CN105735948A - 一种天然气水合物钻采工艺室内实验模拟方法 - Google Patents
一种天然气水合物钻采工艺室内实验模拟方法 Download PDFInfo
- Publication number
- CN105735948A CN105735948A CN201610169792.4A CN201610169792A CN105735948A CN 105735948 A CN105735948 A CN 105735948A CN 201610169792 A CN201610169792 A CN 201610169792A CN 105735948 A CN105735948 A CN 105735948A
- Authority
- CN
- China
- Prior art keywords
- hydrate
- pressure
- drilling
- autoclave
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005553 drilling Methods 0.000 title claims abstract description 102
- 238000000034 method Methods 0.000 title claims abstract description 97
- 238000004088 simulation Methods 0.000 title claims abstract description 33
- 238000005516 engineering process Methods 0.000 title claims abstract description 16
- 238000002474 experimental method Methods 0.000 title claims abstract description 12
- NMJORVOYSJLJGU-UHFFFAOYSA-N methane clathrate Chemical compound C.C.C.C.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O.O NMJORVOYSJLJGU-UHFFFAOYSA-N 0.000 title claims abstract description 9
- 230000008569 process Effects 0.000 claims abstract description 69
- 150000004677 hydrates Chemical class 0.000 claims abstract description 15
- 238000012544 monitoring process Methods 0.000 claims abstract description 10
- 239000013049 sediment Substances 0.000 claims abstract description 8
- 239000007789 gas Substances 0.000 claims description 49
- 239000012530 fluid Substances 0.000 claims description 37
- 230000036772 blood pressure Effects 0.000 claims description 25
- 238000011084 recovery Methods 0.000 claims description 21
- 239000004576 sand Substances 0.000 claims description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 21
- 238000003325 tomography Methods 0.000 claims description 20
- 229920001971 elastomer Polymers 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 15
- 230000007246 mechanism Effects 0.000 claims description 15
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 14
- 238000002347 injection Methods 0.000 claims description 12
- 239000007924 injection Substances 0.000 claims description 12
- 238000005057 refrigeration Methods 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 229920006395 saturated elastomer Polymers 0.000 claims description 10
- 230000015556 catabolic process Effects 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- 238000007599 discharging Methods 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 8
- 239000000523 sample Substances 0.000 claims description 8
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000010494 dissociation reaction Methods 0.000 claims description 6
- 230000005593 dissociations Effects 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 5
- 230000008676 import Effects 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 5
- 238000003786 synthesis reaction Methods 0.000 claims description 5
- 238000012360 testing method Methods 0.000 claims description 5
- NUXZAAJDCYMILL-UHFFFAOYSA-K trichlorolanthanum;hydrate Chemical compound O.Cl[La](Cl)Cl NUXZAAJDCYMILL-UHFFFAOYSA-K 0.000 claims description 5
- 230000035699 permeability Effects 0.000 claims description 3
- 238000005086 pumping Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 238000000926 separation method Methods 0.000 claims description 2
- 239000010959 steel Substances 0.000 claims description 2
- 230000008859 change Effects 0.000 abstract description 2
- 238000005065 mining Methods 0.000 abstract 2
- 238000011160 research Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009533 lab test Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 1
- 239000013043 chemical agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000011549 displacement method Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 239000008239 natural water Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B49/00—Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
本发明公开了一种天然气水合物钻采工艺室内实验模拟方法,包括以下步骤:S1:水合物高压反应釜安装;S2:水合物生成与观测;S3:钻机总成安装;S4:钻井工艺模拟;S5:钻井过程对水合物储层影响评价;S6:降压开采过程模拟;S7:开采过程中储层变化监测。本发明在实验室内能够有效地模拟水合物钻采工艺,即模拟高压状态下钻进含水合物沉积物样品和降压开采过程,操作方便,使用成本低,可获取有关天然气水合物开采的关键技术参数。
Description
技术领域
本发明涉及天然气水合物钻采技术领域,尤其涉及一种天然气水合物钻采工艺室内实验模拟方法。
背景技术
天然气水合物是由天然气和水在较低的温度和较高的压力条件下形成的似冰雪状的结晶化合物,广泛分布于高纬度极地冻土地层环境和海洋深水地层环境中,具有储量大、埋藏浅、燃烧清洁和能量密度高等特点,被认为是21世纪最为重要的替代能源之一,引起了国内外政府部门和科研院所的广泛关注。
近年来,国内外学者尤其重视水合物开采技术的研究,已经提出了注热法、降压法、注入化学试剂法、置换法和固体法等技术。其中,降压法通过降低地层孔隙压力至水合物相平衡压力之下,从而使固态水合物分解产生甲烷气体,该方法被认为是最为经济有效的开采技术,但海域水合物地层通常处于欠固结状态且埋藏较浅,降压法开采水合物将使孔隙流体对地层颗粒产生较大的剪切作用力,再加上水合物分解削弱砂粒间胶结能力,最终导致细颗粒泥砂在地层中运移并聚集,堵塞防砂装置与管道,损毁降压泵。
鉴于原位取芯技术和现场试验成本的局限,水合物开采技术研究以室内模拟实验为主。国内外学者研发了多套室内模拟实验装置用于水合物开采技术研究,重点关注水合物分解产气和产水情况以及温度、压力和水合物饱和度等参数变化情况的实验模拟。然而,现有的水合物开采室内模拟实验通常不设置井筒或采用预埋井筒的方式,少有考虑钻采工艺的,配套的水合物钻采工艺室内实验模拟方法鲜有报道,模拟实验与工程实际情况不符,导致了实验获得的数据无法应用到水合物开采实际过程中,也无法进行水合物开采的经济性和安全性评价。
发明内容
基于背景技术存在的技术问题,本发明提出了一种天然气水合物钻采工艺室内实验模拟方法。
本发明提出的一种天然气水合物钻采工艺室内实验模拟方法,包括以下步骤:
S1:水合物高压反应釜安装:(1)将装填砂专用翻转机构旋转框架旋转至水平位置,高压主体反应釜釜盖吊装于装填砂专用翻转机构旋转框架的固定卡环上,再将活动卡环装上用螺栓固定牢固;(2)旋转填砂专用翻转机构使高压反应釜的釜盖正立向上,安装压力传感器和温度探头;(3)将电阻层析成像电极安装于橡胶筒的筒壁上,旋转填砂专用翻转机构使高压反应釜的釜盖正立向下,将安装好电阻层析成像电极的橡胶筒安装于高压反应釜内,将外罩护筒安装于橡胶筒之外,并用螺栓与釜盖固定;(4)将实验用砂土分多次装填于橡胶筒内,分层适度压实以避免压力传感器和温度探头位置移动;(5)将填砂专用翻转机构旋转180°,从釜盖引出电阻层析成像信号线,连接高压反应釜配套的高压管线;
S2:水合物合成:(1)检查气密性:向橡胶筒施加1-3MPa围压,注气至孔隙压力为0.2-0.5MPa,关闭高压反应釜进口与出口阀门,放置时间30-50min,压力稳定则气密性合格;(2)抽真空:将高压反应釜抽真空,把气体排出反应釜之外;(3)注水饱和:将高压反应釜内沉积物注水饱和;(4)制冷降温:开启步入式冷库和高压反应釜的水冷夹套,使高压反应釜内沉积物温度降低至0.5-1℃并保持稳定;(5)注气合成:向沉积物内注入甲烷气体至压力为1-3MPa以合成水合物,每隔5-10min进行补气以促进水合物充分合成;(6)通过电阻成像仪,可观察沉积物中水合物的分布情况;
S3:钻机总成安装:在安装好的水合物高压反应釜上,取出位于上釜盖中心位置的端盖堵头,采用吊车将预先组装好的钻机总成缓慢放置于上釜盖中心位置,拧紧法兰以及井架连接螺栓,连接实验管线和其它配套设备,完成钻采工艺模拟实验系统的整体安装;
S4:钻井工艺模拟:(1)将配置好的钻井液泥浆装入泥浆罐,开启制冷机组以降低钻井液泥浆的温度,使其低于水合物相平衡温度1-3℃;(2)开启搅拌器;(3)开启循环注液泵,调节回压阀门,使钻井液泥浆在其压力高于反应釜内含水合物沉积物孔隙压力2-3MPa的条件下循环流动;(4)开启井筒钻井电机,钻井电机带动转盘组件;(5)将处理后的钻井液泥浆回收进入泥浆罐;(6)待井筒钻进含水合物沉积物的设定深度后,关闭井筒钻井电机,关闭钻井液泥浆循环注液泵与制冷机组,钻井工艺实验模拟过程结束。
S5:钻井过程对水合物储层影响评价:(1)S4过程中连续监测水合物储层空间压力、温度分布,用钻井过程中储层空间压力、温度的变化评价钻井液对储层的侵入程度;(2)S4过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价钻井过程对近井地层水合物分布的影响;(3)S4过程中电阻层析成像实时监测井筒泥饼的厚度,评价钻井液的造壁性;(4)S4过程中钻井液入口、出口液体流量计分别连续测试流入、流出流量,评价钻井液的虑失性;(5)S4过程结束后测量泵入钻井液总量、排出钻井液总量、模拟井筒的容积,评价钻井过程中总滤失量,结合步骤(1)~(4)综合评价钻井过程对含水合物储层近井地层渗透率、含水合物饱和度、表皮系数的影响。
S6:降压开采过程模拟:(1)移除钻机总成中除井筒以外的其他部件,排出S4阶段形成的井筒中的钻井液;(2)从上、下端盖堵头处连接高压反应釜配套的高压管线、备压阀;(3)控制备压阀,调节井筒压力,使上、下两个备压阀的压力始终相同且储层压力和井筒压力维持在设定的恒定压差条件下,水合物降压分解;(4)降压分解产生的水从下端盖堵头处流出,气体从上端盖堵头处流出,分别用液体流量计和气体流量计连续测量降压分解过程中的产水量和产气量;(5)持续过程(4)直到降压分解结束,分析水合物不同降压分解过程中的产气速率、产水速率、水气比等参数随时间的变化,开采过程模拟结束;
S7:开采过程中储层变化监测:(1)S6过程中连续监测水合物储层空间压力、温度分布,用开采过程中储层空间压力、温度的变化评价水合物降压分解阵面随时间的演化规律;(2)S6过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价降压分解过程中储层水合物饱和度、孔隙度参数的变化规律。
优选地,所述钻机总成的井筒为钢制多眼筛孔型,且井筒与上釜盖中心位置的端盖堵头具有相同的孔径,井筒孔径大于下釜盖中心位置的端盖堵头孔径。
优选地,所述循环管道的外表面包裹有绝热材料,且流量计实时测量钻井液泥浆、开采过程中产出水气的流量。
优选地,所述S2中,水合物合成:(1)检查气密性:向橡胶筒施加1-2MPa围压,注气至孔隙压力为0.3-0.4MPa,关闭高压反应釜进口与出口阀门,放置时间35-45min,压力稳定则气密性合格;(2)抽真空:将高压反应釜抽真空,把气体排出反应釜之外;(3)注水饱和:将高压反应釜内沉积物注水饱和;(4)制冷降温:开启步入式冷库和高压反应釜的水冷夹套,使高压反应釜内沉积物温度降低至0.6-0.9℃并保持稳定;(5)注气合成:向沉积物内注入甲烷气体至压力为10MPa左右以合成水合物,每隔6-9min进行补气以促进水合物充分合成。
优选地,本发明能模拟完整的含水合物储层钻采过程,实时监测钻井、开采过程中的储层参数。用储层空间压力、空间温度和电阻层析成像技术联合测试钻井过程对储层的影响和降压开采过程对储层分解阵面的影响。
优选地,本发明中降压开采过程中产出的气水混合物在井筒实现分离后,产出水从与下釜盖中心堵头位置相连接的高压管线流出,产出气从与上釜盖中心堵头位置相连接的高压管线流出;高压管线分别安装备压阀控制井筒压降幅度。
本发明中,该天然气水合物钻采工艺室内实验模拟方法在实验室内能够有效地模拟水合物钻采工艺,即模拟高压状态下钻进含水合物沉积物样品和降压开采过程,能够模拟钻井液循环和钻井、开采过程中储层参数的实时变化过程,保证钻采工艺模拟过程中整个实验系统的密封性以及样品中水合物的稳定性,为水合物降压开采研究提供必要的实验模拟技术支撑,促进水合物商业化开采技术的发展。
具体实施方式
下面结合具体实施例对本发明作进一步解说。
本实施例提出了一种天然气水合物钻采工艺室内实验模拟方法,包括以下步骤:
S1:水合物高压反应釜安装:(1)将装填砂专用翻转机构旋转框架旋转至水平位置,高压主体反应釜釜盖吊装于装填砂专用翻转机构旋转框架的固定卡环上,再将活动卡环装上用螺栓固定牢固;(2)旋转填砂专用翻转机构使高压反应釜的釜盖正立向上,安装压力传感器和温度探头;(3)将电阻层析成像电极安装于橡胶筒的筒壁上,旋转填砂专用翻转机构使高压反应釜的釜盖正立向下,将安装好电阻层析成像电极的橡胶筒安装于高压反应釜内,将外罩护筒安装于橡胶筒之外,并用螺栓与釜盖固定;(4)将实验用砂土分多次装填于橡胶筒内,分层适度压实以避免压力传感器和温度探头位置移动;(5)将填砂专用翻转机构旋转180°,从釜盖引出电阻层析成像信号线,连接高压反应釜配套的高压管线;
S2:水合物合成:(1)检查气密性:向橡胶筒施加1MPa围压,注气至孔隙压力为0.2MPa,关闭高压反应釜进口与出口阀门,放置时间30min,压力稳定则气密性合格;(2)抽真空:将高压反应釜抽真空,把气体排出反应釜之外;(3)注水饱和:将高压反应釜内沉积物注水饱和;(4)制冷降温:开启步入式冷库和高压反应釜的水冷夹套,使高压反应釜内沉积物温度降低至0.5℃并保持稳定;(5)注气合成:向沉积物内注入甲烷气体至压力为10MPa以合成水合物,每隔5min进行补气以促进水合物充分合成;
S3:钻机总成安装,在安装好的水合物高压反应釜上,取出位于上釜盖中心位置的防砂堵头,采用吊车将预先组装好的钻机总成缓慢放置于上釜盖中心位置,拧紧法兰以及井架连接螺栓,连接实验管线和其它配套设备,完成钻采工艺模拟实验系统的整体安装;
S4:钻采工艺模拟:(1)将配置好的钻井液泥浆装入泥浆罐,开启制冷机组以降低钻井液泥浆的温度,使其低于水合物相平衡温度1℃;(2)开启搅拌器;(3)开启循环注液泵,调节回压阀门,使钻井液泥浆在其压力高于反应釜内含水合物沉积物孔隙压力2MPa的条件下循环流动;(4)开启井筒钻井电机,钻井电机带动转盘组件;(5)将处理后的钻井液泥浆回收进入泥浆罐;(6)待井筒钻进含水合物沉积物的设定深度后,关闭井筒钻井电机,关闭钻井液泥浆循环注液泵与制冷机组,钻采工艺实验模拟过程结束。
S5:钻井过程对水合物储层影响评价:(1)S4过程中连续监测水合物储层空间压力、温度分布,用钻井过程中储层空间压力、温度的变化评价钻井液对储层的侵入程度;(2)S4过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价钻井过程对近井地层水合物分布的影响;(3)S4过程中电阻层析成像实时监测井筒泥饼的厚度,评价钻井液的造壁性;(4)S4过程中钻井液入口、出口液体流量计分别连续测试流入、流出流量,评价钻井液的虑失性;(5)S4过程结束后测量泵入钻井液总量、排出钻井液总量、模拟井筒的容积,评价钻井过程中总滤失量,结合步骤(1)~(4)综合评价钻井过程对含水合物储层近井地层渗透率、含水合物饱和度、表皮系数的影响。
S6:降压开采过程模拟:(1)移除钻机总成中除井筒以外的其他部件,排出S4阶段形成的井筒中的钻井液;(2)从上、下端盖堵头处连接高压反应釜配套的高压管线、备压阀;(3)控制备压阀,调节井筒压力,使上、下两个备压阀的压力始终相同且储层压力和井筒压力维持在设定的恒定压差条件下,水合物降压分解;(4)降压分解产生的水从下端盖堵头处流出,气体从上端盖堵头处流出,分别用液体流量计和气体流量计连续测量降压分解过程中的产水量和产气量;(5)持续过程(4)直到降压分解结束,分析水合物不同降压分解过程中的产气速率、产水速率、水气比等参数随时间的变化,开采过程模拟结束;
S7:开采过程中储层变化监测:(1)S6过程中连续监测水合物储层空间压力、温度分布,用开采过程中储层空间压力、温度的变化评价水合物降压分解阵面随时间的演化规律;(2)S6过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价降压分解过程中储层水合物饱和度、孔隙度参数的变化规律。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。
Claims (6)
1.一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,包括以下步骤:
S1:水合物高压反应釜安装:(1)将装填砂专用翻转机构旋转框架旋转至水平位置,高压主体反应釜釜盖吊装于装填砂专用翻转机构旋转框架的固定卡环上,再将活动卡环装上用螺栓固定牢固;(2)旋转填砂专用翻转机构使高压反应釜的釜盖正立向上,安装压力传感器和温度探头;(3)将电阻层析成像电极安装于橡胶筒的筒壁上,旋转填砂专用翻转机构使高压反应釜的釜盖正立向下,将安装好电阻层析成像电极的橡胶筒安装于高压反应釜内,将外罩护筒安装于橡胶筒之外,并用螺栓与釜盖固定;(4)将实验用砂土分多次装填于橡胶筒内,分层适度压实以避免压力传感器和温度探头位置移动;(5)将填砂专用翻转机构旋转180°,从釜盖引出电阻层析成像信号线,连接高压反应釜配套的高压管线;
S2:水合物合成:(1)检查气密性:向橡胶筒施加1-3MPa围压,注气至孔隙压力为0.2-0.5MPa,关闭高压反应釜进口与出口阀门,放置时间30-50min,压力稳定则气密性合格;(2)抽真空:将高压反应釜抽真空,把气体排出反应釜之外;(3)注水饱和:将高压反应釜内沉积物注水饱和;(4)制冷降温:开启步入式冷库和高压反应釜的水冷夹套,使高压反应釜内沉积物温度降低至0.5-1℃并保持稳定;(5)注气合成:向沉积物内注入甲烷气体至压力为10MPa左右以合成水合物,每隔5-10min进行补气以促进水合物充分合成;(6)通过电阻成像仪,可观察沉积物中水合物的分布情况;
S3:钻机总成安装:在安装好的水合物高压反应釜上,取出位于上釜盖中心位置的端盖堵头,采用吊车将预先组装好的钻机总成缓慢放置于上釜盖中心位置,拧紧法兰以及井架连接螺栓,连接实验管线和其它配套设备,完成钻采工艺模拟实验系统的整体安装;
S4:钻井工艺模拟:(1)将配置好的钻井液泥浆装入泥浆罐,开启制冷机组以降低钻井液泥浆的温度,使其低于水合物相平衡温度1-3℃;(2)开启搅拌器;(3)开启循环注液泵,调节回压阀门,使钻井液泥浆在其压力高于反应釜内含水合物沉积物孔隙压力2-3MPa的条件下循环流动;(4)开启井筒钻井电机,钻井电机带动转盘组件;(5)将处理后的钻井液泥浆回收进入泥浆罐;(6)待井筒钻进含水合物沉积物的设定深度后,关闭井筒钻井电机,关闭钻井液泥浆循环注液泵与制冷机组,钻井工艺实验模拟过程结束。
S5:钻井过程对水合物储层影响评价:(1)S4过程中连续监测水合物储层空间压力、温度分布,用钻井过程中储层空间压力、温度的变化评价钻井液对储层的侵入程度;(2)S4过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价钻井过程对近井地层水合物分布的影响;(3)S4过程中电阻层析成像实时监测井筒泥饼的厚度,评价钻井液的造壁性;(4)S4过程中钻井液入口、出口液体流量计分别连续测试流入、流出流量,评价钻井液的虑失性;(5)S4过程结束后测量泵入钻井液总量、排出钻井液总量、模拟井筒的容积,评价钻井过程中总滤失量,结合步骤(1)~(4)综合评价钻井过程对含水合物储层近井地层渗透率、含水合物饱和度、表皮系数的影响。
S6:降压开采过程模拟:(1)移除钻机总成中除井筒以外的其他部件,排出S4阶段形成的井筒中的钻井液;(2)从上、下端盖堵头处连接高压反应釜配套的高压管线、备压阀;(3)控制备压阀,调节井筒压力,使上、下两个备压阀的压力始终相同且储层压力和井筒压力维持在设定的恒定压差条件下,水合物降压分解;(4)降压分解产生的水从下端盖堵头处流出,气体从上端盖堵头处流出,分别用液体流量计和气体流量计连续测量降压分解过程中的产水量和产气量;(5)持续过程(4)直到降压分解结束,分析水合物不同降压分解过程中的产气速率、产水速率、水气比等参数随时间的变化,开采过程模拟结束;
S7:开采过程中储层变化监测:(1)S6过程中连续监测水合物储层空间压力、温度分布,用开采过程中储层空间压力、温度的变化评价水合物降压分解阵面随时间的演化规律;(2)S6过程中电阻层析成像实时监测局部含水合物饱和度的变化规律,评价降压分解过程中储层水合物饱和度、孔隙度参数的变化规律。
2.根据权利要求1所述的一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,所述钻机总成的井筒为钢制多眼筛孔型,且井筒与上釜盖中心位置的端盖堵头具有相同的孔径,井筒孔径大于下釜盖中心位置的端盖堵头。
3.根据权利要求1所述的一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,所述循环管道的外表面包裹有绝热材料,且流量计实时测量钻井液泥浆、产出气液的流量。
4.根据权利要求1所述的一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,所述S2中,水合物合成:(1)检查气密性:向橡胶筒施加1-2MPa围压,注气至孔隙压力为0.3-0.4MPa,关闭高压反应釜进口与出口阀门,放置时间35-45min,压力稳定则气密性合格;(2)抽真空:将高压反应釜抽真空,把气体排出反应釜之外;(3)注水饱和:将高压反应釜内沉积物注水饱和;(4)制冷降温:开启步入式冷库和高压反应釜的水冷夹套,使高压反应釜内沉积物温度降低至0.6-0.9℃并保持稳定;(5)注气合成:向沉积物内注入甲烷气体至压力为10MPa左右以合成水合物,每隔6-9min进行补气以促进水合物充分合成。
5.根据权利要求1所述的一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,能用一套完整的流程模拟含水合物储层钻井、开采过程中的储层参数。用储层空间压力、空间温度和电阻层析成像技术联合测试钻井过程对储层的影响和降压开采过程对储层分解阵面的影响。
6.根据权利要求1所述的一种天然气水合物钻采工艺室内实验模拟方法,其特征在于,降压开采过程中产出的气水混合物在井筒实现分离后,产出水从与下釜盖中心堵头位置相连接的高压管线流出,产出气从与上釜盖中心堵头位置相连接的高压管线流出;高压管线分别安装备压阀控制井筒压降幅度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610169792.4A CN105735948B (zh) | 2016-03-23 | 2016-03-23 | 一种天然气水合物钻采工艺室内实验模拟方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610169792.4A CN105735948B (zh) | 2016-03-23 | 2016-03-23 | 一种天然气水合物钻采工艺室内实验模拟方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105735948A true CN105735948A (zh) | 2016-07-06 |
CN105735948B CN105735948B (zh) | 2018-07-13 |
Family
ID=56251171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610169792.4A Active CN105735948B (zh) | 2016-03-23 | 2016-03-23 | 一种天然气水合物钻采工艺室内实验模拟方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105735948B (zh) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106761498A (zh) * | 2016-12-20 | 2017-05-31 | 中国科学院广州能源研究所 | 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法 |
CN108316913A (zh) * | 2018-01-08 | 2018-07-24 | 中国海洋石油集团有限公司 | 海洋天然气水合物藏开采过程出砂模拟测定装置及方法 |
CN108918183A (zh) * | 2018-09-19 | 2018-11-30 | 吉林大学 | 海洋水合物振动回转微钻实验装置及方法 |
CN109209359A (zh) * | 2018-08-01 | 2019-01-15 | 中国石油大学(华东) | 天然气水合物钻采微观模拟装置 |
CN109611027A (zh) * | 2018-12-25 | 2019-04-12 | 中海石油(中国)有限公司湛江分公司 | 水合物钻井模拟系统以及模拟方法 |
CN110618255A (zh) * | 2019-10-24 | 2019-12-27 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 模拟地层成藏的围压试验装置、安装方法及试验方法 |
CN111794722A (zh) * | 2020-08-14 | 2020-10-20 | 西南石油大学 | 海洋天然气水合物成藏-开发模拟实验系统及方法 |
CN111879912A (zh) * | 2020-08-05 | 2020-11-03 | 中国海洋石油集团有限公司 | 一种钻采天然气水合物监测二次生成实验装置及方法 |
CN111929341A (zh) * | 2020-08-06 | 2020-11-13 | 中国科学院广州能源研究所 | 一种地层温度梯度模拟器 |
CN111997595A (zh) * | 2020-08-06 | 2020-11-27 | 中国科学院广州能源研究所 | 一种天然气水合物地质分层装置和方法 |
CN112282705A (zh) * | 2020-10-13 | 2021-01-29 | 中国石油大学(华东) | 一种钻井液添加剂对天然气水合物相态稳定的评价装置及实验方法 |
CN113356800A (zh) * | 2021-06-28 | 2021-09-07 | 西南石油大学 | 一种海洋水合物与自由气联合开采的实验装置及方法 |
CN114495675A (zh) * | 2021-12-24 | 2022-05-13 | 中国石油化工股份有限公司 | 天然气水合物钻井循环模拟实验装置及方法 |
CN115717517A (zh) * | 2022-11-30 | 2023-02-28 | 北京探矿工程研究所 | 模拟钻探对水合物抑制分解性能影响评价装置及实验方法 |
CN115788420A (zh) * | 2022-12-26 | 2023-03-14 | 西南石油大学 | 一种模拟采气过程中水合物堵塞井筒的装置及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109611086B (zh) * | 2018-12-06 | 2019-11-05 | 青岛海洋地质研究所 | 基于多分支井的二次水合物形成监测与抑制系统及其方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102042947A (zh) * | 2010-07-01 | 2011-05-04 | 青岛海洋地质研究所 | 天然气水合物渗透率模拟实验装置 |
CN102678090A (zh) * | 2011-03-16 | 2012-09-19 | 中国海洋石油总公司 | 天然气水合物三维合成与开采模拟装置 |
CN102865066A (zh) * | 2012-10-16 | 2013-01-09 | 中国石油大学(华东) | 含天然气水合物相变的深水井筒多相流动实验装置及方法 |
CN104453794A (zh) * | 2014-11-20 | 2015-03-25 | 中国科学院广州能源研究所 | 天然气水合物开采全过程模拟实验系统及模拟方法 |
US9291051B2 (en) * | 2010-10-28 | 2016-03-22 | Conocophillips Company | Reservoir pressure testing to determine hydrate composition |
-
2016
- 2016-03-23 CN CN201610169792.4A patent/CN105735948B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102042947A (zh) * | 2010-07-01 | 2011-05-04 | 青岛海洋地质研究所 | 天然气水合物渗透率模拟实验装置 |
US9291051B2 (en) * | 2010-10-28 | 2016-03-22 | Conocophillips Company | Reservoir pressure testing to determine hydrate composition |
CN102678090A (zh) * | 2011-03-16 | 2012-09-19 | 中国海洋石油总公司 | 天然气水合物三维合成与开采模拟装置 |
CN102865066A (zh) * | 2012-10-16 | 2013-01-09 | 中国石油大学(华东) | 含天然气水合物相变的深水井筒多相流动实验装置及方法 |
CN104453794A (zh) * | 2014-11-20 | 2015-03-25 | 中国科学院广州能源研究所 | 天然气水合物开采全过程模拟实验系统及模拟方法 |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106761498B (zh) * | 2016-12-20 | 2018-11-30 | 中国科学院广州能源研究所 | 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法 |
CN106761498A (zh) * | 2016-12-20 | 2017-05-31 | 中国科学院广州能源研究所 | 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法 |
CN108316913A (zh) * | 2018-01-08 | 2018-07-24 | 中国海洋石油集团有限公司 | 海洋天然气水合物藏开采过程出砂模拟测定装置及方法 |
CN109209359A (zh) * | 2018-08-01 | 2019-01-15 | 中国石油大学(华东) | 天然气水合物钻采微观模拟装置 |
CN108918183A (zh) * | 2018-09-19 | 2018-11-30 | 吉林大学 | 海洋水合物振动回转微钻实验装置及方法 |
CN109611027A (zh) * | 2018-12-25 | 2019-04-12 | 中海石油(中国)有限公司湛江分公司 | 水合物钻井模拟系统以及模拟方法 |
CN109611027B (zh) * | 2018-12-25 | 2020-04-28 | 中海石油(中国)有限公司湛江分公司 | 水合物钻井模拟系统以及模拟方法 |
CN110618255B (zh) * | 2019-10-24 | 2021-10-08 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 模拟地层成藏的围压试验装置、安装方法及试验方法 |
CN110618255A (zh) * | 2019-10-24 | 2019-12-27 | 中国船舶科学研究中心(中国船舶重工集团公司第七0二研究所) | 模拟地层成藏的围压试验装置、安装方法及试验方法 |
CN111879912B (zh) * | 2020-08-05 | 2023-02-21 | 中国海洋石油集团有限公司 | 一种钻采天然气水合物监测二次生成实验装置及方法 |
CN111879912A (zh) * | 2020-08-05 | 2020-11-03 | 中国海洋石油集团有限公司 | 一种钻采天然气水合物监测二次生成实验装置及方法 |
CN111929341A (zh) * | 2020-08-06 | 2020-11-13 | 中国科学院广州能源研究所 | 一种地层温度梯度模拟器 |
CN111997595A (zh) * | 2020-08-06 | 2020-11-27 | 中国科学院广州能源研究所 | 一种天然气水合物地质分层装置和方法 |
CN111794722A (zh) * | 2020-08-14 | 2020-10-20 | 西南石油大学 | 海洋天然气水合物成藏-开发模拟实验系统及方法 |
CN112282705A (zh) * | 2020-10-13 | 2021-01-29 | 中国石油大学(华东) | 一种钻井液添加剂对天然气水合物相态稳定的评价装置及实验方法 |
CN113356800A (zh) * | 2021-06-28 | 2021-09-07 | 西南石油大学 | 一种海洋水合物与自由气联合开采的实验装置及方法 |
CN114495675A (zh) * | 2021-12-24 | 2022-05-13 | 中国石油化工股份有限公司 | 天然气水合物钻井循环模拟实验装置及方法 |
CN114495675B (zh) * | 2021-12-24 | 2024-04-09 | 中国石油化工股份有限公司 | 天然气水合物钻井循环模拟实验装置及方法 |
CN115717517A (zh) * | 2022-11-30 | 2023-02-28 | 北京探矿工程研究所 | 模拟钻探对水合物抑制分解性能影响评价装置及实验方法 |
CN115717517B (zh) * | 2022-11-30 | 2024-01-23 | 北京探矿工程研究所 | 模拟钻探对水合物抑制分解性能影响评价装置及实验方法 |
CN115788420A (zh) * | 2022-12-26 | 2023-03-14 | 西南石油大学 | 一种模拟采气过程中水合物堵塞井筒的装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN105735948B (zh) | 2018-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105735948A (zh) | 一种天然气水合物钻采工艺室内实验模拟方法 | |
CN109681198B (zh) | 一种针对不同类型天然气水合物储层的多方式开采模拟装置及方法 | |
CN105277660B (zh) | 监测不同钻采方法下水合物分解区域的装置及方法 | |
CN109025985B (zh) | 基于多分支孔技术开采水合物的实验模拟装置 | |
US11401784B2 (en) | In-situ hydraulic jet exploiting device and method of low-permeability natural gas hydrate reservoir | |
CN107843513B (zh) | 水合物开采井机械筛管冲蚀评价仿真系统及其仿真测试方法 | |
CN101532936B (zh) | 评价钻井液对水合物形成和分解抑制能力的方法及装置 | |
CN111894529B (zh) | 可燃冰开采泄漏模拟及环境参数定量反演的系统与方法 | |
WO2016078164A1 (zh) | 天然气水合物开采全过程模拟实验系统及模拟方法 | |
CN203758981U (zh) | 一种可视化天然气水合物模拟试验装置 | |
WO2018112899A1 (zh) | 一种用于对天然气水合物钻井液进行多相分离的实验装置及方法 | |
CN107780888B (zh) | 天然气水合物试采模拟装置及方法 | |
CN207554023U (zh) | 水合物开采井管内砾石充填仿真系统 | |
CN108316913B (zh) | 海洋天然气水合物藏开采过程出砂模拟测定装置及方法 | |
CN111472729B (zh) | 一种天然气水合物洞穴完井评价测试方法 | |
CN113958292B (zh) | 一种可燃冰开采地层失稳机理模拟试验装置及其使用方法 | |
CN113008682A (zh) | 天然气水合物储层真三轴水力压裂模拟试验装置及方法 | |
CN111794722A (zh) | 海洋天然气水合物成藏-开发模拟实验系统及方法 | |
CN110439552A (zh) | 一种基于钻井的多相流保真取样装置及方法 | |
CN113533676A (zh) | 确定深海海底天然气水合物生成效率的实验室模拟方法 | |
CN111551672A (zh) | 天然气水合物开采甲烷泄漏模拟系统及方法 | |
CN208109793U (zh) | 一种高压水射流破碎海底水合物沉积物的试验装置 | |
CN111879666B (zh) | 一种高温超高压油气藏流体界面张力和接触角测试装置 | |
CN112343558A (zh) | 海域天然气水合物筒式开采模拟试验装置及其试验方法 | |
Huang et al. | Experimental Investigation of Hydrate Production via Deep Depressurization Using a Large-Scale Laboratory Reactor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |