI型电光开关2的第二输出端和第二2×2MZI型电光开关3的第一输入端连接,第二2×2MZI型电光开关3的第一输出端和2×1MMI耦合器1的第二输入端连接,2×1MMI耦合器1的输出端为或逻辑输出端,第二2×2MZI型电光开关3的第二输出端为或非逻辑输出端。
如图2所示,本实施例中,2×2MZI型电光开关包括两个结构相同的相移臂和两个结构相同的2×2MMI耦合器,2×2MMI耦合器具有第一输入端、第二输入端、第一输出端和第二输出端,两个结构相同的2×2MMI耦合器分别为第一2×2MMI耦合器4和第二2×2MMI耦合器5,两个结构相同的相移臂分别为第一相移臂6和第二相移臂7;第一2×2MMI耦合器4的第一输入端为2×2MZI型电光开关的第一输入端,第一2×2MMI耦合器4的第二输入端为2×2MZI型电光开关的第二输入端,第一2×2MMI耦合器4的第一输出端通过第一相移臂6和第二2×2MMI耦合器5的第一输入端连接,第一2×2MMI耦合器4的第二输出端通过第二相移臂7和第二2×2MMI耦合器5的第二输入端连接,第二2×2MMI耦合器5的第一输出端为2×2MZI型电光开关的第一输出端,第二2×2MMI耦合器5的第二输出端为2×2MZI型电光开关的第二输出端。
如图3所示,本实施例中,相移臂为矩形波导,矩形波导包括波导主体和衬底,波导主体包括芯层和包覆在芯层外侧的包层8,衬底固定在包层8的底部,包层8的材料为纯二氧化硅,芯层包括从上到下依次连接的上层9、中间层和下层10,上层9和下层10的厚度相等且其材料均为硅,中间层由三片厚度相同的石墨烯片11和四片厚度相同的电介质片12组成,每相邻两片电介质片12之间插入一片石墨烯片11。
本实施例中,2×1MMI耦合器1和2×2MMI耦合器均采用其技术领域的成熟产品。
本实施例中,上层9和下层10的厚度均为170nm;石墨烯片11的厚度为0.34nm;电介质片12的材料为二氧化铪,电介质片12的厚度为5nm。
本实施例的硅基电光逻辑或/或非门中的2×2MZI型电光开关在化学势为0.5eV时的输出光谱图如图4所示,在化学势为0.6eV时的输出光谱图如图5所示。分析图4和图5可知,2×2MZI型电光开关的串扰在1510nm至1600nm内低至-22.2dB,在1531nm至1600nm内小于-24.7dB,插入损耗小于0.08dB。
本实施例的硅基电光逻辑或/或非门在10Gbit/s运行速度下的动态响应结果图如图6所示;两个输入电压信号分别为“00011111100011111110”(电压信号1)和“11110100101001010010”(电压信号2),经过逻辑或运算结果为“11111111101011111110”,逻辑或非运算结果为“00000000010100000001”。分析图6可知或/或非逻辑同时正确地在本实施例的硅基电光逻辑或/或非门的或逻辑输出端和或非逻辑输出端输出正确结果,而且本实施例的硅基电光逻辑或/或非门在1550nm工作波长下实现了最小消光比35.6dB和最大插入损耗0.21dB。

Claims (4)

1.一种硅基电光逻辑或/或非门,其特征在于包括两个结构相同的2×2MZI型电光开关和一个2×1MMI耦合器,所述的2×2MZI型电光开关具有第一输入端、第二输入端、第一输出端和第二输出端,所述的2×1MMI耦合器具有第一输入端、第二输入端和输出端,所述的两个结构相同的2×2MZI型电光开关分别为第一2×2MZI型电光开关和第二2×2MZI型电光开关;所述的第一2×2MZI型电光开关的第一输出端和所述的2×1MMI耦合器的第一输入端连接,所述的第一2×2MZI型电光开关的第二输出端和所述的第二2×2MZI型电光开关的第一输入端连接,所述的第二2×2MZI型电光开关的第一输出端和所述的2×1MMI耦合器的第二输入端连接,所述的2×1MMI耦合器的输出端为或逻辑输出端,所述的第二2×2MZI型电光开关的第二输出端为或非逻辑输出端。
2.根据权利要求1所述的一种硅基电光逻辑或/或非门,其特征在于所述的2×2MZI型电光开关包括两个结构相同的相移臂和两个结构相同的2×2MMI耦合器,所述的2×2MMI耦合器具有第一输入端、第二输入端、第一输出端和第二输出端,所述的两个结构相同的2×2MMI耦合器分别为第一2×2MMI耦合器和第二2×2MMI耦合器,所述的两个结构相同的相移臂分别为第一相移臂和第二相移臂;所述的第一2×2MMI耦合器的第一输入端为所述的2×2MZI型电光开关的第一输入端,所述的第一2×2MMI耦合器的第二输入端为所述的2×2MZI型电光开关的第二输入端,所述的第一2×2MMI耦合器的第一输出端通过所述的第一相移臂和所述的第二2×2MMI耦合器的第一输入端连接,所述的第一2×2MMI耦合器的第二输出端通过所述的第二相移臂和所述的第二2×2MMI耦合器的第二输入端连接,所述的第二2×2MMI耦合器的第一输出端为所述的2×2MZI型电光开关的第一输出端,所述的第二2×2MMI耦合器的第二输出端为所述的2×2MZI型电光开关的第二输出端。
3.根据权利要求2所述的一种硅基电光逻辑或/或非门,其特征在于所述的相移臂为矩形波导,所述的矩形波导包括波导主体和衬底,所述的波导主体包括芯层和包覆在所述的芯层外侧的包层,所述的衬底固定在所述的包层的底部,所述的包层的材料为纯二氧化硅,所述的芯层包括从上到下依次连接的上层、中间层和下层,所述的上层和所述的下层的厚度相等且其材料均为硅,所述的中间层由三片厚度相同的石墨烯片和四片厚度相同的电介质片组成,每相邻两片所述的电介质片之间插入一片所述的石墨烯片。
4.根据权利要求3所述的一种硅基电光逻辑或/或非门,其特征在于所述的上层和所述的下层的厚度均为170nm;所述的石墨烯片的厚度为0.34nm;所述的电介质片的材料为二氧化铪,所述的电介质片的厚度为5nm。
CN201610210651.2A 2016-04-06 2016-04-06 一种硅基电光逻辑或/或非门 Active CN105759533B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610210651.2A CN105759533B (zh) 2016-04-06 2016-04-06 一种硅基电光逻辑或/或非门

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610210651.2A CN105759533B (zh) 2016-04-06 2016-04-06 一种硅基电光逻辑或/或非门

Publications (2)

Publication Number Publication Date
CN105759533A true CN105759533A (zh) 2016-07-13
CN105759533B CN105759533B (zh) 2018-04-24

Family

ID=56334303

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610210651.2A Active CN105759533B (zh) 2016-04-06 2016-04-06 一种硅基电光逻辑或/或非门

Country Status (1)

Country Link
CN (1) CN105759533B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405979A (zh) * 2016-10-18 2017-02-15 中国科学院半导体研究所 集成的全光逻辑器件
CN106444207A (zh) * 2016-10-18 2017-02-22 中国科学院半导体研究所 集成的全光开关
CN108983444A (zh) * 2018-07-18 2018-12-11 宁波大学 基于石墨烯-硅混合集成光波导的电光半加器
CN116029091A (zh) * 2022-11-21 2023-04-28 之江实验室 基于相干传输矩阵法的芯片仿真方法、装置和计算机设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043888A1 (en) * 2009-08-19 2011-02-24 Jds Uniphase Corporation Modulation system and method for generating a return-to-zero (rz) optical data signal
CN103760642A (zh) * 2014-01-15 2014-04-30 中国科学院半导体研究所 一种基于马赫曾德光开关的五端口光学路由器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043888A1 (en) * 2009-08-19 2011-02-24 Jds Uniphase Corporation Modulation system and method for generating a return-to-zero (rz) optical data signal
CN103760642A (zh) * 2014-01-15 2014-04-30 中国科学院半导体研究所 一种基于马赫曾德光开关的五端口光学路由器

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AJAY KUMAR: "Realization of Optical Digital Magnitude Comparator Using Electro-Optic Effect Based Cascaded Mach-Zehnder Interferometer Structure", 《JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS》 *
RABEYA KHATUN: "Optimization of 2x2 MZI Electro-Optic Switch and Its Application as Logic Gate", 《ICCIT2015》 *
SANTOSH KUMAR: "Design of D flip-flop and T flip-flop using Mach–Zehnder interferometers for high-speed communication", 《APPLIED OPTICS》 *
SANTOSH KUMAR: "Implementation of optical switches using Mach–Zehnder interferometer", 《OPTICAL ENGINEERING》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405979A (zh) * 2016-10-18 2017-02-15 中国科学院半导体研究所 集成的全光逻辑器件
CN106444207A (zh) * 2016-10-18 2017-02-22 中国科学院半导体研究所 集成的全光开关
CN108983444A (zh) * 2018-07-18 2018-12-11 宁波大学 基于石墨烯-硅混合集成光波导的电光半加器
CN116029091A (zh) * 2022-11-21 2023-04-28 之江实验室 基于相干传输矩阵法的芯片仿真方法、装置和计算机设备
CN116029091B (zh) * 2022-11-21 2024-02-23 之江实验室 基于相干传输矩阵法的芯片仿真方法、装置和计算机设备

Also Published As

Publication number Publication date
CN105759533B (zh) 2018-04-24

Similar Documents

Publication Publication Date Title
CN105044931B (zh) 硅基集成化的差分电光调制器及其制备方法
CN102591041B (zh) 石墨烯薄膜d型光纤集成式在线电光调制器
CN105759533A (zh) 一种硅基电光逻辑或/或非门
CN102662254B (zh) 基于石墨烯电吸收特性的微环光开关
US11940707B2 (en) High-speed and low-voltage electro-optical modulator based on lithium niobate-silicon wafer
JP2019008163A (ja) 電界吸収型光変調器
CN110109268B (zh) 基于水平三波导耦合器的硅基模式选择开关
CN209606662U (zh) 基于二氧化硅平面光波导的2×2集成光开关
CN101276068A (zh) 基于狭缝波导的马赫-曾德型硅光波导开关
CN103439808B (zh) 一种新型的石墨烯电光调制器结构
CN105759534A (zh) 一种硅基电光逻辑与/与非门
CN110308573A (zh) 一种基于硅/plzt混合波导的马赫曾德尔电光调制器
CN110147000A (zh) 一种基于掩埋型石墨烯电极的有机聚合物光波导吸收型光调制器
CN105158935A (zh) 基于d型超细光纤的石墨烯吸收型电光调制器
US9703021B1 (en) Actively modulated plasmonic devices
JP2019159273A (ja) 電界吸収型光変調器
CN106707657A (zh) 一种基于微环谐振器的控制交换门光学逻辑器件
US7079714B2 (en) Electro-optic devices having flattened frequency response with reduced drive voltage
CN110221385A (zh) 一种基于石墨烯的波导集成的多模电光调制器及制作方法
CN105807454A (zh) 一种基于黑磷氟化物波导的中红外电光调制器
US20210116726A1 (en) Dual-slab-layer low-loss silicon optical modulator
CN116381967A (zh) 一种极化反转的铌酸锂差分调制器及芯片
CN111240051A (zh) 一种基于表面等离子定向耦合式电光调制器
CN107102454A (zh) 基于氧化铟锡光纤型偏振无关的吸收型电光调制器
CN104678676B (zh) 一种基于微环谐振器的可逆光学逻辑器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant