CN105759186B - 一种gis现场行波试验方法和系统 - Google Patents

一种gis现场行波试验方法和系统 Download PDF

Info

Publication number
CN105759186B
CN105759186B CN201610195339.0A CN201610195339A CN105759186B CN 105759186 B CN105759186 B CN 105759186B CN 201610195339 A CN201610195339 A CN 201610195339A CN 105759186 B CN105759186 B CN 105759186B
Authority
CN
China
Prior art keywords
gis
resistor
waveform
wave
oil immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610195339.0A
Other languages
English (en)
Other versions
CN105759186A (zh
Inventor
张乔根
文韬
张玲俐
郭璨
马径坦
秦逸帆
游浩洋
陈维江
殷禹
时卫东
李晓昂
赵军平
刘轩东
庞磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Xian Jiaotong University
Original Assignee
State Grid Corp of China SGCC
China Electric Power Research Institute Co Ltd CEPRI
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, China Electric Power Research Institute Co Ltd CEPRI, Xian Jiaotong University filed Critical State Grid Corp of China SGCC
Priority to CN201610195339.0A priority Critical patent/CN105759186B/zh
Publication of CN105759186A publication Critical patent/CN105759186A/zh
Application granted granted Critical
Publication of CN105759186B publication Critical patent/CN105759186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • G01R31/1254Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials of gas-insulated power appliances or vacuum gaps

Abstract

本公开涉及一种GIS现场行波试验方法和系统,所述方法采用类似标准雷电冲击和操作冲击的双指数电压波形来替代和等价VFTO(特快速瞬态过电压),使其既能真实反映VFTO(特快速瞬态过电压)作用下GIS绝缘特性,又方便可调。与较长的GIS进行试验时,无需考虑负载电容,从而实现大容量试品冲击耐压试验。另外,本公开为提供了一种装置系统以方便所述方法的实现。

Description

一种GIS现场行波试验方法和系统
技术领域
本公开涉及高电压试验技术领域,特别是一种GIS现场行波试验方法和系统。
背景技术
气体绝缘开关设备(Gas Insulated Switchgear,简称GIS)具有占地面积小,密封性好,受环境影响小,运行可靠性高,检修周期长,维护工作量少,运行费用低等显著优点,在我国电网得到了广泛应用,并已成功应用到特高压试验示范工程。GIS中的隔离开关、接地开关和断路器操作时,会产生幅值较高(高达2.5p.u.)、陡度很大(波头时间可低至数ns)、频率很高(高达100MHz)的特快速瞬态过电压(Very Fast Transient Overvoltage,简称VFTO)。对设备安全运行构成了严重威胁。
VFTO(特快速瞬态过电压)作用下GIS绝缘特性是当前研究的一个热点问题。相关研究表明,陡上升沿的振荡型冲击电压(类似实际VFTO(特快速瞬态过电压))对GIS的绝缘特性影响很大,用这种波形来考核GIS绝缘特性更有效。但此种振荡型冲击电压的波形参数较多(上升沿、主振荡频率、叠加高频振荡频率、振荡幅度、衰减时间等),且受回路参数影响较大,对于不同负载进行试验时,很难产生出波形参数较为一致的试验电压,不利于相关试验标准的制定及现场应用,并且对大容量试品进行冲击试验时,往往容易出现波形不达标的问题。
发明内容
针对上述问题,本公开提供了提出一种GIS现场行波试验方法和系统,采用类似标准雷电冲击和操作冲击的双指数电压波形来替代和等价VFTO(特快速瞬态过电压),使其既能真实反映VFTO(特快速瞬态过电压)作用下GIS绝缘特性,又方便可调。与较长的GIS进行试验时,无需考虑负载电容,从而实现大容量试品冲击耐压试验。
本公开提供了一种GIS现场行波试验方法,所述方法包括下述步骤:
S100、使用设备进行耐压试验,分别获取陡前沿冲击波形的波形参数下、标准雷电冲击波形的波形参数下、双指数冲击波形的波形参数下设备的绝缘特性;
S200、将所述标准雷电冲击波形的波形参数、陡前沿冲击波形的波形参数与所述双指数冲击波形的波形参数下的绝缘特性进行对比,确定波形转换特征曲线;
S300、获取在现行标准雷电冲击试验标准下试验电压值;
S400、将步骤S300中获取的电压值结合所述波形转换特征曲线,确定GIS现场行波试验电压值。
本公开还提供了一种GIS现场行波试验的系统,所述系统包括紧凑型冲击电压发生装置;
所述紧凑型冲击电压发生装置包括油浸式冲击电压发生器和GIS罐体;
在油浸式冲击电压发生器和GIS罐体之间设有陡化间隙;
所述油浸式冲击电压发生器包括Marx发生器和调波电阻,通过调节调波电阻使油浸式冲击电压发生器输出满足试验所需的电压波形。
本公开提供的GIS现场行波试验方法和系统,既可解决现场对大容量试品进行试验时波形超标问题,亦可真实反映VFTO(特快速瞬态过电压)作用下GIS绝缘特性。
附图说明
图1为本公开一个实施例中的GIS现场行波试验电压值确定流程图;
图2-1,图2-2,图2-3分别为本公开一个实施例中的双指数陡前沿冲击电压波形示意图、标准雷电冲击电压波形示意图、陡前振荡冲击电压波形示意图;
图3为本公开一个实施例中的紧凑型冲击电压发生装置结构示意图;
图4为本公开一个实施例中的紧凑型冲击电压发生装置与现场GIS对接示意图;
图5为本公开一个实施例中的紧凑型冲击电压发生装置与现场GIS对行波试验电路原理图。
具体实施方式
在一个实施例中,如图1所示,提供了一种GIS现场行波试验方法,所述方法包括下述步骤:
S100、使用设备进行耐压试验,分别获取陡前沿冲击波形的波形参数下、标准雷电冲击波形的波形参数下、双指数冲击波形的波形参数下设备的绝缘特性,分别如图2-1,图2-2,图2-3所示;
S200、将所述标准雷电冲击波形的波形参数下、陡前沿冲击波形的波形参数下与双指数冲击波形的波形参数下的绝缘特性进行对比,确定波形转换特征曲线;
S300、获取在现行标准雷电冲击试验标准下试验电压值;
S400、将步骤S300中获取的电压值结合所述波形转换特征曲线,确定GIS现场行波试验电压值。
图2-3为本公开中双指数陡前沿冲击电压波形示意图,定义其波前时间为Tf,波尾巴时间为Tt,其计算公式为:
Tf=(t2-t1)/0.6
Tt=t3
其中:
t1为电压上升到30%峰值电压对应的时间;
t2为电压上升到90%峰值电压对应的时间;
t3为电压下降到50%峰值电压对应的时间。
在耐压试验时,生成的双指数冲击波形的波前时间Tf在20~100ns范围内较为合适,而波尾时间Tf根据试验线路长短在1~4μs范围内较为合适。
具体地,对于同一电压等级的设备,可以确定相应的比例系数,从而确定试验电压值。这部分工作可以在实验室里完成的,然后根据实验结果,确定双指数冲击的试验电压值的一个规范,这样在做实验时,按照规范来进行即可。比如对于标准雷电冲击,某种电压等级设备的试验电压是U1,通过试验获得行波(即双指数冲击,波前时间、波尾时间与标准雷电冲击不同)与标准雷电的比例系数是k(即行波50%击穿电压是标准雷电冲击的k倍),那么用行波进行试验时,所施加电压为kU1。其中,所需的波形转换曲线使用试验结果拟合。
在一个实施例中,采用50%击穿电压对比或者伏秒特性对比。例如,采用50%击穿电压对比,可对不同波形下,同种设备试样进行耐压试验,获得50%击穿电压,通过比较50%击穿电压的大小,获得比例系数,然后以标准雷电冲击为标准,获得双指数冲击电压的试验电压值。如,某种双指数冲击下的50%击穿电压是0.8,而标准雷电下的是1,则比例系数是0.8,在用该种双指数冲击进行试验时的电压应为标准雷电冲击的0.8倍。
优选的,所述S100中设备包括紧凑型冲击电压发生装置;所述紧凑型冲击电压发生装置,如图3所示,包括油浸式冲击电压发生器和GIS罐体;其中,油浸式冲击电压发生器作为电压产生部分,在油浸式冲击电压发生器和GIS罐体之间设有陡化间隙;所述油浸式冲击电压发生器包括Marx发生器和调波电阻,通过调节调波电阻使油浸式冲击电压发生器输出满足试验所需的电压波形。进行双指数陡前沿冲击电压试验时,将陡化间隙短接。当双指数陡前沿冲击电压波形的等效波长小于负载GIS的电气尺寸时,负载GIS可看作传输线,即当分布参数对待。通过合理调节调波电阻参数,可消除负载电容对波形参数的影响。对于单极性的冲击电压,所述等效波长,定义其脉冲电压从起始电压值0点——上升——再下降到0点这段时间为T,电压传播速度v,则等效波长为2×v×T。其中,一般取0.8倍的光速。
在这个实施例中,所述紧凑型冲击电压发生装置回路紧凑,装置体积小,方便运输,适用于现场实际应用。
优选的,所述调波电阻采用双线对绕电阻,其具有功率大,电感小的特点。
由于所述双指数陡前沿冲击电压波形较传统标准雷电冲击和操作冲击等效波长短,现场GIS回路较长,故紧凑型冲击电压发生装置中的GIS应作传输线分布参数对待,因此,所述GIS现场行波试验系统就需考虑波阻抗匹配问题。在调波电阻的设计上,优选的,所述调波电阻包括第一电阻,第二电阻和第三电阻;其中,第一电阻与油浸式冲击电压发生器串联后与第三电阻并联;第一电阻、油浸式冲击电压发生器、第三电阻与第二电阻串联;第二电阻与GIS罐体的波阻抗相匹配;第三电阻与油浸式冲击电压发生器并联后与GIS罐体的波阻抗相匹配。调节时,可以利用波在传播过程中的折反射原理,优化调波电阻的参数,使得阻抗匹配,以消除负载电容对波形参数的影响。
优选的,所述紧凑型冲击电压发生装置通过阻抗变换器与现场GIS对接。通过阻抗变换器可实现所述紧凑型冲击电压发生装置与现场不同电压等级GIS的对接,使紧凑型冲击电压发生装置波阻抗平滑过渡至现场GIS,避免电压波形在转接口的反射。所述阻抗变换器一方面实现了电气连接,并形成封闭气室;另一方面,能使波阻抗连续变化,而不是突变,这样就避免了折反射。在一个实施例中,GIS罐体中的GIS采用1100kV的GIS结构设计,现场GIS为550kV,使用阻抗变换器将GIS罐体和现场GIS相连,可以将GIS罐体的波阻抗平滑过渡到现场GIS的波阻抗,如图4所示。
在一个实施例中,一种电路部署方式如图5所示,图中,第一电阻Rf1、第二电阻Rf2和第三电阻Rt为调波电阻,Z1、Z2分别为GIS短母线与现场GIS的波阻抗,a、b、c和d为4个节点。当双指数陡前沿冲击电压波形的等效波长小于负载GIS电气尺寸时,负载GIS可看作传输线,当分布参数对待,合理的调节调波电阻参数,可消除负载电容对波形参数的影响。当冲击电压发生器产生的冲击进过调波电阻后,在节点b处可得到所需的双指数陡前沿冲击电压,Z1和Z2经过变阻抗转接装置,将阻抗Z1平滑过渡到Z2,电压波形在节点c处不发生反射;当试验间隙(即现场GIS)不击穿时,末端看作开路,在节点d处发生全反射,电压波形传至节点b时,由于Rf2与Z1相等,故在节点b处不发生反射,电压波形传至节点a;Rt与冲击电压发生器并联后的阻抗可认为仍为Rt,Rt=Rf2,故电压波形在节点a处不发生反射,通过Rt全部传入大地。若试验间隙击穿,则电压波形在节点d处全部传入大地。
优选的,所述GIS罐体包括GIS短母线、实验气室以及不同等级的绝缘控件。利用所述方法,在一个实施例中,采用球板间隙来模拟无缺陷GIS中稍不均匀场绝缘结构以及110kV无缺陷支柱绝缘子、220kV无缺陷盆式绝缘子,试验研究不同波前和波尾的双指数陡前沿冲击电压下的绝缘特性,并与陡前沿振荡冲击及标准雷电冲击下绝缘特性进行比较,为VFTO(特快速瞬态过电压)等价试验标准波形的确定提供依据。在另一个实施例中,采用不同曲率半径的尖-板间隙和电极表面粗糙来模拟GIS中局部电场集中、以及绝缘子表面脏污、附着微粒、电极屏蔽不良来模拟绝缘子沿面电场集中,试验研究不同波前和波尾陡波下双指数陡前沿冲击下的绝缘特性,并与陡前沿振荡冲击和标准雷电冲击绝缘特性进行对比,可以为GIS设备绝缘缺陷检测的陡波前冲击试验波形提供依据。
在一个实施例中,本公开提供了一种可以实现本方法的装置系统。一种GIS现场行波试验的系统,所述系统包括紧凑型冲击电压发生装置;
所述紧凑型冲击电压发生装置,如图3所示,包括油浸式冲击电压发生器和GIS罐体;其中,油浸式冲击电压发生器作为电压产生部分,在油浸式冲击电压发生器和GIS罐体之间设有陡化间隙;所述油浸式冲击电压发生器包括Marx发生器和调波电阻,通过调节调波电阻使油浸式冲击电压发生器输出满足试验所需的电压波形。进行双指数陡前沿冲击电压试验时,将陡化间隙短接。当双指数陡前沿冲击电压波形的等效波长小于负载GIS的电气尺寸时,负载GIS可看作传输线,当分布参数对待,合理的调节调波电阻参数,可消除负载电容对波形参数的影响。对于单极性的冲击电压,所述等效波长,定义其脉冲电压从起始电压值0点——上升——再下降到0点这段时间为T,电压传播速度v(一般取0.8倍的光速),则等效波长为2×v×T。
在这个实施例中,所述紧凑型冲击电压发生装置回路紧凑,装置体积小,方便运输,适用于现场实际应用。
优选的,所述调波电阻采用双线对绕电阻。这样使得调波电阻具有功率大,电感小的特点。
由于所述双指数陡前沿冲击电压波形较传统标准雷电冲击和操作冲击等效波长短,现场GIS回路较长,故紧凑型冲击电压发生装置中的GIS应作传输线分布参数对待,因此,所述GIS现场行波试验系统就需考虑波阻抗匹配问题。在调波电阻的设计上,优选的,所述调波电阻包括第一电阻,第二电阻和第三电阻;其中,第一电阻与油浸式冲击电压发生器串联后与第三电阻并联;第一电阻、油浸式冲击电压发生器、第三电阻与第二电阻串联;第二电阻与GIS罐体的波阻抗相匹配;第三电阻与油浸式冲击电压发生器并联后与GIS罐体的波阻抗相匹配。调节时,可以利用波在传播过程中的折反射原理,优化调波电阻的参数,使得阻抗匹配,以消除负载电容对波形参数的影响。
优选的,所述紧凑型冲击电压发生装置通过阻抗变换器与现场GIS对接。通过阻抗变换器可实现所述紧凑型冲击电压发生装置与现场不同电压等级GIS的对接,使紧凑型冲击电压发生装置波阻抗平滑过渡至现场GIS,避免电压波形在转接口的反射。所述阻抗变换器一方面实现了电气连接,并形成封闭气室;另一方面,能使波阻抗连续变化,而不是突变,这样就避免了折反射。在一个实施例中,GIS罐体中的GIS采用1100kVGIS结构设计,现场GIS为550kV,使用阻抗变换器将GIS罐体和现场GIS相连,可以将GIS罐体的波阻抗平滑过渡到现场GIS的波阻抗,如图4所示。
优选的,一种电路部署方式如图5所示,图中,第一电阻Rf1、第二电阻Rf2和第三电阻Rt为调波电阻,Z1、Z2分别为GIS短母线与现场GIS的波阻抗,a、b、c和d为4个节点。当双指数陡前沿冲击电压波形的等效波长小于负载GIS电气尺寸时,负载GIS可看作传输线,当分布参数对待,合理的调节调波电阻参数,可消除负载电容对波形参数的影响。当冲击电压发生器产生的冲击进过调波电阻后,在节点b处可得到所需的双指数陡前沿冲击电压,Z1和Z2经过变阻抗转接装置,将阻抗Z1平滑过渡到Z2,电压波形在节点c处不发生反射;当试验间隙(即现场GIS)不击穿时,末端看作开路,在节点d处发生全反射,电压波形传至节点b时,由于Rf2与Z1相等,故在节点b处不发生反射,电压波形传至节点a;Rt与冲击电压发生器并联后的阻抗可认为仍为Rt,Rt=Rf2,故电压波形在节点a处不发生反射,通过Rt全部传入大地。若试验间隙击穿,则电压波形在节点d处全部传入大地。
优选的,所述GIS罐体包括GIS短母线、实验气室以及不同等级的绝缘控件。在一个实施例中,采用球板间隙来模拟无缺陷GIS中稍不均匀场绝缘结构以及110kV无缺陷支柱绝缘子、220kV无缺陷盆式绝缘子,可以用于试验研究不同波前和波尾的双指数陡前沿冲击电压下的绝缘特性,为VFTO(特快速瞬态过电压)等价试验标准波形的确定提供双指数陡前沿冲击电压波形依据。在另一个实施例中,采用不同曲率半径的尖-板间隙和电极表面粗糙来模拟GIS中局部电场集中、以及绝缘子表面脏污、附着微粒、电极屏蔽不良来模拟绝缘子沿面电场集中,试验研究不同波前和波尾陡波下双指数陡前沿冲击下的绝缘特性,可以为GIS设备绝缘缺陷检测的双指数陡波前冲击试验波形提供依据。
以上对本公开进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (7)

1.一种GIS现场行波试验方法,其特征在于,所述方法包括下述步骤:
S100、使用设备进行耐压试验,分别获取陡前沿冲击波形的波形参数下、标准雷电冲击波形的波形参数下、双指数冲击波形的波形参数下设备的绝缘特性;
S200、将所述标准雷电冲击波形的波形参数下、陡前沿冲击波形的波形参数下与双指数冲击波形的波形参数下的绝缘特性进行对比,确定波形转换特征曲线;
S300、获取在现行标准雷电冲击试验标准下试验电压值;
S400、将步骤S300中获取的电压值结合所述波形转换特征曲线,确定GIS现场行波试验电压值;
其中,所述S100中设备包括紧凑型冲击电压发生装置;
所述紧凑型冲击电压发生装置包括油浸式冲击电压发生器和GIS罐体;
在油浸式冲击电压发生器和GIS罐体之间设有陡化间隙;
所述油浸式冲击电压发生器包括Marx发生器和调波电阻,通过调节调波电阻使Marx发生器输出满足试验所需的电压波形。
2.根据权利要求1所述的方法,其特征在于,所述调波电阻采用双线对绕电阻。
3.根据权利要求1所述的方法,其特征在于,所述调波电阻包括第一电阻,第二电阻和第三电阻;其中,
第一电阻与油浸式冲击电压发生器串联后与第三电阻并联;
第一电阻、油浸式冲击电压发生器、第三电阻与第二电阻串联;
第二电阻与GIS罐体的波阻抗相匹配;
第三电阻与油浸式冲击电压发生器并联后与GIS罐体的波阻抗相匹配。
4.根据权利要求1所述的方法,其特征在于,在所述S300之前,还包括使用阻抗变换器将步骤S100中设备与现场GIS进行对接。
5.一种GIS现场行波试验的系统,其特征在于,所述系统包括紧凑型冲击电压发生装置;
所述紧凑型冲击电压发生装置包括油浸式冲击电压发生器和GIS罐体;
在油浸式冲击电压发生器和GIS罐体之间设有陡化间隙;
所述油浸式冲击电压发生器包括Marx发生器和调波电阻,通过调节调波电阻使油浸式冲击电压发生器输出满足试验所需的电压波形,所述调波电阻包括第一电阻,第二电阻和第三电阻;其中,
第一电阻与油浸式冲击电压发生器串联后与第三电阻并联;
第一电阻、油浸式冲击电压发生器、第三电阻与第二电阻串联;
第二电阻与GIS罐体的波阻抗相匹配;
第三电阻与油浸式冲击电压发生器并联后与GIS罐体的波阻抗相匹配。
6.根据权利要求5所述的系统,其特征在于,所述调波电阻采用双线对绕电阻。
7.根据权利要求5所述的系统,其特征在于,所述紧凑型冲击电压发生装置通过阻抗变换器与现场GIS对接。
CN201610195339.0A 2016-03-31 2016-03-31 一种gis现场行波试验方法和系统 Active CN105759186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610195339.0A CN105759186B (zh) 2016-03-31 2016-03-31 一种gis现场行波试验方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610195339.0A CN105759186B (zh) 2016-03-31 2016-03-31 一种gis现场行波试验方法和系统

Publications (2)

Publication Number Publication Date
CN105759186A CN105759186A (zh) 2016-07-13
CN105759186B true CN105759186B (zh) 2018-10-19

Family

ID=56346854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610195339.0A Active CN105759186B (zh) 2016-03-31 2016-03-31 一种gis现场行波试验方法和系统

Country Status (1)

Country Link
CN (1) CN105759186B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802390B (zh) * 2017-01-11 2019-08-13 平高集团有限公司 一种特快速瞬态过电压抑制设备的测试方法及装置
CN107192943A (zh) * 2017-06-15 2017-09-22 国家电网公司 基于开关操作辐射电场测量的gis内开关故障诊断方法
CN107765176A (zh) * 2017-10-16 2018-03-06 云南电网有限责任公司电力科学研究院 气体绝缘开关陡前沿冲击电压确定方法及装置
CN109061419B (zh) * 2018-08-27 2020-11-20 云南电网有限责任公司电力科学研究院 复合vfto作用下绝缘油绝缘强度试验系统及方法
CN108957264B (zh) * 2018-08-27 2023-10-27 云南电网有限责任公司电力科学研究院 Vfto和雷击过电压作用下的gis试验系统及方法
CN109839579A (zh) * 2018-12-27 2019-06-04 国网浙江诸暨市供电有限公司 智能限压器雷电流冲击试验装置
CN110095715A (zh) * 2019-05-07 2019-08-06 西安交通大学 一种模拟暂态脉冲电应力作用的自动化试验装置及方法
CN111220883B (zh) * 2020-01-15 2021-04-13 西安交通大学 基于陡波电压的盆式绝缘子绝缘缺陷的检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865939A (zh) * 2010-06-17 2010-10-20 中国电力科学研究院 一种快速暂态过电压的生成装置
CN102901917A (zh) * 2012-10-22 2013-01-30 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲的现场生成装置
CN202854283U (zh) * 2012-10-22 2013-04-03 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲的现场生成装置
CN103278750A (zh) * 2013-04-25 2013-09-04 国家电网公司 陡前沿冲击电压现场gis试验装置
CN103605052A (zh) * 2013-11-19 2014-02-26 国家电网公司 一种gis现场振荡型冲击耐压试验波形调节系统和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101865939A (zh) * 2010-06-17 2010-10-20 中国电力科学研究院 一种快速暂态过电压的生成装置
CN102901917A (zh) * 2012-10-22 2013-01-30 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲的现场生成装置
CN202854283U (zh) * 2012-10-22 2013-04-03 云南电力试验研究院(集团)有限公司电力研究院 一种陡前沿脉冲的现场生成装置
CN103278750A (zh) * 2013-04-25 2013-09-04 国家电网公司 陡前沿冲击电压现场gis试验装置
CN103605052A (zh) * 2013-11-19 2014-02-26 国家电网公司 一种gis现场振荡型冲击耐压试验波形调节系统和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
2_5MV特快速瞬态过电压发生器;殷禹 等;《中国电机工程学报》;20111005;第31卷(第31期);48-55 *
气体绝缘金属封闭变电站_GIS_中快速瞬态过电压的测量研究;张志龙;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20100315(第3期);C042-110 *
特快速暂态过电压和雷电冲击下SF_6长间隙伏秒特性;张璐 等;《高电压技术》;20130630;第39卷(第6期);1396-1401 *
特快速瞬态过电压和雷电冲击作用下特高压GIS绝缘特性;张璐 等;《高电压技术》;20120229;第38卷(第2期);335-341 *

Also Published As

Publication number Publication date
CN105759186A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105759186B (zh) 一种gis现场行波试验方法和系统
CN101799488B (zh) 一种标定电压的产生装置和方法
Wilson et al. Effect of applied field and rate of voltage rise on surface breakdown of oil-immersed polymers
CN111398850A (zh) 依据电力电缆故障点放电特性设计的故障点模拟装置及方法
CN103278750A (zh) 陡前沿冲击电压现场gis试验装置
CN103559406B (zh) 一种超高压gis耐压试验仿真系统及方法
CN108254662A (zh) 局部放电模拟装置
Yamamoto et al. An experimental study of lightning overvoltages in wind turbine generation systems using a reduced‐size model
CN204241625U (zh) 一种基于超低频交流的耐压测距装置
CN108490379A (zh) 一种基于自激振荡波的变压器绕组波过程校验方法
CN107765176A (zh) 气体绝缘开关陡前沿冲击电压确定方法及装置
CN107576828B (zh) 冲击电压发生器多开关同步触发装置及方法
Popov et al. An efficient algorithm for fault location on mixed line-cable transmission corridors
Wenqi et al. Theoretical and experimental study of spread spectral domain reflectometry
Li et al. Research on arc model of disconnector for conduction interference of electronic transformer
CN107179501A (zh) 一种单相断路器分闸重击穿模拟实验装置
He et al. Simulation studies on very fast transient overvoltage
He et al. The experimental research of secondary arc in 1000kV UHV systems in China
Szewczyk et al. New disconnector model for Very Fast Transient studies in High Voltage Gas Insulated Substations
He et al. Test device of power frequency voltage imposed with impulse voltage
Jena et al. Detection of High Impedance Fault
Grąkowski et al. Analysis of earth faults in the MV grid using the EMTP-ATP program
Zhao et al. Immunity requirements for secondary equipment with regard to switching operations of disconnectors in substations
Xie et al. A Method for Fault Pole Selection of DC Lines Based on Travelling Wave
Filik et al. Experimental investigation of the effectiveness of lightning protection system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant