CN105751511B - 双光子聚合3d打印机及打印方法 - Google Patents

双光子聚合3d打印机及打印方法 Download PDF

Info

Publication number
CN105751511B
CN105751511B CN201610248316.1A CN201610248316A CN105751511B CN 105751511 B CN105751511 B CN 105751511B CN 201610248316 A CN201610248316 A CN 201610248316A CN 105751511 B CN105751511 B CN 105751511B
Authority
CN
China
Prior art keywords
laser
printing
femto
photon
light path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610248316.1A
Other languages
English (en)
Other versions
CN105751511A (zh
Inventor
李勃
朱朋飞
许国军
王进
周济
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen International Graduate School of Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201610248316.1A priority Critical patent/CN105751511B/zh
Publication of CN105751511A publication Critical patent/CN105751511A/zh
Application granted granted Critical
Publication of CN105751511B publication Critical patent/CN105751511B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)

Abstract

一种双光子聚合3D打印机及打印方法,该打印机包括飞秒激光脉冲系统、亚微米级精度运动平台、CCD监控系统和控制电脑,飞秒激光脉冲系统具有用于产生600‑1000nm双光子激光的飞秒激光器,用于将所述双光子激光汇聚后输出的物镜,光路开关和衰减片;CCD监控系统通过分色镜与飞秒激光脉冲系统的光路连接;控制电脑分别与所述飞秒激光器、光路开关、运动控制系统和CCD监控系统连接。该打印方法包括:通过CCD监控系统调节合适的打印起始位置;将要打印的模型切片生成控制代码;控制电脑控制运动平台和光路开关实现双光子聚合打印;如此逐层打印;之后,溶解掉未交联的光敏树脂。本发明可实现微纳米打印精度。

Description

双光子聚合3D打印机及打印方法
技术领域
本发明属于3D打印技术领域,具体涉及一种双光子聚合3D打印机及打印方法。
背景技术
3D打印是新兴加工制造技术,相对于传统的减材制造模式,以增材制造为基础的3D打印技术具有革命性的意义。但是,现在大多数的3D打印机均无法打印亚微米结构,对于常见的SLA和FDM技术,其打印工件尺寸均在毫米以上范围内。对于小于1mm的结构,常规的3D打印技术无法满足加工要求。
发明内容
本发明的目的是提供一种双光子聚合3D打印机及打印方法,以满足微纳尺度打印。
本发明的技术方案如下:
一种双光子聚合3D打印机,其包括:
飞秒激光脉冲系统,具有:用于产生600-1000nm双光子激光的飞秒激光器,用于将所述双光子激光汇聚后输出的物镜,在所述飞秒激光器到所述物镜的光路上的光路开关和衰减片;
亚微米级精度运动平台,用于承载光敏树脂以及在运动控制系统的控制下移动光敏树脂;
CCD监控系统,通过分色镜与飞秒激光脉冲系统的光路连接;以及
控制电脑,分别与所述飞秒激光器、光路开关、运动控制系统和CCD监控系统连接。
在上述的双光子聚合3D打印机中,优选地,飞秒激光脉冲系统的光路上还具有反射镜和扩束镜,从飞秒激光器到物镜,所述光路开关、衰减片、扩束镜、反射镜、分色镜顺次设置。
在一些方案中,所述运动平台为三维运动平台,光敏树脂设置于该三维运动平台上的敞口容器内,所述物镜设置于三维运动平台上方。
在另一些方案中,所述运动平台为Z轴运动平台,所述物镜由二维激光振镜驱动能够在X/Y平面进行扫描。
一种双光子聚合3D打印机的打印方法,该打印方法采用的打印机包括:
飞秒激光脉冲系统,具有:用于产生600-1000nm双光子激光的飞秒激光器,用于将所述双光子激光汇聚后输出的物镜,在所述飞秒激光器到所述物镜的光路上的光路开关和衰减片;
亚微米级精度运动平台,用于承载光敏树脂以及在运动控制系统的控制下移动光敏树脂;
CCD监控系统,通过分色镜与飞秒激光脉冲系统的光路连接;以及
控制电脑,分别与所述飞秒激光器、光路开关、运动控制系统和CCD监控系统连接;
该打印方法包括:
通过CCD监控系统调节合适的打印起始位置;
将要打印的模型切片生成控制代码;
控制电脑执行所述控制代码,一方面控制运动平台或者运动平台和所述物镜按照预定的轨迹运动,另一方面控制光路开关,以在合适的位置曝光使相应位置的光敏树脂发生聚合而固化,从而实现双光子聚合打印;如此逐层打印;
在打印完毕之后,溶解掉未交联的光敏树脂。
在上述的双光子聚合3D打印机的打印方法中,优选地,飞秒激光脉冲系统的光路上还具有反射镜和扩束镜,从飞秒激光器到物镜,所述光路开关、衰减片、扩束镜、反射镜(转镜)、分色镜顺次设置;打印中,飞秒激光器产生双光子激光,经过光路开关、衰减片、扩束镜、反射镜和物镜将激光聚焦,来使光敏树脂交联。
在上述的双光子聚合3D打印机的打印方法中,优选地,所述运动平台为Z轴运动平台,物镜由二维激光振镜驱动能够在X/Y平面进行扫描;打印中,控制电脑执行所述控制代码,通过二维激光振镜驱动物镜在X/Y平面进行扫描,在当前层打印完后,通过Z轴运动平台带动光敏树脂向下运动,定位到另一层。
相对于普通的SLA 3D打印光聚合采用紫外波长的激光(250-400nm),光子能量高,光经过的地方均发生聚合,本发明双光子聚合采用近红外波长(600-1000nm)的激光,近红外波长光子能量低,线性吸收及瑞利散射小,在介质中穿透性高,引发剂或光敏剂在光子强度高的焦点处才会产生双光子聚合,进而引发液态树脂发生聚合而固化。因此,双光子聚合3D打印机具有空间性。
由于采用了飞秒激光系统来进行光敏树脂的固化交联,其分辨率可以通过调节激光的能量、曝光量,三维运动平台的扫描速率来改变,精度可以达到<100nm,即能够满足微纳尺度打印。
附图说明
图1为本发明的一些实施例双光子聚合3D打印机的组成示意图;
图2为普通SLA单光子聚合和双光子聚合的原理区别示意图。
具体实施方式
下面结合附图和实施例对本发明进一步说明。
参照图1,一些实施例中,双光子聚合3D打印机包括:飞秒激光脉冲系统100,控制电脑200,CCD监控系统300,3D精密滑台(亚微米级精度运动平台)600,3D精密滑台的运动控制系统500。
飞秒激光脉冲系统100具有:飞秒激光器110,光路开关120,衰减片130,扩束镜140,转镜(反射镜)150,物镜170。飞秒激光器110用于产生600-1000nm双光子激光。该激光经过光路开关120、衰减片130、扩束镜140、转镜150和物镜170将激光聚焦到一个点,来使光固化树脂交联。光路开关120、衰减片130用于调节曝光时间和光强。
CCD监控系统300通过分色镜400与飞秒激光脉冲系统100的光路连接。CCD监控系统300通过分色镜400和双光子激光聚焦到一个点,来对打印过程进行实时监控,从而保证打印中模型固定在树脂槽底部而不会发生位移。
3D精密滑台600用于承载光敏树脂以及在运动控制系统500的控制下移动光敏树脂。具体地,在3D精密滑台600上安装有树脂槽610(敞口容器),光敏树脂装于树脂槽610中。3D精密滑台600可以采用空气直线轴承或压电滑台,运动精度均可以达到亚微米。
飞秒激光器110、光路开关120、CCD监控系统300和运动控制系统500均和控制电脑200连接。
采用上述双光子聚合3D打印机的打印方法如下:通过CCD监控系统300调节合适的打印起始位置,保证模型在固化过程中不会移位;3D打印控制软件通过切片软件将要打印的模型进行逐层切片,生成控制代码(包括G代码运动轨迹和曝光位置),控制电脑200执行控制代码,一方面通过运动控制系统500控制3D精密滑台600按照预定的轨迹运动,同时,控制电脑200执行控制代码,控制飞秒激光脉冲系统100中的光路开关120,在合适的位置曝光使相应位置的光敏树脂发生聚合而固化,从而实现双光子聚合打印;待一层聚合固化完毕之后,3D精密滑台600带动树脂槽610向下移动一定位置,进行下一层的打印;在打印完毕之后,溶解掉未交联的光敏树脂。
模型切片软件可以采用cura,skeinforge和ferry等,在切片的过程中,可以通过调节层高,光斑直径,来对应于打印的精度,得到合适的打印路径。
光敏树脂作为双光子聚合材料,可以采用正刻胶和负刻胶。常见的正刻胶品牌有SCR500、NOA72和EPO-TEK301,负刻胶有SU-8和SCR701。待打印过程结束后,可以用酒精清洗掉未交联固化的光敏树脂。
上述双光子聚合3D打印机可以达到微纳尺度的加工精度。进一步还可以将所有的设备安装在主动去震平台上,以保证绝对的精度和稳定。超高精度的滑台和超高精度的双光子聚合范围相互匹配,实现了高精度的打印。
图2中示出了普通SLA单光子聚合和双光子聚合的原理区别。其中,左图为SLA单光子聚合的原理,右图为本发明双光子聚合的原理,箭头所指的白色区域为激光汇聚照射到树脂时发生光化学反应的区域。如图2所示,相比于传统的单光子聚合的SLA 3D打印机技术,由于材料的双光子吸收速率与入射光功率密度的平方成正比,材料被激发的速率在远离焦点的方向衰减的更为迅速,因此,由双光子吸收引发的光化学反应将被局限在光功率密度很高的焦点周围极小的区域内,光束途经的其它部分几乎不受影响。
上述实施例中,运动平台为三维运动平台,光敏树脂设置于该三维运动平台上的敞口容器内,飞秒激光脉冲系统的物镜设置于三维运动平台上方。
此外,在另一些方案中,运动平台还可以采用Z轴运动平台,飞秒激光脉冲系统的物镜由二维激光振镜驱动能够在X/Y平面进行扫描。在打印中,控制电脑执行控制代码,通过二维激光振镜驱动物镜在X/Y平面进行扫描,在当前层打印完后,通过Z轴运动平台带动光敏树脂向下运动,定位到另一层。即由Z轴运动平台带动光敏树脂实现Z轴方向移动,而由二维激光振镜驱动物镜实现X轴和Y轴方向运动进行扫描。
上述双光子聚合3D打印机技术可以实现微纳米打印精度。同时打印系统也不再需要像SLA打印技术那样形成树脂薄层的机构,整个加工过程全部在材料内部完成。

Claims (3)

1.一种双光子聚合3D打印机的打印方法,其特征在于:
所述双光子聚合3D打印机包括:
飞秒激光脉冲系统(100),具有:用于产生600-1000nm双光子激光的飞秒激光器(110),用于将所述双光子激光汇聚后输出的物镜(170),在所述飞秒激光器到所述物镜的光路上的光路开关(120)和衰减片(130);
亚微米级精度运动平台(600),用于承载光敏树脂以及在运动控制系统(500)的控制下移动光敏树脂;
CCD监控系统(300),通过分色镜(400)与飞秒激光脉冲系统的光路连接;以及
控制电脑(200),分别与所述飞秒激光器、光路开关、运动控制系统和CCD监控系统连接;
所述打印方法包括:
将双光子聚合3D打印机安装在主动去震平台上;
通过CCD监控系统调节合适的打印起始位置;
将要打印的模型切片生成控制代码;
控制电脑执行所述控制代码,一方面控制运动平台或者运动平台和所述物镜按照预定的轨迹运动,另一方面控制光路开关,以在合适的位置曝光使相应位置的光敏树脂发生聚合而固化,从而实现双光子聚合打印;如此逐层打印;
打印中,光敏树脂中的光敏剂在光子强度高的焦点处才产生双光子聚合;
在打印完毕之后,溶解掉未交联的光敏树脂。
2.根据权利要求1所述的双光子聚合3D打印机的打印方法,其特征在于:飞秒激光脉冲系统的光路上还具有反射镜和扩束镜,从飞秒激光器到物镜,所述光路开关、衰减片、扩束镜、反射镜、分色镜顺次设置;打印中,飞秒激光器产生双光子激光,经过光路开关、衰减片、扩束镜、反射镜和物镜将激光聚焦,来使光敏树脂交联。
3.根据权利要求1所述的双光子聚合3D打印机的打印方法,其特征在于:所述运动平台为Z轴运动平台,物镜由二维激光振镜驱动能够在X/Y平面进行扫描;打印中,控制电脑执行所述控制代码,通过二维激光振镜驱动物镜在X/Y平面进行扫描,在当前层打印完后,通过Z轴运动平台带动光敏树脂向下运动,定位到另一层。
CN201610248316.1A 2016-04-20 2016-04-20 双光子聚合3d打印机及打印方法 Active CN105751511B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610248316.1A CN105751511B (zh) 2016-04-20 2016-04-20 双光子聚合3d打印机及打印方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610248316.1A CN105751511B (zh) 2016-04-20 2016-04-20 双光子聚合3d打印机及打印方法

Publications (2)

Publication Number Publication Date
CN105751511A CN105751511A (zh) 2016-07-13
CN105751511B true CN105751511B (zh) 2018-01-16

Family

ID=56325345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610248316.1A Active CN105751511B (zh) 2016-04-20 2016-04-20 双光子聚合3d打印机及打印方法

Country Status (1)

Country Link
CN (1) CN105751511B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106584848A (zh) * 2016-10-26 2017-04-26 湖南华曙高科技有限责任公司 用于制造三维物体的设备及其激光校准装置
CN107175823B (zh) * 2017-06-09 2019-03-08 中国科学院上海光学精密机械研究所 多分辨率飞秒激光3d打印装置和打印方法
CN108189403A (zh) * 2017-12-28 2018-06-22 哈尔滨工业大学 一种跨界面液体3d打印的装置和方法
CN112823313B (zh) * 2018-04-17 2024-04-16 深圳摩方新材科技有限公司 制造三维物体的方法及系统
CN108983555B (zh) * 2018-07-09 2020-09-04 暨南大学 一种基于复合扫描改进三维微纳结构的加工方法
CN109774127B (zh) * 2019-02-19 2021-01-08 杭州志英科技有限公司 基于飞秒激光的高速3d微纳打印控制方法、模型切片方法及装置
CN110406266B (zh) * 2019-08-30 2020-08-25 昆山国显光电有限公司 喷墨打印装置和喷墨打印方法
CN112172136B (zh) * 2020-08-03 2022-07-05 广东工业大学 一种基于超分辨激光辐射的飞蛾复眼仿生光学器件及其3d打印方法和应用
CN112428581A (zh) * 2020-11-20 2021-03-02 中国科学院长春光学精密机械与物理研究所 一种应用于3d打印高精度激光空间选择固化联动系统
CN113909677B (zh) * 2021-10-22 2023-10-31 吉林大学 一种振镜辅助循环扫描的双光子聚合高功率曝光方法及系统
CN114660686A (zh) * 2022-03-02 2022-06-24 武汉光谷信息光电子创新中心有限公司 微透镜组的制备方法及半导体结构
CN115431376B (zh) * 2022-08-16 2024-10-08 华中科技大学 高强度大型复杂陶瓷素坯及其三维喷印成形方法和装备
EP4429874A1 (en) 2023-01-31 2024-09-18 UAB Vital3D Technologies Method and system for elongating voxel in multiphoton fabrication
CN116640452B (zh) * 2023-04-28 2024-06-11 华中科技大学同济医学院附属协和医院 丝胶蛋白微支架的制备方法及应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104972124B (zh) * 2015-06-25 2017-05-24 武汉大学 基于飞秒激光复合技术的实时监控快速成型设备和方法
CN104999670B (zh) * 2015-08-25 2017-05-10 长春理工大学 一种多光束激光干涉跨尺度3d打印系统及方法

Also Published As

Publication number Publication date
CN105751511A (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
CN105751511B (zh) 双光子聚合3d打印机及打印方法
JP5018076B2 (ja) 光造形装置及び光造形方法
JP4957242B2 (ja) 光造形装置
US20120098164A1 (en) Two-photon stereolithography using photocurable compositions
JP6603727B2 (ja) 改良された光学ユニットを備える光造形機
US20170225393A1 (en) Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification
JP5023975B2 (ja) 光造形装置及び光造形方法
US20220118704A1 (en) Surface protection tool for multi-axis additive manufacturing
JP2009113294A (ja) 光造形装置及び光造形方法
CN108351498B (zh) 用于制造三维物体的设备及其应用
US11325299B2 (en) Additive manufacturing via optical aperture division multiplexing
JP2008162189A (ja) 光造形装置
JP6764905B2 (ja) 3d印刷装置
KR20040102531A (ko) 마이크로 광 조형 방법 및 장치
JP3805749B2 (ja) 薄膜硬化型光造形装置
CN113050390A (zh) 基于多尺度多光子光刻技术的微纳米三维结构制备系统和方法
CN114290665A (zh) 光固化3d打印方法
CN115519785B (zh) 一种基于光纤的微纳结构3d打印系统及其打印方法
CN110382206B (zh) 并用使用数字光处理投影仪及激光扫描仪的三维印刷装置
JP3170832B2 (ja) 光学的造形方法
JPS6299753A (ja) 立体形状の形成方法
KR102497174B1 (ko) 이광자 스테레오리소그래피의 이중패터닝 방법 및 장치
CN115447137B (zh) 一种光固化3d打印装置以及打印方法
US20240123688A1 (en) Method and device for controlling a lithography-based additive manufacturing device
KR102005632B1 (ko) 파면 제어기를 이용한 고속 3차원 광조형 방법 및 장치

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 518055 Guangdong city of Shenzhen province Nanshan District Xili of Tsinghua

Patentee after: Tsinghua Shenzhen International Graduate School

Address before: 518055 Guangdong city of Shenzhen province Nanshan District Xili of Tsinghua

Patentee before: GRADUATE SCHOOL AT SHENZHEN, TSINGHUA University

CP01 Change in the name or title of a patent holder