CN105740950B - The template matching method of neural network based on slip teeth method - Google Patents
The template matching method of neural network based on slip teeth method Download PDFInfo
- Publication number
- CN105740950B CN105740950B CN201610035536.6A CN201610035536A CN105740950B CN 105740950 B CN105740950 B CN 105740950B CN 201610035536 A CN201610035536 A CN 201610035536A CN 105740950 B CN105740950 B CN 105740950B
- Authority
- CN
- China
- Prior art keywords
- error
- data
- template matching
- error range
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000013528 artificial neural network Methods 0.000 title claims abstract description 29
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 32
- 238000012549 training Methods 0.000 claims abstract description 9
- 238000001514 detection method Methods 0.000 claims abstract description 8
- 230000007246 mechanism Effects 0.000 claims abstract description 3
- 238000009472 formulation Methods 0.000 claims abstract 2
- 239000000203 mixture Substances 0.000 claims abstract 2
- 230000008569 process Effects 0.000 claims description 6
- 230000006870 function Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 241001269238 Data Species 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000004218 nerve net Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000452 restraining effect Effects 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Artificial Intelligence (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Complex Calculations (AREA)
- Image Analysis (AREA)
Abstract
本发明公开一种基于滑齿法的神经网络的模板匹配方法,包括以下步骤:根据误差反向传播的神经网络的制定规则,将网络结构分为输入层、隐藏层和输出层;在隐藏层中设定第一误差范围、最大训练次数和第二误差范围并初始化;根据数据分块机制,输入的数据进行相似性检测后被分割成多个数据块;利用滑齿法匹配被处理的数据;判断网络节点的误差和模板匹配的误差是否分别落在第一误差范围和第二误差范围内,或者,模板匹配的误差是否在第二误差范围内且达到最大训练次数;如是,则输出结果;否则修正滑齿的权值,重复执行以上步骤,直到输出结果。本发明进一步改善了模板匹配精度,提升了运行时间以及算法稳定性。
The invention discloses a neural network template matching method based on a tooth sliding method, which comprises the following steps: dividing the network structure into an input layer, a hidden layer and an output layer according to the formulation rules of the neural network for error back propagation; Set the first error range, the maximum number of training times, and the second error range and initialize them; according to the data block mechanism, the input data is divided into multiple data blocks after similarity detection; the sliding gear method is used to match the processed data ; Judging whether the error of the network node and the error of template matching fall within the first error range and the second error range respectively, or whether the error of template matching is within the second error range and reaches the maximum number of training times; if so, output the result ; otherwise, correct the weight of the sliding tooth, and repeat the above steps until the result is output. The invention further improves the template matching accuracy, improves the running time and the algorithm stability.
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610035536.6A CN105740950B (en) | 2016-01-19 | 2016-01-19 | The template matching method of neural network based on slip teeth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610035536.6A CN105740950B (en) | 2016-01-19 | 2016-01-19 | The template matching method of neural network based on slip teeth method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105740950A CN105740950A (en) | 2016-07-06 |
CN105740950B true CN105740950B (en) | 2019-03-29 |
Family
ID=56247495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610035536.6A Expired - Fee Related CN105740950B (en) | 2016-01-19 | 2016-01-19 | The template matching method of neural network based on slip teeth method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105740950B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106686385B (en) | 2016-12-30 | 2018-09-25 | 平安科技(深圳)有限公司 | Video compress sensing reconstructing method and device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104951833A (en) * | 2015-07-02 | 2015-09-30 | 上海电机学院 | Neutral network and learning method thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020077756A1 (en) * | 1999-11-29 | 2002-06-20 | Scott Arouh | Neural-network-based identification, and application, of genomic information practically relevant to diverse biological and sociological problems, including drug dosage estimation |
-
2016
- 2016-01-19 CN CN201610035536.6A patent/CN105740950B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104951833A (en) * | 2015-07-02 | 2015-09-30 | 上海电机学院 | Neutral network and learning method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN105740950A (en) | 2016-07-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110880036B (en) | Neural network compression method, device, computer equipment and storage medium | |
US10762426B2 (en) | Multi-iteration compression for deep neural networks | |
US10984308B2 (en) | Compression method for deep neural networks with load balance | |
KR102413028B1 (en) | Method and device for pruning convolutional neural network | |
Qiao et al. | Constructive algorithm for fully connected cascade feedforward neural networks | |
CN108490965A (en) | Rotor craft attitude control method based on Genetic Algorithm Optimized Neural Network | |
CN110232448A (en) | It improves gradient and promotes the method that the characteristic value of tree-model acts on and prevents over-fitting | |
CN109472345A (en) | A kind of weight update method, device, computer equipment and storage medium | |
Song et al. | Data-driven finite-horizon optimal tracking control scheme for completely unknown discrete-time nonlinear systems | |
Putra et al. | Estimation of parameters in the SIR epidemic model using particle swarm optimization | |
EP3948677A1 (en) | Residual semi-recurrent neural networks | |
CN110059439A (en) | A kind of spacecraft orbit based on data-driven determines method | |
CN114330644A (en) | Neural network model compression method based on structure search and channel pruning | |
CN105469142A (en) | Neural network increment-type feedforward algorithm based on sample increment driving | |
CN116680969A (en) | Filler evaluation parameter prediction method and device for PSO-BP algorithm | |
Waheeb et al. | Nonlinear autoregressive moving-average (narma) time series forecasting using neural networks | |
CN114282478A (en) | A Method for Correcting the Dot Product Error of Variable Resistor Device Array | |
CN116432539A (en) | A method, system, device and medium for time-coherent cooperative guidance | |
CN105740950B (en) | The template matching method of neural network based on slip teeth method | |
CN110083676B (en) | Short text-based field dynamic tracking method | |
CN115793456A (en) | Lightweight sensitivity-based power distribution network edge side multi-mode self-adaptive control method | |
JP2023550921A (en) | Weight-based adjustment in neural networks | |
CN112069370B (en) | Neural network structure search method, device, medium and equipment | |
CN113051820A (en) | Cross-basin pneumatic parameter simulation method based on convolutional neural network | |
CN108960406B (en) | MEMS gyroscope random error prediction method based on BFO wavelet neural network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: No. 66, New Model Road, Gulou District, Nanjing City, Jiangsu Province, 210000 Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS Address before: 210023 9 Wen Yuan Road, Ya Dong new town, Nanjing, Jiangsu. Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20200421 Address after: 610000 no.1402, block a, No.199, Tianfu 4th Street, Chengdu high tech Zone, China (Sichuan) pilot Free Trade Zone, Chengdu Patentee after: Chengdu Star Innovation Technology Co.,Ltd. Address before: 210000, 66 new model street, Gulou District, Jiangsu, Nanjing Patentee before: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS |
|
PE01 | Entry into force of the registration of the contract for pledge of patent right | ||
PE01 | Entry into force of the registration of the contract for pledge of patent right |
Denomination of invention: Template matching method of neural network based on sliding tooth method Effective date of registration: 20220526 Granted publication date: 20190329 Pledgee: Industrial Bank Limited by Share Ltd. Chengdu branch Pledgor: Chengdu Star Innovation Technology Co.,Ltd. Registration number: Y2022510000141 |
|
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190329 |
|
CF01 | Termination of patent right due to non-payment of annual fee |